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Preface

FMCAD 2010, held in Lugano Switzerland on October 20-23, was the tenth
in a series of conferences on the theory and applications of formal methods in
hardware and system verification. FMCAD provides a leading forum to re-
searchers in academia and industry for presenting and discussing groundbreak-
ing methods, technologies, theoretical results, and tools for reasoning formally
about computing systems. FMCAD covers formal aspects of computer-aided
system design including verification, specification, synthesis, and testing.

In the past, FMCAD was held in the United States on even years and its
sister conference, CHARME, was held in Europe on odd years. The conferences
merged in 2006 and FMCAD was held in the USA from 2006 to 2009. FMCAS
was held in Europe for the first time this year.

For the first time, FMCAD10 featured an industrial track, dedicated to in-
dustry users of formal methods. We are very pleased at the interest shown in
this track and the high quality of submissions we received, some from purely
industrial teams and some from mixed industrial-academic teams, all describing
results on real-life designs. To encourage professionals, we also accepted decks
of slides. One of these, on property based formal methods for DFT logic verifi-
cation, was accepted—work that otherwise might very well have passed us by.
We are very grateful to Cindy Eiser (IBM Research - Haifa) and Wolgang Ecker
(Infineon) for organizing the track and the accompanying exhibition.

We received 86 papers overall: 66 in the research track and 18 in the indus-
trial track. We accepted 25 research and 7 industrial papers papers, of which
27 were long and 5 were short. The conference covered a wide range of formal
topics, including model checking and theorem proving, verification from the
arithmetic to the system level, synthesis from specifications and case studies.

We heard invited talks from Turing Award winner Joseph Sifakis (CNRS/Verimag,
Schneider-INRIA Endowed Researcher Chair) titled Embedded Systems Design:
Scientific Challenges and Work Directions and from Viresh Paruthi (IBM Austin)
titled Large-scale Formal Application: From Fiction to Fact.

On the 20 October, we had tutorials organized by Helmut Veith (Vienna
University of Technology) from Sumit Gulwani (Microsoft) on Dimensions in
Program Synthesis, from Ken McMillan (Cadence) on Invariant Generation,
from Warren A. Hunt (UT Austin) on Verification of the VIA (Centaur) Nano
Microprocessor using the ACL2 Theorem-Proving System, and from Jin Yang
(Intel) on Post Silicon Verification.

FMCAD 2010 also included a panel, organized by Tom Melham (Oxford) on
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The Verification Challenge of Low-Level Embedded Software.
We sincerely thank the sponsors of FMCAD for their generous contributions:

Centaur Technology, the HiPEAC Network of Excellence, IBM, Intel, the City
of Lugano, Microsoft Research, NEC, and the University of Lugano.

FMCAD has in-cooperation status with ACM SIGPLAN and SIGSOFT and
technical co-sponsorship with IEEE CEDA. FMCAD is committed to making
the proceedings of FMCAD10 as available as possible. To that end, FMCAD
will make the proceedings available online for free. In addition, the proceedings
will be published in the ACM and IEEE digital libraries.

We would like to thank the organizing committee. Besides the people men-
tioned above, the committee includes Hana Chockler (publications), Jason Baum-
gartner (sponsoring) and Umberto Bondi, Daniela Dimitrova, Elisa Larghi,
Francesco Regazzoni, and Mariagiovanna Sami, (local arrangements). The or-
ganizing committee provided invaluable help in organizing FMCAD 2010. We
would also like to thank the steering committee (Jason Baumgartner, Aarti
Gupta, Warren A. Hunt, Jr., Panagiotis Manolios, and Mary Sheeran) for their
invaluable advice.

Most of all we would like to thank the FMCAD program committee for both
tracks for their excellent work reviewing and discussing the submissions. With-
out them, FMCAD would not have achieved the quality that it has. Of course,
the conference could not exist without authors choosing to submit their work
to critical scrutiny at FMCAD.

Natasha Sharygina and Roderick Bloem (chairs)
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Dimensions in Program Synthesis
(Tutorial)

Sumit Gulwani
Microsoft Research

Redmond, WA, 98052
Email: sumitg@microsoft.com

Abstract

Program Synthesis, which is the task of discovering programs that realize user intent, can be useful in several scenarios:
discovery of new algorithms, helping regular programmers automatically discover tricky/mundane programming details, enabling
people with no programming background to develop scripts for performing repetitive tasks (end-user programming), and even
problem solving in the context of automating teaching.

In this tutorial, I will describe the three key dimensions that should be taken into account in designing any program synthesis
system: expression of user intent, space of programs over which to search, and the search technique [1]. (i) The user intent
can be expressed in the form of logical relations between inputs and outputs, input-output examples, demonstrations, natural
language, and inefficient or related programs. (ii) The search space can be over imperative or functional programs (with possible
restrictions on the control structure or the operator set), or over restricted models of computations such as regular/context-free
grammars/transducers, or succinct logical representations. (iii) The search technique can be based on exhaustive search, version
space algebras, machine learning techniques (such as belief propagation or genetic programming), or logical reasoning techniques
based on SAT/SMT solvers.

I will illustrate these concepts by brief description of various program synthesis projects that target synthesis of a wide variety
of programs such as standard undergraduate textbook algorithms (e.g., sorting, dynamic programming), program inverses (e.g.,
decoders, deserializers), bitvector manipulation routines, deobfuscated programs, graph algorithms, text-manipulating routines,
geometry algorithms etc.

REFERENCES

[1] S. Gulwani. Dimensions in program synthesis. In ACM Symposium on PPDP, 2010.

1©2010 FMCAD Inc.
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Verifying VIA Nano Microprocessor Components
Warren A. Hunt, Jr.

Centaur Technology, Inc.
7600-C North Capital of Texas Hwy, Suite 300

Austin, Texas 78731-1180
Email: hunt@centtech.com

Abstract—We verify parts of the VIA Nano X86-compatible
microprocessor design using the ACL2 theorem-proving system.
We translate Nano RTL Verilog into the EMOD hardware descrip-
tion language. We specify properties of the Nano in the ACL2
logic and use a combination of theorem-proving and automated
techniques to verify the correctness of Nano design elements.

I. INTRODUCTION

We have specified and verified parts of VIA’s X86-
compatible Nano microprocessor using the ACL2 theorem-
proving system. The VIA Nano microprocessor is a full X86-
64 design, including VMX, AES, DES, and SHA instructions.
The current Nano is implemented in a 40-nanometer process
with around 100 million transistors. The Nano design contains
a security co-processor; it runs over 40 different operating
system (such as Windows, MacOS, Linux, FreeBSD); and
it supports four different virtual-machine implementations.
The RTL Nano specification is written in Verilog, which
we translate into our formalized EMOD hardware description
language (HDL). We use this EMOD representation both as
a specification for transistor-level circuit elements and as an
implementation for more abstract properties.

The design for the Nano is represented with 570,000 lines
of Verilog. This is a hierarchical description that includes
specifications for all Nano circuit elements, and it can be sim-
ulated using a Verilog simulator. To verify parts of the Nano
design, we first translate modules of interest into the EMOD
formal hardware description language, which is embedded it
within the ACL2 logic. We use the ACL2 logic to specify
the operation of Nano hardware elements. Finally, we use
the ACL2 theorem-proving system to verify the correctness
of Nano design elements.

Our verification efforts have been focused on the media
and floating-point units. The Nano media unit can add/subtract
four pairs of floating-point numbers every clock cycle with
a two-cycle latency. Depending on the size of the operands,
the Nano multiplier can multiply one, two, or four pairs of
operands every clock cycle with a three- or four-cycle latency.
The Nano divider is implemented with a special 4-bit divider
unit augmented with a microcode program.

We have verified hardware the add, subtract, multiply, divide
(microcode only), compare, convert, logical, shuffle, blend,
insert, extract, and min-max instructions [8]. To verify Nano
components, we symbolically simulate design fragments and
compare the results to specifications written in ACL2. Sepa-

rately, we also verify that our ACL2 specifications implement
various floating-point operations.

In this paper, we describe some of the models used by VIA
to implement the Nano. We have formalized subsets of several
models, and we are working to formalize the entire Nano
design. The Nano is continuously updated and extended; for
example, this last year the Nano was extended with 256-bit
SSE instructions. The Nano will soon be offered as a multi-
core, which required an internal rearrangement of many design
elements. As the design is altered, we re-run our evolving
set of formal verification scripts to ensure that the latest
design continues to satisfy the properties we have been able to
formally specify and mechanically verify. Thus, we must be
able to very quickly translate existing design representations
into a form suitable for our tool suite.

II. THE CENTAUR FV TOOLFLOW

Nano circuits are initially represented in Verilog. We trans-
late the Nano Verilog model into our EMOD hardware descrip-
tion language; and we analyze the result of such translations by
comparing them to specification functions. The relationships
between these various models are shown in Figure 1.

Starting in the upper-left-hand-corner of the diagram is the
Nano ‘‘Golden’’ Model; this is a C-language program
that is used as a specification for the VIA Nano Verilog.
The operation of the VIA Nano Verilog is compared to
the specification using co-simulation; both models are simu-
lated, and after each (clock cycle) step, register and memory
values are compared. This procedure is the primary pre-silicon
verification approach for ensuring that the Nano satisfies its
specification. Once functional silicon Nano processors are
available, this same kind of co-simulation is done but the
actual Nano microprocessor is used in place of the Nano
Verilog; results are still compared to the Nano ‘‘Golden’’
Model. Of course, once working microprocessors are avail-
able, they are also installed in computing systems and sub-
jected to a wide variety of tests; the results of these tests are
compared to known-good results.

We use formal verification to augment the already extensive
simulation being performed. Formal verification has found
errors not detected during testing and in commercial usage
that are generally very subtle. Of course, if such bugs were
easy to find, they would have been uncovered by simulation.
Our formal verification process begins by translating the Nano

3©2010 FMCAD Inc.
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Fig. 1. Verification relationships between the models

Verilog into the EMOD HDL, and then symbolically simulat-
ing it to get ‘‘Wire and State Equations. For more
complex specifications, we generally write ACL2 code that is
designed to mimic the behavior of the source Verilog, and then
compare the results produced. In some cases, we compare our
Integer and microcode specifications to even
more abstract specifications, such as when we verified the
Nano media-unit [8] instructions.

In addition to the kind of Verilog verification so far dis-
cussed, we also verify transistor-level circuit implementations.
A large part of the Nano implementation is custom-designed,
transistor-level circuits. In fact, almost all of the Nano design
is full custom, except for a number of auto-place-and-route
blocks that primarily implement control logic. As show in
Figure 1, we verify transistor-level models by translating
their Spice-level circuit representations into a Switches
with strengths -- Sized capacitors form. Us-
ing SYM_SIM, we symbolically simulate the resulting circuit
models and compare the resulting Node Equations values
with the expected Wire and State Equations results.

At a high level, our current verification efforts could be
described as co-simulation with symbolic test vectors. Boolean
data is represented with Boolean variables instead of with
specific Boolean values. In some cases, such as exist in the
execution cluster, the specification of correctness is relatively
straight forward, although voluminous and detailed. In other
cases, such as with the bus interface, the specification is much

more complex and subtle because of the very large number
interactions with other units. Before we attempt to explain
our use of EMOD, we provide a simple embedding example.

III. A SIMPLE EMBEDDED LANGUAGE

We now illustrate the embedding of a very simple language
within the ACL2 logic. This language, based on IF trees, is
defined by two functions: a recognizer (the permitted syntax)
for IF expressions and an evaluator (the semantics) for IF
expressions.

Here are some syntactically, well-formed examples in lan-
guage. Note that these expressions are “quoted”; that is, they
are ACL2 (and Lisp) data constants.

’(IF c a b) ’(IF 1 2 3)

’(IF r (IF c T NIL) q)

We can check whether these forms are indeed acceptable using
our syntactic recognizer function if-termp, which takes a
single argument and recognizes whether this argument is a
valid IF-expression. If term is an atom then it must be
recognized by the eqlablep predicate, which recognizes
atoms that are numbers, symbols, or characters. Otherwise,
this predicate requires an object of the form (IF a b c),
where the argument recursively recognized by if-termp.
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(defun if-termp (term)
(if (atom term)

(eqlablep term)
(let ((fn (car term))

(args (cdr term)))
(and (consp args)

(consp (cdr args))
(consp (cddr args))
(null (cdddr args))
(eql fn ’if)
(if-termp (car args))
(if-termp (cadr args))
(if-termp (caddr args))))))

The function if-evl evaluates the term argument, recog-
nized by if-termp, using assignments of values to variables
as given in alist.

(defun if-evl (term alist)
(if (atom term)

(cdr (assoc term alist))
(if (if-evl (cadr term) alist)

(if-evl (caddr term) alist)
(if-evl (cadddr term) alist))))

For instance, by binding the variables 1, 2, and 3 to them-
selves, we get:

(IF-EVL ’(IF 1 2 3)
’((1 . 1) (2 . 2) (3 . 3)))

==>
2

Given these two functions, we have defined the syntax and
semantics of our IF-expression language. This is a very simple
language embedding; we use the same technique to embed our
hardware description language with ACL2.

We can now prove theorems about descriptions involving
formulas our IF-expression language. For instance, we can
prove:

(let ((if-expr ’(IF A B C))
(bindings (list (cons ’A a)

(cons ’B b)
(cons ’C c))))

(implies
(and (if-termp if-expr)

(eqlable-alistp bindings))
(equal (if-evl if-expr bindings)

(if a b c))))

This shows for any a, b, and c, that the evaluation of the
expression ’(IF A B C) with the bindings shown is the
same as (if a b c).

IV. OUR VERIFICATION APPROACH

We verify Verilog circuit descriptions by translating them
into a HDL-form that ACL2 can process. We then use our
ACL2-based definition of our HDL to symbolically simulate

these translations, and we compare the simulation results to
ACL2 specifications.

A. Our Verilog-to-EMOD Translator

We have written a translator that converts a Verilog design
description into the EMOD language. This translation is meant
to be principally a syntactic transformation; however, because
of the complexity of Verilog it involves a number of semantic
transformations.

To implement the translation of Verilog into EMOD, we adopt
a program-transformation-like [17] style: to begin with, the
entire parse tree for the Verilog sources is constructed; we
then apply a number of rewriting passes to the tree which
result in simpler Verilog versions of each module. The final
conversion into EMOD is really almost incidental, with the
resulting EMOD modules differing from our most-simplified
Verilog modules only in minor syntactic ways. Since each
rewriting pass produces well-formed Verilog modules, we can
simulate the original and simplified Verilog modules against
each other, either at the end of the simplification process or
at any intermediate point.

• We instantiate modules to eliminate parameters introduc-
ing new modules for each instantiation size.

• Wires and registers in Verilog can have varying widths,
and we resolve all such expressions to constants.

• We reduce the variety of operators we need to deal with
by simply rewriting some operators away. In particular,
we perform rewrites such as:

a && b → (|a) & (|b),
a != b → |(a ˆ b), and
a < b → ∼(a >= b).

This process eliminates all logical operators, equality
comparisons, negated reduction operators, and standard-
izes all inequality comparisons.

• We annotate every expression with its type (sign) and
width. The rules for determining widths are subtle, and
if they are not properly implemented then, signals might
be inappropriately kept or dropped.

• We introduce explicit wires to hold the intermediate
values in expressions.

• Verilog allows for implicit truncations in assignment
statements; for instance, one can assign the result of a
five-bit addition a + b to a three-bit bus (collection of
wires), w. We make these truncations explicit by intro-
ducing a new wire for the intermediate result. We replace
expressions like a + b with basic module instances.

We have left out many minor transformations like naming
any unnamed instances, eliminating supply wires, and minor
optimizations. Together, our simplifications leave us with a
new list of modules where only simple gate and module
instances are used. From this we can produce either EMOD or
simplified Verilog. The simplified Verilog can be co-simulated
with the original Verilog as a translation sanity check.
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B. The EMOD HDL

Our EMOD-language analysis approach permits the hi-
erarchical verification of cooperating finite-state machines.
We have been investigating such languages for over 20
years. Our initial attempt was the HEVAL language [2]; this
combinational-only language was embedded in the NQTHM
logic [4]. This led us to the development of the DUAL-EVAL
HDL which was used as the target for the FM9001 micro-
processor verification [3]. As we were the designers of the
FM9001, we actually created and verified a DUAL-EVAL
description of the FM9001 before translating it into LSI
Logic’s NDL language for implementation [12].

The DE HDL [6] was our first HDL embedded into the
ACL2 [11] logic. Later, we extended DE by adding parameters
and busses; we called this the DE2 [7] language. To validate
a data-network circuit, the logic was represented in DE2 and
then this design fragment was verified using ACL2 [14]. Our
latest effort is the EMOD HDL, which is used as a target
for Nano circuits. Other groups [5] have pursued a similar
approach using HOL [16] to provide the formal semantics.
Intel has done extensive formal verification of the Intel R©Core
i7TM processor architecture [10]. AMD is also using formal
verification to aid the verification of their processors [15].

The semantics of EMOD are specified by a deeply-embedded
interpreter written in the ACL2 logic; this interpreter permits
multiple signal evaluation styles: BDDs, AIGs, definedness,
dependency, and delay. We believe EMOD is the first formally-
specified language to support multiple interpretations of HDL
descriptions within a single system, and EMOD is the first
formally-defined HDL to be used in a commercial design flow.

Although EMOD language circuit descriptions have the form
of a HDL, its structure allows it to be accessed and updated
much like a database. Annotations may be attached to every
module definition and occurrence; such annotations include
information such as signaling conventions, functional require-
ments, warnings, and clock disciplines. Thus, we eventually
imagine that a post-silicon design engineer may interrogate
an EMOD-language design with database-like queries to deter-
mine properties that were specified and proven by pre-silicon
designers. And, a post-silicon engineer may exhaustively es-
tablish properties using the speed of fabricated circuits, and
then add these properties to the evolving EMOD-based design
(database).

In support of commercial design verification, we have
defined edge-triggered and level-sensitive, state-holding prim-
itives, and using these primitives, a user may define and verify
multi-clock (derived from one master clock) circuits. Verifica-
tion of gated-clock circuits is supported, indeed, required for
the Nano design style. Verifying bi-directional, tri-state busses
and pass-transistor circuits requires four-valued equations to
be used, and since our transistor-level circuit analyzer targets
our four-valued logic, mixed transistor-gate-level designs may
also be verified.

C. Our Circuit Models

We formally verify fragments of the Nano by translating
them from Verilog to our formal EMOD language, and then
performing symbolic analysis. Instead of trying to write a
formal semantics for Verilog, we choose to formally define
a simpler language and then analyze the results of our trans-
lator, which is labeled ACL2 Verilog Translator in
Figure 1. The EMOD language contains mechanisms that allow
us to represent all of the interface and module names that
appear in Verilog design representations, and we verify EMOD
circuit representations using ACL2.

We verify EMOD circuit representations to more ab-
stract specifications that we write in ACL2. As de-
picted in Figure 1, we write Integer and microcode
specifications in ACL2, and then symbolically simu-
late these specifications [1]; this produces, either as AIGs
or BDDs, results that we compare to the symbolic simu-
lation of EMOD circuit representations. Sometimes, indepen-
dently of the Nano design, we may write an even more ab-
stract X86 ISA specification fragments, such as
for the floating-point operations, and compare our Integer
specifications to these higher-level specifications.
For instance, we have such X86 ISA specification
fragments for the basic floating-point operations; these
specifications are independent from the Nano; they conform
to the IEEE floating-point specifications [9].

In a large number of cases, there are custom implementa-
tions for various Nano circuits; these circuits are implemented
at the transistor level. To verify such transistor-level circuit
descriptions, we use our ACL2 Transistor Analyzer
which converts a Spice-level circuit representation [13] into a
model that has Switches with strengths and Sized
capacitors. This kind of model can be symbolically sim-
ulated using the SYM_SIM circuit simulator, and we compare
the results of such simulations to higher-level, symbolic sim-
ulations.

V. ECC CIRCUIT ANALYSIS

We present a memory error-detection-and-correction circuit
(ECC) and its analysis. This circuit detects and corrects single-
bit memory errors; it also detects double-bit memory errors.
A descendant of this circuit is used in the VIA Nano, and we
verified its operation using the procedures outlined above. As
shown in Figure 2, the circuit is composed of two identical
syndrome generators and an ECC element that drives 64
exclusive-OR gates. The “Memory” block is a model we
developed to model the operation of the real memory; this
block is modeled with 72 exclusive-OR gates, which allows,
using the 72 error inputs, to model any number of inversion
failures. We have three verification goals:
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• when there are no memory errors, the output is correct,
and no error is indicated;

• when there is one memory error, the output is correct,
the correctable_error output bit is set, and the
uncorrectable_error is not set; and

• when there are two memory errors, we only check that
the uncorrectable_error is set.

We approach this verification considering all of the possible
combinations of memory bits and errors that are possible:

• no memory errors: 264 = 18446744073709551616;
• one error: (264 ∗ 72) = 1328165573307087716352; and
• (264 ∗ (72 ∗ 71)/2) = 47149877852401613930496 for

when there are two errors.
In the two-error case, the error positions are symmetric. We
encode the possible errors explicitly by a one- or two-hot
encoding on the error input vector; we will later see that
our specification functions model these errors.

Below is the Verilog source we will attempt to validate.
We constructed this model so we could check that modules
ecc_gen and ecc_decode perform the intended operation.
Of course, the operation of this circuit model also depends
on the exclusive-OR operations (gates) that are part of the
circuit. The exclusive-OR gates in the memory are just part
of our model; these gates allow us to model “bit-flips” in the
memory.

module ecc_model
(data, // Input Data
errors, // Error Injection
corrected_output_bits, // Output Data
correctable_error, // Corrected?
uncorrectable_error); // Can’t be corrected

input [63:0] data; // Data inputs
wire [63:0] data;
input [71:0] errors; // Error injection bits
wire [71:0] errors;

output [63:0] corrected_output_bits; // Output
wire [63:0] corrected_output_bits;
output correctable_error; // Good?
wire correctable_error;

output uncorrectable_error; // Bad
wire uncorrectable_error;

wire [7:0] syn1; // from first ecc_gen
wire [7:0] syn2; // from second ecc_gen
wire [63:0] data_err; // Possibly flawed data
wire [7:0] syn_err; // Memory syndrome bits
wire [63:0] bit_to_correct; // correct outputs

// Generate syndrome bits for "memory"
ecc_gen gen1 (syn1, data);

// Fault injection in memory model.
assign data_err = data ˆ errors[63:0];
assign syn_err = syn1 ˆ errors[71:64];

// Thus, using the "errors" input we can create
// faults that could be considered memory errors.

// Syndrome bits for "memory" output
ecc_gen gen2 (syn2, data_err);

wire [7:0] syn_backwards_xor;
// Compute syndrome
assign syn_backwards_xor = syn_err ˆ syn2;

ecc_decode make_outs (bit_to_correct,
correctable_error,
uncorrectable_error,
syn_backwards_xor);

// Finally, correct the output.
assign corrected_output_bits

= bit_to_correct ˆ data_err;
endmodule

We now present the ACL2 commands used to define and
verify our example ECC circuit. Some details are omitted,
but we attempt to supply sufficient detail so a reader can
understand the process. After placing ourselves in the di-
rectory containing the Verilog above, we start our ACL2-
based analysis system and execute the commands below.
The defmodules command reads the Verilog source and
converts it into the EMOD language. The find-input com-
mands collect and group the input wire names. Similarly, the
find-output commands collect the output wire names. We
use these command because it allows rearrangement of the
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module interface without it concerning our effort.

; Convert the Verilog ECC model and its inferior
; components into the EMOD language.

(defmodules *ecc* :start-files (list "ecc_model.v")
:search-path ’("."))

; By name, collect the input data and error inputs.

(defconst *ecc_model/data*
(find-input "data" 64 |*ecc_model*|))

(defconst *ecc_model/errors*
(find-input "errors" 72 |*ecc_model*|))

; By name, collect the output and the correctable
; and uncorrectable error indications.

(defconst *ecc_model/corrected-output-bits*
(find-output
"corrected_output_bits" 64 |*ecc_model*|))

(defconst *ecc_model/correctable_error*
(find-output
"correctable_error" 1 |*ecc_model*|))

(defconst *ecc_model/uncorrectable_error*
(find-output
"uncorrectable_error" 1 |*ecc_model*|))

The two functions below allow us to form the inputs by
name. With the function create-input, we construct an
association list pairing names with their values, and then
we generate an appropriate pattern. This frees us from be-
ing concerned about the position of the arguments in the
|*ecc_model*| model. The next two functions below
perform a similar function for the output; that is, we construct
three outputs based on the output wire names.

(defun create-input (data errors)
(b* ((alist

(make-fast-alist
(ap (pairlis$ *ecc_model/data* data)

(pairlis$ *ecc_model/errors* errors))))
(pat (gsal (gpl :i |*ecc_model*|)

alist ’fail))
(- (fast-alist-free alist)))
pat))

(defun alist-extract (keys alist)
(declare (xargs :guard t))
(if (atom keys)

nil
(cons (cdr (hons-get (car keys) alist))

(alist-extract (cdr keys) alist))))

(defun get-output (output)
(b* ((alist (pal (gpl :o |*ecc_model*|)

output nil))
(corrected_output_bits
(alist-extract
*ecc_model/corrected-output-bits*
alist))

(correctable_error
(car (alist-extract

*ecc_model/correctable_error*
alist)))

(uncorrectable_error
(car (alist-extract

*ecc_model/uncorrectable_error*
alist))))

(mv corrected_output_bits
correctable_error
uncorrectable_error)))

We next specify our error-correction circuit. We define the
q-not-nth function that (symbolically) inverts a bit of x at
position n. If n is larger than the length of the list x, no change
is made. The next three functions specify the operation of our
|*ecc_model*| when there are no memory errors, when
one error is introduced, and when two errors are inserted.
(defun q-not-nth (n x)

;; Invert bit N of X.
(if (atom x)

nil
(if (zp n)

(cons (q-not (car x)) (cdr x))
(cons (car x)

(q-not-nth (1- n) (cdr x))))))

(defun no-problems ()
;; Check output correctness if no errors injected.
(b* ((data (qv-list 0 1 64))

(errors (make-list 72 :initial-element nil))
(inputs (create-input data errors))
((mv & o) (emod ’two |*ecc_model*|

inputs nil))
((mv corrected_output_bits

correctable_error
uncorrectable_error)

(get-output o)))
(and (equal corrected_output_bits data)

(not correctable_error)
(not uncorrectable_error))))

(defun one-bit-error-predicate (bad-bit)
;; Check output correctness if one error injected.
(b* ((data (qv-list 0 1 64))

(err-bits (make-list 72
:initial-element nil))

(errors (q-not-nth bad-bit err-bits))
(inputs (create-input data errors))
((mv & o) (emod ’two |*ecc_model*|

inputs nil))
((mv corrected_output_bits

correctable_error
uncorrectable_error)

(get-output o)))
(and (equal corrected_output_bits data)

(equal correctable_error (< bad-bit 64))
(not uncorrectable_error))))

(defun two-bit-error-predicate (x y)
;; For two-bit errors, we only check that the
;; uncorrectable error is signaled.
(if (eql x y)

;; If only one error bit is injected.
(one-bit-error-predicate x)

(b* ((data (qv-list 0 1 64))
(err-bits (make-list

72 :initial-element nil))
(errors (q-not-nth

x (q-not-nth
y err-bits)))

(inputs (create-input data errors))
((mv & o) (emod ’two |*ecc_model*|

inputs nil))
((mv & & uncorrectable_error)
(get-output o)))

uncorrectable_error)))

Finally, we introduce functions that generate input suitable
to check all one- and two-bit errors. Thus, these functions
provide the top-level requirements for the ECC circuit.
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(defun all-one-bit-errors (x)
(and (or (one-bit-error-predicate x)

(cw "one-bit-error ˜x0˜%" x))
(if (zp x)

t
(all-one-bit-errors (1- x)))))

(defun all-two-bit-errors-help (x y)
(and (or (two-bit-error-predicate x y)

(cw "two-bit-error ˜x0 ˜x1˜%" x y))
(if (zp x)

t
(all-two-bit-errors-help (1- x) y))))

(defun all-two-bit-errors (y)
(if (zp y)

t
(and (all-two-bit-errors-help (1- y) y)

(all-two-bit-errors (1- y)))))

(defun all-zero-one-two-bit-errors (z)
(and (or (no-problems)

(cw "no-problems ˜%"))
(all-one-bit-errors z)
(all-two-bit-errors z)))

(time$ (all-zero-one-two-bit-errors 71))

This is not the most efficient way to investigate all such errors,
but it is straightforward. We could have introduced additional
symbolic variables to indicate input-error positions, and then
performed one symbolic computation. However, in spite of the
fact that over 5000 symbolic executions of the EEC circuit
are performed, it takes less than 30 seconds to consider all
of the combinations. When we considered this problem, the
ECC circuit designers wanted a quick answer, and this was a
simple way to check their intent. But, we realized a few days
later that our specification, and therefore, the circuit had an
error – our one-bit-error-predicate only checks that
a flawed data bit is detected, but it does not check if one of
the redundant check bits (positions 64 to 71) is itself flawed.

(equal correctable_error (< bad-bit 64))

This was a problem of there being an error in both the circuit
and the specification; subsequently, this error was fixed.

In specification for the ECC circuit we just described,
we did not symbolically co-simulate a corresponding ACL2
specification; we directly specified what we expected as an-
swers. Thus, as pictured in Figure 1, instead of comparing
Output and Next State Equations to Wire and
State Equations, we just inspected the latter. For our
proofs about the Nano media unit [8], we wrote ACL2
specifications that we believed correctly specified it operation.
We later verified that our media-unit specifications were valid
by proving that they implemented our IEEE floating-point
specification.

VI. CONCLUSION

We have verified parts of the VIA Nano Verilog design using
the ACL2 theorem prover. Much of the verification “work” is
done with symbolic simulation, and we use the ACL2 theorem
prover both to verify high-level properties and to orchestrate
the various verification techniques we use. All of our proofs

are carried out with the ACL2 theorem prover, and the BDD
and AIG algorithms we use have also been verified using the
ACL2 theorem prover.

Beyond the straightforward mechanisms described here,
we often use additional verification techniques. The circuit
descriptions we verify include state-holding elements, and we
must either initialize such state-holding elements with suitable
initial values or perform additional symbolic simulation that
forces such storage elements into suitable (symbolic) states.
We usually simulate a circuit for multiple steps, as it requires
several clock cycles for such such circuits to complete their op-
erations. With sequential circuits, it is necessary to specify the
clocking discipline; that is, when and in what phases the clocks
arrive is critical to circuit operation. For instance, for the
verification work on the Nano media unit, we must correctly
orchestrate 26 clock inputs. We use input parametrization,
with appropriate choice of input space partitioning, to allow
verifications where otherwise we might fail to create desired
output equations – generally, we construct AIGs and then,
through an iterative BDD construction procedure, we compare
the results produced to their specifications. We have developed
a general procedure for symbolically simulating any specifica-
tion written in ACL2. Using this procedure, we symbolically
evaluate ACL2-based specifications and compared to their
results to an EMOD simulation. Separately, we prove desired
correctness properties about such ACL2 specifications.

Most of our overall effort has been directed to verifying
execution-cluster properties, much in the same way that Intel
has done with the Nehalem family [10]. AMD has also been
using ACL2 to verify elements from their Athlon processors
[15]. We have begun to explore the use of our formal verifi-
cation tools for other parts of the Nano design; for instance,
we have recently been investigating the instruction decoder
because a problem manifested itself that was not discovered
by other tools; this was due to a lack of capacity, as the
state machines being compared were too large for available
commercial tools.

Our application of one formal system, specifically ACL2,
may be broader than any single formal verification tool in
use by other projects. We use ACL2 to read and translate the
Verilog and to model the behavior of Nano circuits at the
transistor level; this part of our verification flow has become
more important as we experience the limitations of commer-
cially available tools. We specify high-level operations, such
as floating-point operations, in a manner that is independent
of the specific operation of the Nano; these specifications are
general and would likely be valid for many microprocessors.
We are expanding the use of formal verification on future Nano
microprocessors.
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Embedded Systems Design – Scientific Challenges
and Work Directions

(Invited Paper)

Joseph Sifakis
Verimag

Abstract

The development of a satisfactory Embedded Systems Design Science provides a timely challenge and opportunity for
reinvigorating Computer Science.

Embedded systems are components integrating software and hardware jointly and specifically designed to provide given
functionalities, which are often critical. They are used in many applications areas including transport, consumer electronics and
electrical appliances, energy distribution, manufacturing systems, etc.

Embedded systems design requires techniques taking into account extra-functional requirements regarding optimal use of
resources such as time, memory and energy while ensuring autonomy, reactivity and robustness.

Jointly taking into account these requirements raises a grand scientific and technical challenge: extending Computer Science
with paradigms and methods from Control Theory and Electrical Engineering. Computer Science is based on discrete computation
models not encompassing physical time and resources which are by their nature very different from analytic models used by other
engineering disciplines.

We summarize some current trends in embedded systems design and point out some of their characteristics, such as the chasm
between analytical and computational models, and the gap between safety critical and best-effort engineering practices. We call
for a coherent scientific foundation for embedded systems design, and we discuss a few key demands on such a foundation: the
need for encompassing several manifestations of heterogeneity, and the need for design paradigms ensuring constructivity and
adaptivity.

We discuss main aspects of this challenge and associated research directions for different areas such as modelling, program-
ming, compilers, operating systems and networks.

11©2010 FMCAD Inc.
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Abstract— Traditionally, validation at the ASIC block level relies 
primarily upon simulation based verification. Specific 
components that are “hot spots” are then considered as 
candidates for Formal Verification. Under this usage model, the 
hurdles to Formal Verification are intractability and poor 
specifications. In this paper, we outline an alternate approach, 
where we used Formal Verification as the “first line of defense” 
in the course of validating a Packet Switch. This block had 
several components that were complex and hard to verify, 
including components that required liveness guarantees, where 
responses are event bound, and not cycle bound. To surmount 
typical hurdles, an early collaboration was formed between 
design and verification engineer, both to influence the design as 
well as to identify relevant manual abstraction techniques 
upfront. All significant components were formally verified at the 
module level. 

This approach was successful in identifying most bugs during the 
design phase itself and drastically minimized bugs during 
verification/emulation phases of the project. This paper 
illustrates the strengths of such an approach. It describes our 
overall methodology and the proof techniques utilized. The 
overall effort yielded a total of 55 bugs found (52 during the 
design phase and only 3 bugs during the verification phase). No 
bugs were found subsequently during emulation. As a result, this 
block was deemed “tape out ready” 2 months prior to other 
blocks of similar complexity. 

I. INTRODUCTION  

The complexity of modern designs has been increasing at a 
rapid pace. Modern design blocks are made up of modules that 
have very complex behaviors and interactions. Verification of 
such blocks poses a serious challenge. The conventional 
approach is to verify through simulations at the block level. 
However, simulation has the inherent limitation that one can 
simulate only a limited set of patterns in any reasonable 
amount of time. As design sizes grow, it is becoming 
increasingly difficult to maintain a high level of confidence 
purely based on simulation coverage. A possible solution is to 
use Formal Verification to verify some of complex modules in 
your design. Formal Verification performs exhaustive 
verification by exploring the entire state space of the design.  
 
In this paper, the design block under consideration is a switch 
with around 650k gates and with multiple ports. Most of the 
modules inside this design block have high complexity both in 
terms of the control oriented behavior and data path 
operations. Based on previous experiences, it was estimated 
that simulation based verification techniques of such designs 

would require more than a year for a dedicated engineer to 
fully verify. 
 
In addition, the design in question also had several 
components for which liveness guarantees were required, 
which were not possible to validate using simulation based 
verification. Thus, it was therefore concluded that the most 
cost-effective approach would be to utilize Formal    
Verification techniques to prove correctness of all significant 
components of the design at the module level. Conventional 
simulation based design verification (DV) was also done, but 
at the block level. 
 
Our overall approach was inspired by the following quotation 
from “Mythical Man Month” [1]:  
  
  “The use of clean, debugged components saves much more 
time in system testing than that spent on scaffolding and 
thorough component test." 
 
Our FV efforts commenced very early during the design phase 
and consisted of the following methodology (which took place 
alongside conventional DV efforts at the block level): 
 
1) Partition the design into minimally sized pieces and generate 
specifications at the module level. Use the compositional 
verification technique of proving properties of a system by 
checking the properties of its components, using “assume-
guarantee” style reasoning. 

2) Aim to prove “black-box” (end-to-end module level) 
properties and use the tractability results to both influence 
design re-partitioning as well as to gain insights about RTL 
complexity. 

3) Study cones of influence in order to deduce possibilities for 
manual abstractions. Once identified, these abstractions were 
then used to replace stateful RTL components within the 
design. 

In a few cases where all other options failed, we resorted to 
proving “white-box” properties (based on RTL internal state). 
We used this approach as a last resort since rigorous 
specifications of RTL internals are hard to come by, and 
further, such specifications often change in the course of the 
design cycle. 

This paper will focus on the techniques used to verify two of 
the modules in the design, namely the Synchronizer and the 
Page Manager modules. The first case study is a control & 
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datapath block that consists of 20k gates and the second is a 
datapath block that consists of 25k gates. 
 
In subsequent sections, we describe each module, the Device 
Under Test (DUT) operational details, the Formal Verification 
strategy utilized in each case as well as the verification results. 
Later, we also present our overall results (number of bugs 
found etc.) and our high level conclusions. The model 
checkers  Incisive Formal Verifier (IFV)[2] and SMV[5] were 
used over the course of this project. 

II. DESCRIPTION OF  THE PACKET SWITCH 

The design block under consideration was a packet switch 
with multiple ports that accepted packets, stored them in 
memory, and later forwarded them to various output ports, 
allowing for the possibilities of switching and replicating 
packets. 
 
In order to accomplish this functionality, the block had various 
types of complex components, components that were 
responsible for storing incoming packets to memories, 
components that were responsible for  managing pages in 
memory over which packets were stored, components that 
maintained caches, etc.  
 
The goal here was to a) design specifically with Formal 
Verification in mind (keep modules small, keep interfaces 
crisp) as well as to b) formally verify as many elements of the 
design as possible. In total, 14 modules of the design were 
formally verified. The design consisted of 18 modules in its 
entirety. 

 
The following design principles were utilized to ensure FV 
tractability: 

 
• Careful design partitioning with exhaustive invariants 

of module interfaces. 
• Isolation of modules that exhibit FIFO-ness. 
• Significant parameterization of modules, to allow 

abstraction/reduction of bus widths, etc. 
• Significant reuse of common modules, e.g., arbiters, 

aligners, etc. 
• Decomposition of all architectural invariants into 

micro-architectural invariants. 

III. FORMAL VERIFICATION OF THE SYNCHRONIZER  

 
The synchronizer module has two inputs, a) packet data is sent 
across in_{valid,sop,eop,data[63:0]} , where sop and eop are 
start/end packet delimitors and b) address of a valid page is 
specified across in_addr, in_addr_valid. Its purpose is to place 
the arriving data, which arrives in units of 8 bytes, into various 
slots within the specified page. The interface for this module is 
shown in Fig 1. 
 
The input packet data bus adheres to the following protocol: 
in_valid is asserted whenever there is new data presented 

across the input. During the first 8 byte data chunk within a 
packet, in_sop will be asserted, and during the last 8 byte 
chunk, in_eop will be asserted. 
 
Each page is of size 128 bytes, which is broken down into 16 x 
8 byte slots. This module receives an input, sync_cnt[3:0], 
which is an external counter that increments every cycle. The 
output consists of: rf_write, rf_write_sop, rf_write_eop, 
rf_write_data[63:0].  If, at any point in time, we see 
rf_write==1 and sync_cnt==i (where i:=0...15), then it means 
that rf_write_data[63:0] is being written into slot i within the 
page. 
 
The rules determining when/what data is written into a 
particular slot in a page are described in the Operational 
Details section. All data arriving over in_data goes into an 
internal skid_fifo. The data that is at the head of the skid_fifo is 
written out into a page only when various design rules are 
satisfied. 
 
This module is called the synchronizer because it synchronizes 
when and where an incoming data segment is written into a 
page. It is part of a larger system that  is responsible for 
accumulating various 8 byte chunks of data within a register 
file so that it can later generate an atomic memory write 
operation for a half page worth of data. 
 

 

Figure 1 – Block Diagram of the Synchronizer 

IV. OPERATIONAL DETAILS OF THE SYNCHRONIZER  

 
Following are rules governing the Synchronizer module: 
 
• Across the datapath between in_{valid,sop,eop,data} & 

rf_write,rf_write_{sop,eop,data},  FIFO-ness needs to 
hold. Note that the input bus has no backpressure 
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capability (i.e., the input interface should always be able 
to sink data and cannot throttle the input bus). 

 
• For a given page (presented on: in_addr), rf_writes should 

occur to slot=0....15 in a monotonically increasing 
fashion. 

 
• For a given page, if a non-EOP data word was written into 

slot=i, then the next data word for this packet must be 
written into slot=i+1. 

 
• If we are at the lower half of a page (slot=7) and a) 

there’s an rf_write or b) we are not within a packet and 
have seen an rf_write in the past to the lower half of this 
page, then at the next cycle hpage_wr will be asserted and 
not otherwise. 

 
• If we are at the upper half of a page (slot=15) and a) 

there’s an rf_write or b) we are not within a packet and 
have seen an rf_write in the past to the upper half of this 
page, then at the next cycle hpage_wr will be asserted and 
not otherwise. 

V. DESIGNER’S INVARIANTS FOR THE SYNCHRONIZER 

Apart from the rules that were identified by the verification 
engineer, we also proceeded to prove the following invariants 
put forth by the designer. The intent here was to prove 
invariants that emerged after interface study by the verification 
engineer, as well as those that were deemed important by the 
designer. 

 
• If there is an rf_write to some slot x (where x=0…15), 

then there will be no write to slot y (y<=x) until there is 
an assertion of output signal hpage_wr. 

 

VI. SYNCHRONIZER VERIFICATION STRATEGY 

We could visually establish that this module demonstrated 
data independence. The circuit accepted data and shuffled it 
around, but no control signals were derived from data. This 
could be done relatively easily, by examining the fan-out cone 
associated with the data-path elements. 
 
Further, the design also dealt exclusively in terms of 8 byte 
(64 bit chunks) and didn't reorder data bytes within each 
incoming double word. In order to prove that the unit fulfilled 
the specification of a FIFO, it was possible to utilize Wolper’s 
Theorem [3], abstract the data width to just 2 bits, inject a 
regular expression consisting of A*BA*CA* over the input 
data interface and expect that the data showing up at the 
output also conformed to this regular expression. 

 
A packet generator was written to inject packets that a) 
conformed to SPI4 framing conventions and b) had a 
minimum length of 64 bytes, over the input bus: 
in_{valid,sop,eop,data}. This packet generator data words 
consisting of just 4 types: {A,B,C,D}, where A=64'h0, 

B=64'h1, C=64'h2, D=64’h3. A auxiliary fsm was written to 
monitor the outputs: rf_write,rf_write_{sop,eop,data}.  
 
Three critical proofs, pertaining to packet data-integrity and 
framing, were then cast  using the packet generator and 
auxiliary FSM. 

 
Proof Obligation1:  To prove data integrity across the FIFO’s 
data-path.  
 
This proof asserted that if we injected packets conforming to 
the regular expression A*BA*CA* over in_data[1:0],  then we 
are guaranteed to see outputs that also conform to the regular 
expression A*BA*CA* over rf_write[1:0]. Note that this 
regular expression is injected and expected across all valid 
input and output data words This proves that no input data 
word is dropped, duplicated or reordered.  
 
Proof Obligation2: To prove that SOPs are preserved intact 
across the internal FIFO. 
 
For this proof, the regular expression A*BA*CA* was injected 
into in_data[1:0] for SOP input words, and D was injected 
into in_data[1:0] for non-SOP input words. The expectation 
was that the regular expression A*BA*CA* will always be 
seen on  rf_write[1:0], for SOP output words and D will 
always be seen on rf_write[1:0], for non SOP output words. 
 
Any corruption of an input SOP word (with data values: 
{A,B,C})  into an output non-SOP word, would result in an 
output non-SOP with a value of {A,B,C}, which will be 
detected as a violation of Proof Obligation2. 
 
Any corruption of an input non-SOP word (with data value: D) 
into an output SOP word, would result in an output SOP word 
with a value of  D, which will be detected as a violation of 
Proof Obligation2. 

 
Proof Obligation3: To prove that EOPs are preserved intact 
across the internal FIFO. 
 
For this proof, the regular expression A*BA*CA* was injected 
into in_data[1:0] for EOP input words, and D was injected 
into in_data[1:0] for non-EOP input words. The expectation 
was that the regular expression A*BA*CA* will always be 
seen on  rf_write[1:0], for EOP output words and D will 
always be seen on rf_write[1:0], for non EOP output words. 
 
Any corruption of an input EOP word (with data values: 
{A,B,C})  into an output non-EOP word, would result in an 
output non-EOP with a value of {A,B,C}, which will be 
detected as a violation of Proof Obligation3. 
 
Any corruption of an input non-EOP word (with data value: 
D) into an output EOP word, would result in an output EOP 
word with a value of  D, which will be detected as a violation 
of Proof Obligation3. 
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In order to prove that writes within a page were to 
monotonically increasing slots, a tracking FSM was written. 
This FSM did the following: Every time a new page was 
presented over in_addr, in_addr_valid, it recorded the slot into 
which it first saw an rf_write, storing both the value of 
sync_cnt into last_wr_ptr as well as rf_write_{sop,eop} into 
last_wr_{sop,eop}.  
 
Properties were then written to monitor the behavior of 
rf_write. The two most important assertions were: 

 
1. If we are performing an rf_write to some slot=sync_cnt 

and if this is not the first write to the page, then sync_cnt 
will be greater than last_wr_ptr. 

 
2. If we are performing an rf_write and if this is not the first 

write to the page and if the previous write was a non-EOP 
data word (i.e., last_wr_ptr=i && last_wr_eop=0), then 
this write will be to slot=(i+1). 

 
This tracking FSM also monitored writes to upper/lower 
halves of a page such that later, when sync_cnt={7,15} (i.e., 
write pointer is at the upper/lower half boundaries), if any 
writes had occurred to a half, the output hpage_wr would be 
asserted. 

VII. SYNCHRONIZER VERIFICATION RESULTS 

A critical bug was found in the implementation of hpage_wr. 
The failing counterexample consisted of a scenario where 
there was a write to the upper half of a page for which there 
was a valid hpage_wr assertion. However, this signal 
continued to be asserted for 8 extra cycles indicating a write to 
the lower half of the page inspite of the fact that the lower half 
was not written into. This was found very early in the design 
stage. 
 
Another critical bug was found in the FIFO size required. The 
property corresponding to Proof Obligation1 failed. Our 
analysis showed us that the minimum FIFO depth should have 
been 18 and not 16. The depth had to account for the internal 
FIFO latency. This bug was found very early in the design 
stage. While sync_cnt is a primary input to this module, it is an 
internal signal within the larger block. Since conventional 
simulation based DV was being performed at the block level, 
precise control over this signal is difficult to realize in 
simulation, making this bug an improbable event within block 
level DV. The designer estimates that debugging  this issue 
would have required ~ 2 hours within a block level 
verification test failure, but within the module level FV 
framework, this debugging took just a few minutes. 

VIII. FORMAL VERIFICATION OF THE PAGE MANAGER MODULE 

The Page Manager module’s block diagram is shown in 
Figure 2. It is responsible for managing all pages on the 
receive path of our Ethernet Switch. This module’s interface 
supports four types of requests: Allocate, Enqueue, Dequeue 
and Dealloc. It also has an output bus, Page Free. 

IX. PAGE MANAGER OPERATIONAL DETAILS 

Data passing through the switch from input to output ports is 
stored in pages. A list of pages defines a packet. The Page 
Manager maintains the state of the page, from the time it is 
allocated until the time it is relinquished. Internally, the Page 
Manager consists of a) Free List Manager and b) Life Count 
Memory. These two sub-units together maintain the state of a 
page, which consists of its allocation state as well its reference 
count (i.e., the number of packets utilizing that page). 

 

 
 

 Figure 2 – Block Diagram of Page Manager 
 
The Free List Manager sub-unit maintains a list of free pages 
and its interface allows pages to be allocated and freed. The 
Life Count Memory sub-unit maintains a reference count (also 
called Life count or lcnt) on a per-page basis, representing the 
number of packets present on a single page. The legal lcnt 
values are: 0...3. 
 
The life cycle of any page consists of the following event 
sequence: 
• The unit first receives a Page Allocate. This request is 

fielded by the Free List Manager, and a free page is 
handed to out to the requestor. Coincident with that, the 
page’s lcnt is initialized to 0 in the Life Count Memory.. 
 

• Once a page has been successfully allocated, an Enqueue 
request will be received along with a specified initial lcnt. 
The legal values for lcnt are: {0,1,2,3}. This information 
is then stored alongside the page within the LCNT 
complex. 

 
• After a page has been Enqueue’ed, it will then receive (at 

arbitrary points in time), various Page Dealloc requests. 
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During each Dealloc request, this page’s lcnt, will be 
decremented in the Life Count Memory complex.  
 

• The design assumes that once a page has been  
Enqueue’ed with some lcnt (1,2 or 3), it will only field 
those many Dealloc requests.  After the last Dealloc 
request (in the course of which a particular page’s lcnt 
goes from 1 to 0), the Free List Manager should free the 
relevant page and thePage Free output signal will be 
asserted. 
 

• Between the time a particular page has been  Enqueue’ed, 
and the time it is freed up, its lcnt can be read any number 
of times over the Page  Dequeue interface. Each Dequeue 
request extracts the lcnt and return this value in the 
Dequeue response. 

X. PAGE MANAGER VERIFICATION STRATEGY 

The design was responsible for managing a total of 1024 
pages.  When an attempt was made to cast proofs against the 
DUT, it was found that the proofs did not converge due to 
state space explosion. The biggest contributor to the state 
space was the Free List Manager (with 1024 state bits). 
  
The Free List Manager’s interface definition is shown in 
Table I. This module has a page allocation interface 
alloc_{srdy,drdy,num} as well as a page free interface 
dlloc_{srdy,drdy,num}.  
 
 Table I (Free List Manager Interface) 
 

 
                 
 

Our abstraction reasoning hinged on a single observation: If 
you focus on the life of a single page, every other page’s 
activity (and state) should be orthogonal to this page’s life.  
We utilized this observation in constructing a manual 
abstraction for the Free List Manager that maintains state only 
for a single page of interest thereby cutting down the size of 
the cone-of-influence significantly. This technique is based on 
the Refinement strategy described in [4].  
 
The Free List Manager abstraction had the following 
characteristics: 
 
• It was aware of the address of a magic page and 

maintained state only for that page. 
 
• It operates in two modes, depending upon whether this 

magic page is allocated or not: 
• If the magic page was already allocated, during 

subsequent allocation requests, it would non-
deterministically allocate a page whose address!= 
magic page. 

 
• If the magic page wasn’t already allocated, during 

subsequent allocation requests, it would non-
deterministically allocate any page (including one 
whose address == magic page). 

           
This Free List Manager abstraction SMV code is shown in 
Table II.  This abstraction was coded in both SMV (for 
abstraction soundness proofs) as well as in verilog  (for the 
Page Manager proofs,  which were run within IFV). 
 
As can be seen in the abstraction’s code, a single state 
variable, magicPageAllocated, was used to record whether or 
not the magic page was allocated, and this state is then used in 
determining the page handed out during allocation requests. 
 
Aside from this state, the notion of magic page was 
maintained within a rigid variable that was set non-
deterministically by the external environment at the time of 
reset, and kept constant during each path. By virtue of 
maintaining just 1 bit of state (magic page’s allocation state), 
the number of bits of state was reduced by 1023 bits within the 
cone of influence. This abstraction was then used to replace 
the Free List Manager instance within the DUT. 
 
The intent here, in the construction of the Free List Manager 
abstraction, was to provide ourselves with a light-weight stub 
that allowed completely non-deterministic allocation and 
freeing of pages, with arbitrary latencies, with a single 
restriction that it would never reallocate the magic page, if 
someone else already have it allocated – which are 
characteristics required for this abstraction to be “sound”. 
 
 
 
 

/* 
*       alloc_srdy => alloc page available 
*       alloc_drdy => alloc page consumed by client 
*       alloc_num => alloc page number 
*       dlloc_srdy => dlloc page requested by client 
*       dlloc_drdy => dlloc page request accepted 
*       dlloc_num => dlloc page number 
*/ 

module fl_mgr( 
   Clk, 
   Rst_, 
   alloc_srdy,             
   alloc_drdy,             
   alloc_num,             
   dlloc_srdy,             
   dlloc_drdy,             
   dlloc_num             
); 
input            Clk; 
input            Rst_; 
output           alloc_srdy; 
input            alloc_drdy; 
output [9:0]     alloc_num; 
input            dlloc_srdy; 
output           dlloc_drdy; 
input [9:0]      dlloc_num; 
... 
endmodule 
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 Table II (Free List Manager Abstraction) 

 
 The FV framework additionally maintained an auxiliary non-
deterministic “tracking state” FSM (trkState) to both 
exhaustively generate requests sequences while tracking the 
life of the magic page as well as to help predict the DUT’s 
responses.  This FSM’s state diagram is shown in Figure 3 
 
The trkState FSM starts off in IDLE state and transitions into 
ALCD state if magic page is allocated.  Once it is in ALCD 
state, it non-deterministically generates an Enqueue request 
with lcnt={1,2,3} and transitions to states LCNT1, LCNT2, 
LCNT3 respectively. After it moves into an LCNT state, it 

then non-deterministically generates as many Dealloc requests 
as is permissable.  
 
During the last Dealloc request generation (which occurs 
while in LCNT1) state, this FSM expects to see a Page Free 
event for the magic page. If this event occurs, the FSM 
transitions to IDLE. On the other hand, during this last 
Dealloc, a Page Free event is not observed for the magic 
page, it transitions to and forever remains in ERROR state. In 
addition, any unexpected output event also caused a transition 
to ERROR state. 
 

 
             Figure 3 – trkState FSM state diagram 
 
There are two modes of operation within the FV framework, 
based on whether or not magicPageAllocated is set: 
 

1. If magicPageAllocated is 0, the trkState FSM will be in 
IDLE and the FV framework will non-deterministically 
generate requests (for any page), to the DUT. 

 
2. If magicPageAllocated is 1, the trkState FSM will 

generate legal/exhaustive requests (for magic page) 
while other input constraints non-deterministically 
generate requests (for any page other than magic page). 

 
In addition to generating exhaustive and legal inputs, the 
purpose of the FSM’s state variable was to predict the DUT’s 
responses while in various states.   
 
We now describe some important assertions governing the 
DUT’s behavior  (These were coded in System Verilog): 
 
• While in non-IDLE states (i.e., magic page has already 

allocated), the DUT should not reallocate magic page to 
any other requesting agent. 

 

    
   layer abstract : { 
      alcVld                               : boolean; 
      dlcVld                             : boolean; 
      magicPageAllocated        : boolean; 
      magicPageAllocatedNxt  : boolean; 
 
      alcVld := (alloc_srdy & alloc_drdy); 
      dlcVld := (dlloc_srdy & dlloc_drdy); 
 
      init  (magicPageAllocated) := 0; 
      next (magicPageAllocated) := magicPageAllocatedNxt; 
 
      /* magicPageAllocatedNxt generation */ 
      default { 
         magicPageAllocatedNxt := magicPageAllocated; 
      } in { 
         if (~Rst_) 
            magicPageAllocatedNxt := 0; 
         else { 
            if (alcVld & ~dlcVld){  
               /* Only Alloc */ 
               if ((alloc_num=magicPage) | magicPageAllocated) 
                  magicPageAllocatedNxt := 1; 
            } 
            else 
            if (~alcVld & dlcVld){   
               /* Only Dlloc */ 
               if (magicPageAllocated & dlloc_num=magicPage) 
                  magicPageAllocatedNxt := 0; 
            } 
            else 
            if (alcVld & dlcVld){    
               /* Both Alloc & Dlloc */ 
               if (alloc_num=magicPage) 
                  magicPageAllocatedNxt := 1; 
               else 
               if (dlloc_num=magicPage) 
                  magicPageAllocatedNxt := 0; 
            } 
         } 
      } 
 
      /* alloc_num generation */ 
      default { 
         /* any page whatsoever */ 
         alloc_num := {0..MAX_NPAGES-1}; 
      } in { 
         if (alloc_drdy & magicPageAllocated){ 
            /* any page other than magicPage */ 
            alloc_num := { i : i=0..MAX_NPAGES-1, i~=magic Page }; 
         } 
      }    
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• After the Allocate phase, during the  Enqueue phase for 
the magic page, the specified lcnt  should be initialized. 

 
• After the  Enqueue phase for the magic page, during each 

Dealloc phase, its lcnt should be properly decremented in 
the LCNT memory. 

 
• The output Page Free should be generated for the magic 

page if and only if the last Dealloc request has been 
issued for this page. 

 
• While in non-IDLE states, for any  Dequeue request, the 

response lcnt should match what we expect based on the 
FSM state (0 if in ALCD, 1 if in LCNT1, 2 if in LCNT2, 
3 if in LCNT3). 

 
                  Table III (Example SV Assertions) 
 

                     
We provide some example SV assertions in Table III. The first 
property, assert_page_no_realloc, asserts that if trkState is not 
IDLE, that is if the magic page is already allocated, it will not 
be reallocated to any other requestor. 
 
The second and third properties that are shown here, 
assert_page_free_{valid,invalid}, describe the necessary and 
sufficient condition required for the magic page to be freed 

(“magic page should be freed if and only if trkState is in 
LCNT1 and magic page is deallocated”). 
 
By maintaining a rigid variable that determined magic page 
and by having a Free List Manager abstraction that 
maintained state for just this one page, the design was 
rendered tractable. The properties outlined earlier were all 
proven against the life of this single magic page, and since this 
page address was non-deterministically generated (to have any 
page address), the proofs hold for all pages. 
 
In the interest of completeness, the Free List Manager was 
separately formally verified within an SMV framework. Two 
properties were proven against the actual Free List Manager: 
 
• A page, once allocated, will never be reallocated until it is 

deallocated (safety property) 
• All page allocation requests will eventually be fulfilled 

(liveness property) 
 
It is worth noting that the last property mentioned above 
required the following fairness constraint: “Every allocated 
page will always eventually be relinquished” in order to 
eliminate invalid counter-examples.  
 
In addition, the soundness of (an SMV version of) the Free 
List Manager abstraction was also proven within this 
framework. 

XI. OVERALL VERIFICATION RESULTS 

During this project, 14 modules within this block were 
formally verified by a single FV engineer, over a period of 6 
months. A total of 55 bugs were found during this effort; 52 
bugs were found in the design phase and 3 bugs were  found in 
the verification phase. It is also worth noting that during the 
verification phase, 3 other bugs slipped through FV and were 
found in block level simulation (2 were due to missing 
properties and 1 was due to an overly tight constraint).    
 
The 3 bugs found in simulation were recreated within FV by 
adding new properties and correcting an overly constrained 
input.  In addition, the fixes were formally verified. 
 
During emulation, this formally verified block was the first to 
successfully withstand data integrity type testing. As a 
consequence, this block was deemed tape-out ready two 
months prior to other blocks, of similar complexity that 
exclusively underwent simulation based verification. 
 
During ASIC “bring-up”, no issues were found in any of the 
design components that were formally verified. 
 

XII. CONCLUSIONS 

Based on our experience, we come to the conclusion that it is 
possible to significantly address block level verification needs 

 
/*   
 *  If we’re in non-IDLE state, magic page is already in use and  
 * should not be reallocated to any other requestor  
 */ 
assert_page_no_realloc: assert property( 
   @(posedge Clk) disable iff  (!Rst_)( 
      (trkState!=IDLE) |-> !(page_alloc_req && page_alloc_rsp 
&& page_alloc_pgnum==magic_page) 
   ) 
); 
 
/* 
 *  If  in LCNT1 state and there is a dealloc of the magic page,  
 * then we should see a freeing of the magic page  
 */ 
assert_page_free_valid: assert property( 
   @(posedge Clk) disable iff  (!Rst_)( 
      (trkState==LCNT1 && page_dealloc_req &&  
page_dealloc_rsp && page_dealloc_pgnum==magic_page) |-> 
      (page_free_req && page_free_pgnum==magic_page 
   ) 
); 
 
/*  
 * If  in !(LCNT1 state and there is a dealloc of the magic page), 
 * then we should not see a freeing of the magic page  
 */ 
assert_page_free_invalid: assert property( 
   @(posedge Clk) disable iff  (!Rst_)( 
     ! (trkState==LCNT1 && page_dealloc_req &&  
page_dealloc_rsp && page_dealloc_pgnum==magic_page) |-> 
     ! (page_free_req && page_free_pgnum==magic_page 
   ) 
); 
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by breaking down the design into minimally sized modules and 
then formally verifying each of them. 

Our methodology also helped yield the following benefits over 
the course of this project: 

• Overcoming state space explosion during proof runs 
within the model checker. 

• Generating rigorous specifications upfront at the module 
level, something that is often overlooked while embarking 
on “block level” DV. 

• Providing SVA assertions and assumptions which could 
also be used in simulation. 

• Creating FV frameworks within which we could verify 
design changes/bug fixes with a high degree of confidence 
alleviating the need to rerun all simulation tests. 

While re-partitioning of design based on FV tractability can 
sometimes lead to added design latency, this tradeoff was 
worthwhile overall because the more minimally sized design 
modules were easier to maintain. 

We also observed that debugging of counter-examples was 
very efficient since we specified a large number of module 
level invariants that helped isolate root-causes fairly quickly. 

We believe there is value in some amount of overlap between 
FV efforts and conventional simulation based verification. 
Such a parallel/overlapping approach reduces the risks posed 
by overly tight constraints and inadequate (or missing) 
properties. This overlapping effort is justified by the fact that 
almost all bugs were found in the design phase itself and the 
FV proof frameworks provided us with a vehicle within which 
the fixes could be formally verified. 

While the techniques outlined here, to render modules tractable 
under FV, are well known in the research world, they are 
seldom applied in the course of ASIC formal verification 
efforts and are hence worth emphasizing. 

XIII. LIMITATIONS AND FUTURE WORK 

Our approach relies on the verification engineer using design 
insights to come up with the right manual abstractions. This 
approach does risk bias particularly in light of the fact that  
commercial model checkers (that we know of) lack the means 

to prove soundness of abstractions or the means to express 
refinement maps (as can be done with SMV[5]).  

To alleviate this risk, we made a deliberate attempt to keep our 
abstractions very simple (less than half a screen worth of 
verilog code per abstraction), and as a result have a high degree 
of confidence in our abstractions’ soundness. 

For the specific case of the Free List Manager abstraction, we 
reimplemented this abstraction within an SMV “layer” and 
proved its soundness, ensuring that for every path taken within 
the RTL component replaced, there exists at least one identical 
path within the abstract definition. 

Most commercial model checkers do not possess the ability to 
verify data-independence in any automated way. We look 
forward to such features so that we can utilize them in the 
interest of completeness. 

However, to put these concerns into practical perspective, we 
observe that these risks are no worse than other concerns, such 
as ensuring that DUT inputs are not over-constrained, ensuring 
that assertions correctly capture the specification’s intent, etc. 
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Abstract—Arbiters are commonly used components in elec-
tronic systems to control access to shared resources. In this
paper, we describe a novel method to check starvation in ran-
dom priority-based arbiters. Typical implementations of random
priority-based arbiters use pseudo-random number generators
such as linear feedback shift registers (LFSRs) which makes
them sequentially deep precluding a direct analysis of the design.
The proposed technique checks a stronger bounded-starvation
property; if the stronger property fails, we use the counter-
example to construct an underapproximation abstraction. We
next check the original property on the abstraction to check for
its validity. We have found the approach to be a very effective
bug hunting technique to reveal starvation issues in LFSR-
based arbiters. We describe its successful application on formal
verification of arbiters on a commercial processor design.

I. INTRODUCTION

Arbiters [4] are widely used in electronic systems such as
microprocessors and interconnects. Arbiters restrict access to
shared resources when the number of requests exceeds the
maximum number of requests that can be satisfied concur-
rently. For example, an arbiter that regulates access to a bus
selects which requestors would be granted access to the bus
if there are more concurrent requests than the bus can handle.
Arbiters use various arbitration schemes in the form of a
priority function to serialize access to the shared resource by
the requestors. The priority function decides which requestor
to grant next. Examples of priority functions include round
robin (rotate priority amongst requestors), queue-based (first-in
first-out), or random priority (select next requestor randomly).

Random priority-based arbiters [8] have been gaining in
popularity because of their high potential for fair arbitration,
unlike other techniques such as round robin or queue-based
which can be unfair because of their fixed order of arbitration.
This arbitration scheme allows any request to have the highest
priority at random. A random priority-based arbiter uses a
pseudo-random number generator to select or influence the
selection of the next requestor. A common implementation of
such arbiters uses a Linear Feedback Shift Register (LFSR) [7]
to generate a pseudo-random sequence of numbers. An LFSR
is a cyclic shift register whose current state is a linear function
of its previous state, and it generates a sequence of numbers
which is statistically similar to a truly-random sequence. In
this paper we focus on formal verification of such LFSR-based
random priority arbiters.

The main concern in verification of an arbiter is checking for
starvation. Starvation is a special case of liveness properties,

Figure 1. LFSR-based arbiter

in which any request must have a grant eventually. Liveness
properties are often computationally hard to verify even on
medium-sized designs. To alleviate this, it is common to check
for starvation by replacing liveness properties with bounded
properties – “request will be granted within N cycles”, for
some constant N . If a bounded property passes, it implies
the correctness of the original liveness property. Even so, the
sheer size of LFSR-based industrial arbiters may preclude an
exhaustive analysis of the bounded property.

We describe a method to uncover bugs leading to long
latencies before requestors are granted in such complex ar-
biters. If the bounded property fails, we study the counter-
example and attempt to either fix the problem by increasing the
bound, or to use the information from the counter-example to
underapproximate the original design. The concepts presented
in this paper can be easily generalized to other schemes
(besides LFSRs) to implement a random priority function.
The presented technique can, in fact, be generalized to model
checking of general-purpose systems, and we briefly present
such a generalization.

II. LFSR-BASED ARBITERS

An LFSR-based arbiter grants access to a pending request
based on the random number generated by the LFSR at any
given point in time. Figure 1 shows a schema of an LFSR-
based arbiter. An LFSR of length N generates a deterministic
cyclic sequence whose period is 2N − 1, where all numbers
from 1 to 2N − 1 are visited. The initial value of an LFSR
is called the seed, and the sequence of numbers generated by
the LFSR is completely determined by the value of its seed.
An LFSR of length N may be used to arbitrate between M
requestors, where M � 2N , by sampling a subset log(M) bits
of the LFSR to select the next request to be granted. Such a
scheme helps to amortize the cost of implementing an LFSR in
hardware by way of the same LFSR serving multiple arbiters
with different tap points. E.g., N may be 16, while M is 8
requiring 3-bits of the 16-bits of the LFSR to be tapped.
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Figure 2. 16-bit LFSR

Figure 2 depicts a 16-bit LFSR from one of our case studies,
the I_arbiter. The register shifts bits from left to right with
some bits XORed with the most significant bit. The LFSR seed
is configurable, and may be assigned any value between 1 and
216 − 1 = 65535. Formal verification environments typically
assign a non-deterministic value to the seed.

III. FORMAL VERIFICATION OF LFSR-BASED ARBITERS

Verification of arbiters entails checking for starvation, which
may be formulated as a liveness property. E.g., the following
PSL [6] property specifies that whenever signal request is
asserted, signal grant is asserted some time in the future.

always request -> eventually! (grant)

A counter-example for such a property is a trace showing a
path leading to an infinite loop. In an LFSR-based arbiter,
this constitutes a cycling through of all the valuations of the
LFSR. The LFSR minimal loop length is 2N − 1, thus any
loop showing a counter-example of the liveness property must
be at least of that length. Hence, finding a trace for such a
property of an LFSR-based arbiter is very hard. An easier yet
more useful alternative to the above correctness property is to
check for a request to be granted within a specified number of
cycles, determined by the arbiter specification. In other words,
we check to see if the request is granted within k cycles [8],
[5]. In addition to verifying that a request is granted, such a
formulation gives insights into the performance aspects of the
arbiter, which is quite useful given the critical role arbiters
play in the overall performance of electronic systems. The
following property expresses a bounded-starvation condition.

always request-> next_e[1..k](grant)

Exhaustive verification of above properties to guarantee lack
of bugs on is becoming increasingly challenging, if not impos-
sible, for arbiters in real-world systems due to their sheer size
and complexity. This calls for bug hunting methods to detect
as many bugs as possible using scalable underapproximate
techniques and (semi-) formal analysis. Such methods are
more practical and provide concrete traces, rather than a
suspicious bounded pass due to suspect abstractions.

Related work

As stated above, typical approaches to verify arbiters check
for eventual grant of resources to the requests without much
attention to performance aspects. Krishnan et. al. [8] studied
starvation and performance of random priority-based arbiters
extensively. They proposed a three-step verification process
for computing an upper bound on the request-to-grant delay.
In the first step they compute the maximum length Complete
Random Sequence (CRS) comprising all random numbers (in
the context of the sampled bits) the LFSR can assume. Next
they compute the maximum number of CRSes needed for a

request to be granted by the arbiter standalone with replacing
the LFSR with a random-number generator. In the third step,
the two values computed are combined to give the worst-case
request-to-grant delay in clock cycles. A drawback of this
method is the decoupling of the LFSR from the arbiter in
the second step; a CRS can complete without being sampled
by the arbiter. This produces a theoretical worst-case request-
to-grant delay yielding very high bounds at times, much
higher than the bounds stated in the model specification to
be useful. Moreover, the trace produced by this technique is
not representative of the overall system comprising the LFSR
and the arbiter.

Our proposed technique compliments the above solutions
by providing an effective bug hunting method for the actual
LFSR-based arbiter, without any simplification thereof which
may render the treatment (results) removed from the real
logic. The effectiveness of the method has been proven on
highly complex arbitration systems where it was leveraged
to find real bugs. The method dynamically chooses between
property strengthening and underapproximations in order to
find a failure faster. The method can be easily generalized to
create property-based underapproximations.

IV. BUG HUNTING IN LFSR-BASED ARBITERS

The complexity of property checking is a function of the
property and the design-under-test (DUT). Our bug hunting
approach considers both the property and the DUT. In this
section we describe how we construct easier-to-check under-
approximate abstractions of LFSR-based arbiters.

Underapproximation and overapproximation techniques are
commonly used to falsify properties or prove their correctness
[3]. An abstract system is easier to check than the concrete
system because it has fewer states and fewer transitions. Since
our focus is bug hunting of safety properties we leverage
underapproximations to obtain traces falsifying the property,
which are then validated on the concrete/original model.

The seed of an N -bit LFSR may range between 1 and
2N − 1. The seed fully determines the LFSR sequence, so
a run of the arbiter is based on one of 2N − 1 possible seeds.
To underapproximate the arbiter we fix the LFSR seed by
assigning it a constant N -bit number. A fixed-seed arbiter
underapproximates the nondeterministic-seed arbiter as every
run of a fixed-seed arbiter corresponds to a single LFSR
sequence. If a bounded-starvation property fails in a fixed-
seed arbiter then it definitely fails in the nondeterministic-seed
arbiter; additionally, a counter-example that demonstrates a
fail of a safety property in a fixed-seed arbiter is valid in the
nondeterministic-seed arbiter. If a bounded-starvation property
holds in a fixed-seed arbiter we cannot ascertain if it holds in
the concrete system.

Falsification of a k-cycle-starvation property in an N -bit
LFSR arbiter requires checking runs of depth k in a model that
allows 2N−1 possible LFSR sequences. Our method addresses
the inherent hardness by alternating checking easier-to-check
properties on the original system, and checking the original
property on abstract systems. We iteratively check starvation
with lesser bounds on the original system, and starvation with
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the original bound on fixed-seed arbiters. We use property
strengthening to seek interesting seeds that generate sequences
that are likely to cause long starvation.

We define the following properties that express lower
request-to-grant delays

pj
.
= request -> next_e [1..j] (grant)

for 1 5 j < k. It is obvious that checking any of the properties
pj can be done in a shorter period of time than the original
property. Clearly, every run that starves a request for k cycles
starts with a starvation of j cycles, but a starvation of j cycles
does not necessarily end with a starvation of k cycles. If a
property pj fails in the concrete system and a counter-example
is generated, we underapproximate the arbiter by restricting
it to the very same LFSR sequence that the counter-example
reveals. Since LFSR sequences are determined by their seed it
is enough to confine the arbiter’s non-deterministic seed to the
same seed that is exposed by the counter-example. Checking
the fixed-seed arbiter is easier and likely to uncover a k-cycle
long starvation.

Our method is outlined in Algorithm 1. We denote the orig-
inal nondeterministic-seed LFSR arbiter by M , the maximal
number of cycles allowed between a request and a grant as
determined by the specification by k, and for some constant
number c, we denote by M [seed ← c] the arbiter M whose
seed is the constant number c.

Algorithm 1 Checking bounded starvation on LFSR-based arbiters

1) check M
?

|= p
2) if pass or fail then return result
3) jmin ← 1; jmax ← k
4) while (jmin � jmax) do

a) j ← b jmin+jmax

2 c

b) check M
?

|= pj
c) if pass then return “pass”
d) if timeout then jmax ← j
e) if fail then

i) Mj ←M [seed← seedj ] ; jmin ← j ;

ii) check Mj

?

|= p

A) if fail then return “fail”

The algorithm checks bounded starvation with different
bounds and creates underapproximations of the original arbiter
by initializing it with different seeds. We iteratively check
property pj with arriving at the next value of j using a binary
search. If checking of a bounded-starvation property pj times
out, we next check another bounded-starvation property with a
lower bound. If a property pj fails, we extract the LFSR seed
from the counter-example, denoted by seedj . Next we restrict
the arbiter’s seed to seedj , and check if the original property
fails in the fixed-seed arbiter. If the property does not fail we
narrow the seed space by checking a weaker property with a
higher bound.

The algorithm halts after log(k) steps at the most. Let us
examine an extreme case where all runs of the strengthened
properties on the concrete model, M |= pj , time out. This

indicates that the arbiter is extremely complex and beyond
the capabilities of our formal-verification tools. We note that
the method is an effective bug hunting heuristic, but does not
guarantee a bug free design, nor does it cover all LFSR seeds.

V. BUG HUNTING METHOD – A GENERALIZATION

We generalize the presented heuristic to general purpose
model checking. The rationale is straightforward – check
strengthened properties on the original model to aid in finding
an efficient underapproximation for bug hunting on the original
model. If any of the strengthened properties pass on the
original model, it implies that the original property passes as
well. If it fails then, heuristically, it has some information
leading to a fail of the original property. This information
can be extracted, and used to guide the search for a failure
on the original property. This is achieved by defining an
underapproximation of the model and checking for the validity
of the property on it.

Intuitively, a safety property asserts that something bad
never happens, while a strengthened property asserts that
something “not-as-bad” never happens. Formally, for two
properties p and q we say that property p is stronger than
property q if p→ q. Consequently, given system M and two
properties p and q such that p is stronger than q, we have
M |= p→M |= q, i.e., if p holds in M then q holds in M .

Falsification of a strengthened property tends to be easier
than falsification of the original property because it defines
more bad states in the system. If falsification of the original
property is infeasible then we check a strengthened version
of the property. If the strengthened property fails, we restrict
the concrete system to the valuations provided by the obtained
counter-example, and see if the original property fails.

It is not easy to determine how to strengthen a property
in a useful manner. Hence, we restrict the discussion to a
subset of properties whose strengthened versions enable an
efficient and exhaustive search. A straightforward example
for such properties is PSL parameterized properties that have
a single parameter that serves as a sequence consecutive-
repetition operator or as a bound of the next_e or next_a
families of operators (formal definitions can be found in [1]).
These widely-used operators are similar to the next_e operator
used in our test case, and the practice of binary search over a
bounded range of integers readily applies to them.

VI. EXPERIMENTAL RESULTS

The bug hunting method described in section IV has been
used to verify several random priority-based arbiters used in
an interconnect unit, and a router of a complex commercial
processor. Table I shows the experimental results on 3 such
industrial designs that use different types of random priority-
based arbiters, and different LFSR sizes to generate pseudo-
random numbers. The first arbiter, referred to as C_arbiter,
is a command arbiter using a 32-bit LFSR. It arbitrates 27
requestors going to a single target. Its specification states
the starvation bound to be 600 cycles. It uses a compound
priority scheme combining LFSR-based arbitration and round
robin to combinatorially compute the next granted requestor.
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Design Random seed run time (h:m) Fixed seed run time (h:m) Vars before Redn Gates before Redn Vars after Redn Gates after Redn
C_arbiter 48:00 (Timeout) 8:56 2361 90397 812 7883
I_router 48:00 (Timeout) 21:09 104575 4223285 34070 1413519
I_arbiter 21:34 19:50 104575 4223285 30766 876328

Table I
RUN TIMES AND MEMORY USAGE FOR DIFFERENT ARBITERS

The second design, referred to as I_router, is a router of 56
requestors to 56 targets. The router is a more complex case of
arbitration. It cannot starve an input from getting a request, and
it cannot block an output from receiving a request. This router
has a 16-bit LFSR, and it uses three of its bits for arbitration. It
is a very large design with hundreds of thousands of variables
(inputs and Flip-Flops) with multiple arbitration stages. The
third arbiter, I_arbiter, is a simpler case of this router, with
only one target available, thus checking arbitration only. The
specification of I_router and I_arbiter requires a starvation
bound of 1000 cycles.

All experiments were run on a 2x2.4GHz AMD dual core
processor with 8 GB RAM memory, using IBM’s RuleBase PE
[2] and SixthSense [9] state-of-the-art industrial formal verifi-
cation tools. The problem size is in term of gates and variables
as reported by the RuleBase PE tool, shown before and after
running RuleBase PE automatic model-size reductions. Vars
denotes the numbers of registers and inputs.

For each of the designs we first applied the CRS technique
[8]. The results yielded request-to-grant bounds higher than
the starvation bounds in the specification. E.g., for the router
arbiter it showed that the max length of CRS is 95 cycles; and
we found that the request-to-grant delay is at least 50 CRSes
– while trying to find a higher bound of 100, the tool timed
out, implying a best case request-to-grant upper bound to be
at least 4750 cycles.

Table I shows the run time of runs of the original property
on fixed-seed arbiters that yielded traces (the last step in
Algorithm 1). The various runs to compute an initial LFSR
seed took anywhere from few minutes to 4 hours. We used
parallel capabilities of our toolset to run a large number of
rules with different starvation bounds, with a total run-time
of 8 hours. The highest bounds on which the properties pj
failed were 375 for the C_arbiter and 687 for the I_arbiter. We
gathered all LFSR seed values from the failing traces, seeded
the LFSR of the original design with those, and ran the original
formula. For benchmark purposes, the results above show the
run time of RuleBase PE without using the parallel feature.

The verification timed out on the nondeterministic-seed
runs of the C_arbiter, while a specification violation with a
fixed seed was found in 9 hours. For the I_router design, the
nondeterministic-seed runs timed out as well, while a trace for
a fixed seed was obtained after 21 hours. As for the I_arbiter,
the nondeterministic-seed finished in 21-1/2 hours while the
fixed seed finished in 20 hours. In the I_router and I_arbiter
designs the trace was found after the first run of algorithm
1, while on the C_arbiter the algorithm ran more than once
and timeout increased for the run of stronger properties on the
original model.

Clearly the fixed seed method shows a significant advantage

on the more complex designs. It was able get past the huge
complexity barrier of these designs. Note that even if the
nondeterministic-seed runs were to finish easily, the initial
state of the LFSR from these runs can be used as a seed
for future runs that try to falsify proposed fixes. Another
interesting fact was that the initial LFSR seed for the I_router
and I_arbiter traces was different. In addition to finding the
bounded starvation traces, our method was able to give us a
large number of interesting traces which provided insights into
the relationship between the LFSR and the arbiter.

VII. CONCLUSION AND FUTURE WORK

We presented an effective method for computing smart
property-based underapproximations. The technique dynam-
ically converges on underapproximations which yield useful
results in the form of bugs or interesting insights into the
workings of the logic. This method has been successfully
applied to LFSR-based arbiters and provided results which
otherwise would not have been obtained with other techniques.

The described approach can be further generalized to
other types of properties. Other directions include developing
more general ways to construct underapproximations from
counter-examples. The search for underapproximations can
be improved by considering additinal seeds provided by the
underlying decision procedure. The method can be enhanced
further to be a proof-oriented approach by extracting reasons
for pass results of the strengthened properties from the solving
engines.
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Abstract—Semiformal, or hybrid, verification techniques are
extensively used in pre-silicon hardware verification. Most ap-
proaches combine simulation and formal verification (FV) al-
gorithms to achieve better design coverage than conventional
simulation and scale better than FV. In this paper we introduce
a purely SAT-based semiformal verification (SFV) method that is
based on new algorithms for generating multiple heterogeneous
models for a propositional formula. An additional novelty of our
paper is the extension of the SFV algorithm to liveness properties.
The experimental data presented in this paper clearly shows
that the proposed method can effectively find bugs in complex
industrial designs that neither simulation nor FV reveal.

I. INTRODUCTION

Traditionally, Register Transfer Logic (RTL) level design
validation is carried out by applying simulation techniques
throughout the design and formal verification in certain high
risk areas. In simulation, design behavior is checked with
a large number of mostly random tests which cover just a
small fraction of the design space. FV resolves the coverage
issue by exhaustively checking all possible scenarios. It usually
requires building a restricted environment and reduced model,
as it cannot be directly applied on typical industrial-size
designs. One of today’s most efficient FV methods, SAT-based
bounded model checking (BMC) [1], verifies the lack of bugs
in scenarios of bounded length. The maximal reachable BMC
bound is not sufficient in many cases to address structures with
long latency, such as deep queues or counters.

Semiformal verification approaches developed throughout
the last decade trade the completeness of FV for effectiveness.
They aim to detect bugs in larger designs rather than to
prove their correctness. Being incomplete, these approaches
are sound — all reported violations of the properties are
true bugs. SFV approaches that simultaneously apply mul-
tiple verification techniques in a complementary fashion are
referred as hybrid approaches. Bhadra et al. [2] provide a
comprehensive survey of recent advances in hybrid approaches
to functional verification. A major challenge for hybrid tools
is their practical applicability to a wide range of industrial
designs and the soundness of the integration of the individual
technique. As opposed to hybrid approaches, our SFV method
is based on a single FV algorithm – SAT-based BMC.

Previous SFV approaches using a single FV algorithm
suggested heuristics to search in a fraction of the original state
space. This allowed reducing the binary decision diagrams
(BDD) [3] to a manageable size in semiformal symbolic
reachability analysis [4]–[6]. BDD-based algorithms, whose
capacity is limited to hundreds of variables, are unsuitable
for verifying properties in today’s industrial designs, which

often comprise tens of thousands of state elements. Cabodi et
al [7] restrict the BMC SAT engine during the search based
on dynamically computed simplified BDD-based image and
preimage computations. The work in [8] suggests a rarity-
based metric to identify states of a particular depth, searching
from which leads to better coverage.

We use a different approach that utilizes user guidance to
restrict the search within the state space - an idea extending the
“lighthouses” used in the SIVA tool [9]. The user guides the
search by providing a series of waypoints – describing design
behavior throughout the desired scenario. The idea is similar
to [10], but is used in the context of property verification rather
than post-silicon debugging. Some works have suggested ways
to automate the guiding algorithm, as they consider user
guidance as a major drawback. For example, see probabilistic
state ranking in [11] and lighthouse generation automation
in [12], [13]. However, our experience shows that because
verification engineers are well versed in the design, they
can easily specify the required waypoints. Moreover, they
usually prefer to encounter events they are familiar with when
analyzing the resulting counterexamples.

There are other hybrid techniques that augment simulation
with formal searches, as is done in KETCHUM [14], SIVA
[9] and other systems [15], [16]. The biggest challenge for
these tools is the synchronization of the simulation and FV
environments. Random simulation needs to take into account
the FV environment, which is usually modeled with complex
sequential assumptions. Although this problem was partially
addressed in [17], eventuality assumptions, assumptions in-
volving internal or output signals, and assumptions requiring
a lookahead (e.g. G(a → past(b))) are very difficult or im-
possible to account for, thus resulting in false negative results.
Another approach applies multiple shallow FV searches start-
ing from selected cycles in simulation, a technique known as
dynamic FV. Dynamic FV approaches suffer from an inherent
drawback – they require tight coordination between the FV
and simulation environments, which is extremely difficult to
achieve, since in most cases FV is applied at a lower level of
hierarchy than simulation. Moreover, the FV environment is
usually restricted, allowing only a subset of functionalities, a
fact which makes many simulation tests unusable.

Our SFV technique uses user guidance to compose several
applications of purely SAT-based model checking, and ex-
plores the system state space in parts. It can be applied to
all LTL properties, including liveness properties. We address
the known problem that some waypoint states may not be
extendable to the next waypoint. We introduce two new
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highly configurable SAT-based algorithms for model sampling
to generate different traces towards waypoints – necessary
for achieving sufficient coverage and detecting corner-case
bugs. This differs from previously suggested approaches, e.g.
periodically tunneling or backtracking between shallow and
deeper waypoints [13]. Our experimental results show the
superior bug-finding ability of our approach, which detected
critical bugs in industrial-scale designs that were “clean” from
FV and simulation perspectives.

The rest of the paper is organized as follows. Section II
describes the proposed BMC-based SFV algorithm. Section III
introduces SAT-based algorithms for model sampling. Sec-
tion IV is dedicated to semiformal verification of liveness
properties. Our experiments are described in Sections V
and VI, the first reviewing the test cases and the second sum-
marizing the results. Conclusions and future work directions
follow in Section VII.

We use a standard LTL notation for temporal properties:
X for next, U for until, G for always, and F for eventually
(see [18]). Instead of repeating X n times we use a shortcut
notation Xn.

II. SAT-BASED SEMIFORMAL VERIFICATION

A. Basic Algorithm

The verification time in BMC grows exponentially with the
bound, and as a result it cannot explore scenarios that require
many clock cycles to execute. The proposed semiformal veri-
fication algorithm applies multiple shallow BMC runs, trading
the exhaustiveness of a search for speed. The user provides
an ordered set of waypoints which direct the search engine
towards the desired deep design state. The algorithm searches
for a path from one waypoint to the next starting from the
initial state, the BMC engine being restarted at each waypoint.
Being familiar with the design behavior, users naturally direct
the search towards the desired area by encoding the waypoints
with cover points. For example, consider a queue that requires
200 clock cycles to be filled. To verify the design in a risky
”full queue” state, possible waypoints could be ”1/4 full
queue”, ”1/2 full queue”, ”3/4 full queue”, each waypoint
being easily reached and the overall verification time being
but a fraction of the original BMC verification time.

The high-level SFV algorithm below is based on the fact that
the properties may be represented with finite automata [18].
Another possibility for handling properties is to generate the
satisfiability formula directly by the syntactic structure of the
temporal assertion [19]. However, this algorithm is much less
efficient than semantic translation based on automata [18],
as shown in [20]; therefore we do not consider syntactic
translation here.

Given a series of cover points ξ1, ξ2, . . . , ξn and the property
ϕ, the algorithm performs the following steps:

1) Calculate the set of relevant assumptions for
ξ1, ξ2, . . . , ξn and run BMC targeting ξ1 from the
set of initial states W0.

2) If a witness has been found, the property automata
are simulated along this witness. BMC and simulation

init q1, . . . , q4 ← 0
next(q1)← a; next(q2)← q1; . . . ;next(q4)← q3

fail← ¬b ∧ q4

Fig. 1: RTL for assumption G(a→ X4b)

are repeated each time using the end point of the last
simulation as the new initial state, targeting consequent
cover points ξ2, . . ., ξn. If a witness is not found for
some ξi, an indeterminate result is reported.

3) Run BMC to determine whether ϕ holds. If there is a
failure, append the counterexample to the concatenation
of witnesses ξ1, . . . , ξn. If a timeout or required BMC
bound is reached, report a lack of failure.

B. Calculation of New Initial States for Safety Properties

Since a safety property automaton can be synthesized into
RTL [21], it may be simulated on the waypoint witness using
a conventional RTL simulator. As an example, consider an
assumption G(a → X4b). Its automaton may be synthesized
as shown in Fig. 1.

If a = 1 in the witness appears in the next to last step, the
initial state of the next BMC run should have q2 = 1. Simu-
lating the property automaton is important: blindly reusing the
initial property condition init q1, . . . , q4 ← 0 would have led
to the discontinuity of the adjacent BMC runs, and potentially
to false negatives and bogus witnesses and counterexamples.

III. USING MULTIPLE SAT MODELS TO ENHANCE
COVERAGE

A. Motivation and Related Work

The experiments conducted, described in Section VI, show
that the proposed basic algorithm will likely miss corner-case
bugs. The reason for this is that a randomly chosen path,
constructed from a series of witnesses each of which satisfies
the corresponding intermediate waypoint, does not exhibit
sufficient coverage of the design space. Greater coverage may
be achieved by advancing towards the desired deep state along
multiple paths in parallel. For each intermediate waypoint, a
heterogeneous set of witnesses is generated instead of a single
witness, and for each such witness a separate verification
process towards the next waypoint is launched. Consider Fig. 2
which illustrates a scenario where using two witnesses for the
waypoints resulted in bug detection, whereas the chances of
detecting the bug would have been much smaller otherwise.

A number of approaches to generating random witnesses
(or solutions, or models) exist in literature. BDD-based,
local-search-based, and arithmetic-based approaches such
as [22], [23], and [24], respectively, are not applicable for our
domain, since our test-cases are too complex for BDD-based
and local-search-based algorithms, and they contain more bit-
vector operations than arithmetical operations.

Modern efficient SAT solvers are able to solve complex
formulas that arise in FV. SAT-based methods can also be used
to sample the solutions of a given formula. One such method,
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Fig. 2: Multiple witnesses

called XORSample, was proposed in [25]. XORSample in-
vokes the SAT solver at least k times to generate k models.
For each invocation, the initial formula is augmented with
random XOR constraints. A sampling is not rejected only if
the augmented formula has one and only one model. This re-
quirement was relaxed in [26], whose version of XORSample
does not reject samplings. Another SAT-based method, called
DPLL-based sampling, was mentioned in [24] (we did not find
any reference to a work introducing it). DPLL-based sampling
invokes a SAT solver k times to generate k models on the same
input formula. Model diversification is achieved by making the
first boolean value assignment to a variable random for each
invocation of the SAT solver.

Literature on the AllSAT problem (that is, the problem of
finding all the models for a formula) is also relevant for our
purposes. Most AllSAT engines are built on top of a SAT
solver. When a model is found, a typical AllSAT solver [27],
[28] adds a blocking clause which prevents the solver from
rediscovering the same model in a subsequent search and
restarts the search. Unlike DPLL-based sampling, AllSAT
invokes a SAT solver only once.

B. SAT-Based Algorithms for Generating Multiple Witnesses

In this section we describe two new algorithms for gene-
rating heterogeneous models (witnesses) to a given formula:
Rand-k-SAT and Guide-k-SAT. Both our algorithms surpass
existing approaches in terms of both diversification quality
(formally defined below) and performance. We also present
two modifications to Rand-k-SAT and Guide-k-SAT, called
AllSAT-sampling and BCP-aware Guide-k-SAT, which allow
the user to trade diversification quality for performance.

Given a propositional formula F in conjunctive normal
form (CNF) over variables V = {v1, . . . , vn}, a SAT solver
either finds a complete satisfying assignment (model) for F
or proves that no model for F exists. We define the distance
D(µ1, µ2) between two partial assignments µ1 and µ2 to be
the number of variables that are assigned in both µ1 and µ2

and have different values in µ1 and µ2. Note that our definition
yields that the distance between two models is the Hamming
distance. We define the diversification quality of k models
µ1 . . . µk Q(µ1 . . . µk) to be the average distance between each
pair of models, normalized by the number of variables:
Q(µ1 . . . µk) = (

∑k

i=1

∑k

j=i+1 D(µi, µj))/(n(k2 − k)/2).
For example, consider a formula F = (a∨ b∨ c)∧ (¬a∨ b)

and three models µ1 = {a = 1, b = 1, c = 0}, µ2 = {a =

1, b = 1, c = 1}, and µ3 = {a = 0, b = 0, c = 1}.
Then, D(µ1, µ2) = 1, D(µ1, µ3) = 3, D(µ2, µ3) = 2, and
Q(µ1, µ2, µ3) = (1+2+3)/(3×((32−3)/2)) = 2/3. Note that
since the diversification quality is normalized by the number
of variables, it must lie between 0 and 1.

Given a propositional formula F in CNF and an integer
number k > 0, we are interested in finding k models for
F with the optimization goal of increasing the diversification
quality of the models. We do not intend to guarantee a certain
quality in a theoretical sense, but rather to combine solid
performance with a good model quality for the practical needs
of efficient semiformal verification.

Both our approaches, Rand-k-SAT and Guide-k-SAT, invoke
the SAT solver only once, like AllSAT solvers do. However,
we do not add blocking clauses when models are discovered.
Instead, the solver restarts the search after a model is discov-
ered. Diversification is achieved solely by changing the phase
selection heuristic for variables.

The decision stage of a modern SAT solver chooses a
variable and its phase at each decision point during the search.
The variable decision heuristic selects a variable. The phase
selection heuristic selects a boolean value for the selected
variable. Most modern SAT solvers use RSAT solver’s phase
selection heuristic [29], which tries to refocus the search on
subspaces that the solver has knowledge about. This heuristic
keeps a saved-phase array, indexed by variables. The array
contains boolean values and is initialized with 0’s. The solver
stores the last assignment given to a variable in the saved-
phase array. The phase selection heuristic for variable v always
chooses the value of v from the saved-phase array.

Both Rand-k-SAT and Guide-k-SAT override the traditional
phase selection heuristics. However, they differ from one
another conceptually in their phase selection strategies. Rand-
k-SAT selects the phase randomly on all occasions. Guide-k-
SAT selects the polarity in a non-random manner: explicitly
guides the solver to extend its partial assignment σ so that the
distance between σ and previous models µ1, . . . , µn−1 will
be as large as possible. We designed this strategy keeping
in mind the goal of making the distance between the next
model µn and the previous models as large as possible. More
specifically, Guide-k-SAT uses the following greedy approach.
Suppose a variable v is selected by the variable decision
heuristic. Let p(v)/n(v) be the number of times v was assigned
1/0 in previous models. If p(v) > n(v), v is assigned 0; if
p(v) < n(v), v is assigned 1; if p(v) = n(v) (including the
case where no models have yet been identified), v is assigned
a random value.

The ideas behind Rand-k-SAT and Guide-k-SAT are very
simple and straightforward to implement, yet they turn out
to be powerful and efficient for finding heterogeneously
distributed models on well-structured problems, with an ac-
ceptable performance overhead compared to a modern SAT
solver. On the one hand, we continue using all the modern
SAT strategies, whose goal is to achieve solid performance
on structured instances. On the other, we achieve sufficient
diversification quality, either by selecting the phase randomly
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TABLE I: Comparing Approaches to Generating Heterogeneous
Models.

DbS Rand-k-SAT Guide-k-SAT

Mean Quality 0.215 0.313 0.339

Overall Run-Time 47456 30307 28450

or by explicitly guiding the solver away from previous models.
DPLL-based sampling (DbS) is the best previous SAT-based

approach to finding heterogeneous models. We implemented
DPLL-based sampling as well as our algorithms Rand-k-
SAT and Guide-k-SAT, and compared them experimentally
on 66 benchmarks. The number of propositional clauses in
the benchmarks varies from eight thousand to more than three
million. In all the experiments, the required number of models
was 10. All experiments were carried out on a machine with
4Gb of memory and two Intel Xeon CPU 3.60 processors. All
the algorithms were implemented in the latest version of Intel’s
Eureka SAT solver. Eureka’s default phase selection heuristic
is RSAT’s heuristic.

Table I compares DPLL-based sampling (DbS), Rand-k-
SAT, and Guide-k-SAT in terms of mean diversification quality
and overall run-time. Two scatter plots, comparing our best
algorithm, Guide-k-SAT, and DPLL-based sampling in terms
of run-time and quality are provided in Fig. 3. Similar scatter
plots, comparing Guide-k-SAT and Rand-k-SAT, appear in
Fig. 4. Our experiments yield two main conclusions.

First, both our algorithms are clearly preferable to DPLL-
based sampling in terms of both quality and run-time. Table I
confirms the overall advantage. Consider now the the right-
hand scatter plot of Fig. 3 comparing the quality of Guide-
k-SAT and DPLL-based sampling. A significant number of
dots appear near the x-axis, far away from the diagonal,
hinting that the gap is significant for some of the benchmarks.
Now consider the run-time comparison scatter plot to the left.
Guide-k-SAT outperforms DPLL-based sampling on most of
the most difficult instances.

Second, Guide-k-SAT outperforms Rand-k-SAT in terms
of both quality and run-time. The gap in run-time is not
so significant: it stands at 6.5% overall. Also, the run-time
comparison scatter plot in Fig. 4 shows that Guide-k-SAT is
not always preferable to Rand-k-SAT. Now consider diver-
sification quality. While the gap between average quality is
not large, the quality comparison scatter plot clearly shows
that Guide-k-SAT yields better diversification quality on every
one of the benchmarks. Hence, for our examples, to achieve
better performance and model diversification it is preferable
to explicitly guide the SAT solver away from previous models
(using Guide-k-SAT) than to use randomness (using Rand-k-
SAT).

It is also possible to modify our algorithms to trade quality
for run-time. Consider a variation of Rand-k-SAT, called
AllSAT-sampling, that invokes the SAT solver once, but assigns
random values only to variables selected for the first time or
for the first time after a restart. Note that the solver is expected
to keep assigning the same values to the variables for some
restricted time after the beginning of the search or a restart due

TABLE II: Trading Quality for Run-Time in Heterogeneous Model
Generation.

AllSAT-sampling BaG; T =100 BaG; T =100000

Mean Quality 0.124 0.342 0.353

Overall Run-Time 8211 33392 183857

to RSAT’s phase selection heuristic. A comparison of Table I
and Table II shows that AllSAT-sampling is much faster than
both Guide-k-SAT and Rand-k-SAT; however, the distribution
quality is significantly worse. Accordingly, AllSAT-sampling
can be recommended when the problem is computationally
very complex.

Consider now a variation of Guide-k-SAT, called BCP-
aware Guide-k-SAT. BCP-aware Guide-k-SAT tries to take into
consideration the impact of Boolean Constraint Propagation
(BCP) on the distance between the current partial assignment
and the previous models. It performs BCP for both polarities,
and measures the distance between the resulting partial assign-
ments σ and previous models. Eventually, it picks the polarity
that yielded the larger distance.

Specifically, the algorithm operates as follows. Suppose a
variable v is selected by the variable decision heuristic. Let
p(v)/n(v) be the number of times v was assigned 1/0 in
previous models. The variable v is assigned a value p as
follows: if p(v) > n(v), p is 1; otherwise p is 0. Then, BCP is
carried out. Suppose that the set of variables Vp is assigned as
a result of BCP. The algorithm saves the distance Dp between
the partial assignment, induced by {v}∪ Vp, and the previous
models. Afterwards, the algorithm unassigns {v}∪Vp, assigns
v the value ¬p, and propagates it using BCP. Suppose now
that the set of variables V¬p

is assigned as a result of BCP.
The algorithm calculates the distance D¬p between the partial
assignment, induced by {v} ∪ V¬p, and the previous models.
If D¬p > Dp, the algorithm continues to the next decision.
Otherwise, it unassigns {v} ∪ V¬p, assigns v the value p,
propagates using BCP, and continues to the next decision. Note
that the algorithm first tries the polarity p that is less likely to
result in better distance. The reasons is that if ¬p is preferable,
BCP is performed only twice; otherwise it is performed three
times.

BCP-aware Guide-k-SAT is a costly algorithm, since it has
to perform BCP two or three times per decision. Hence we
limit its usage as follows. BCP-aware Guide-k-SAT is used
until a certain number of conflicts T is encountered by the SAT
solver. In addition, BCP-aware Guide-k-SAT is reinvoked after
each model is discovered until T conflicts are encountered.
The algorithm then uses plain Guide-k-SAT until the next
model is encountered. Table II shows that BCP-aware Guide-
k-SAT (BaG) improves distribution quality, but deteriorates
run-time. Observe that it is possible to trade quality for run-
time by changing T .

We also implemented XORSample [25] as well as the
modified XORSample of [26]. We tried a variety of distribu-
tion quality values (0.1, 0.01, . . . , 0.0000001) and the number
of generated XOR constraints (1000, 10000, . . .). Our results
show that, depending on the configuration, XORSample is
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either slower by an order of magnitude compared to Rand-k-
SAT and Guide-k-SAT (it timed-out on most of the instances),
or its distribution quality is worse by approximately 10 times
compared to Rand-k-SAT and Guide-k-SAT. Hence, although
XORSample is useful on randomly generated instances and
on small real-world formulas when a large number of models
needs to be generated, it is inferior to other methods on
difficult benchmarks when a small number of models needs to
be generated.

Our experience shows that the best approach for generating
multiple counterexamples in the framework of semiformal
verification is to allow the user some control over the algorithm
used within the tool. As our experimental results demonstrate,
Guide-k-SAT is preferable as the default algorithm, since it
exhibits the most attractive trade-off between run-time and
solution diversification quality (which translates to efficient
verification). However, we encountered a number of especially
difficult cases where AllSAT-sampling was mandatory in order
to satisfy performance requirements. In those cases, AllSAT-
sampling was 25X faster than Guide-k-SAT (1 hour versus
25 hours to generate 10 models), although the diversification
quality was 1.7X worse (0.181 versus 0.307). For easy test
cases we recommend using BCP-aware Guide-k-SAT, where
the trade-off between run-time and solution diversification
quality is controlled by the threshold T .

IV. CHECKING LIVENESS PROPERTIES

A. Motivation

To the best of our knowledge, no attempt at semiformal
verification of liveness properties has ever been described
in the literature. We do not restrict our consideration to
pure liveness properties, and by “liveness” we understand
everywhere general liveness. Verifying liveness properties is
required when the exact timing in end-to-end properties is
not specified, and to check the absence of starvation. FV
of liveness properties without prior aggressive abstraction is
challenging: the complexity of their BMC-based verification
is significantly more expensive than the verification of safety
properties. Therefore the ability to perform semiformal verifi-
cation of liveness properties is important.

One possible way of handling liveness properties would
to convert them to equivalent safety properties, as explained
in [30]. However, this approach is problematic in the semi-
formal verification context for the following reasons: 1) The
number of property variables doubles when transforming a
liveness property into a safety property, and 2) This translation
makes sense when the resulting safety property is exhaustively
checked. Therefore we did not explore this option in our work.

It is well known [31] that a violated liveness property always
has a lasso-shaped counterexample: a state path consisting of
a linear prefix and a loop. As explained in [32], in BMC of
liveness properties these lasso-shapes paths are described with
Boolean formulas parameterized by the size of the prefix and
of the loop. SFV may help get to a design state close to the
beginning of the loop, and/or to a neighborhood of a smaller
loop. For example, to check starvation, it is necessary to bring

the system into a state where resources have been requested by
several clients. Applying BMC directly from the initial state
is useless if the greatest feasible bound is insufficient to bring
the system to such a state.

To apply classical algorithms based on semantic translations
to check liveness properties in semiformal verification, the
main challenge is to simulate their automata along the way-
point witness. Application of the algorithm proposed below
is not limited to BMC-based semiformal verification; it may
also be combined with other semiformal methods such as those
described in [14], [15], [33].

B. Simulation of Non-deterministic Büchi Automata
Liveness properties cannot be represented as finite automata

on finite words, and for their representation a finite automaton
on infinite words (a so called Büchi automaton) is needed [18].
In practice it is more convenient to represent LTL properties
with a more general form of Büchi automata — alternating
Büchi automata [18]. For the sake of simplicity we describe
our algorithm for regular (nondeterministic) Büchi automata
only, but with minimal changes the same method may be
applied to alternating Büchi automata as well. Unlike safety
property automata, Büchi automata representing liveness prop-
erties are simulated symbolically, as described below.

In our algorithm we use a symbolic representation of the
transition relation as a Boolean function of two sets of vari-
ables, current (unprimed) and next (primed) [19]: δ(w, w′).
We also introduce a map β : w′ 7→ w to convert functions of
next variables to functions of current variables. For example,
β(a′ ∧ b′) = a ∧ b.

Let Ui be a symbolic representation of the states reachable
at step i (active states) from one of the initial states while
respecting the given witness. For the witness of the first way-
point, U0 = Q0 — the set of initial states of the automaton. For
other witnesses U0 is the symbolic representation of the end-
point of the automaton simulation along the previous waypoint
witness. Let Vi be the set of pairs (w, w′), where w ∈ Ui is a
current active state, and w′ is the next state reachable from w
according to the transition relation δ, respecting the limitations
imposed by the witness ai at step i: Vi = Ui∧δ∧ai. The next
variables computed this way become current variables for the
next step, and the process is repeated: Ui+1 = β(∃w.Vi). In
this formula the existential quantifier selects the member w′

of the pair (w, w′) ∈ Vi.
We will illustrate this algorithm on the Büchi automaton in

Fig. 5 for a 4-cycle long witness trace shown in Table III. The
symbolic transition relation δ =

∧4
i=0 δi, where

δ0 = q0 → q′0 ∨ ¬a ∧ q′1 ∨ a ∧ q′2
δ1 = q1 → ¬a ∧ q′1 ∨ a ∧ q′2
δ2 = q2 → q′3
δ3 = q3 → ¬b ∧ q′3 ∨ b ∧ q′4
δ4 = (q4 → q′4)

The values of Ui and Vi are shown in Table III. As expected,
the values of Ui contain symbolic representation of the active
states of the automaton at each simulation step. The initial
state of the next BMC run should have q0 ∨ q2 = 1.
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Fig. 5: Büchi automaton with accepting states q1 and q4

TABLE III: Simulation of Büchi automaton

Time a b Ui Vi

0 0 0 q0 q0 ∧ ¬a ∧ ¬b ∧ (q′

0
∨ q′

1
) ∧

∧
4

i=1
δi

1 0 0 q0 ∨ q1 (q0 ∨ q1) ∧ ¬a ∧ ¬b ∧ (q0 → q′

0
∨ q′

1
)

∧(q1 → q′

1
) ∧

∧
4

i=2
δi

2 1 0 q0 ∨ q1 (q0 ∨ q1) ∧ a ∧ ¬b ∧ (q0 → q′

0
∨ q′

2
)

∧(q1 → q′

2
) ∧

∧
4

i=2
δi

3 0 0 q0 ∨ q2 —

V. TEST CASES

We implemented the algorithm in Intel’s proprietary FV tool
and chose three CPU design blocks for our experiments. These
design blocks had been extensively tested in simulation and the
design was believed to be mature. The blocks were modeled in
SystemVerilog and included novel features carrying high risk.
The properties were captured using SystemVerilog Assertions
(SVA). We chose blocks of sizes that SAT-based FV engines
could handle — the full cone of influence of a typical assertion
comprised 1K inputs, 5K state elements, and 75K gates. As
a result, the FV confidence level was not high enough in all
test cases, as the BMC bound reached by the traditional BMC
approach was not sufficient. In most cases, after reducing the
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Fig. 6: Request Tracker

models using both manual and automatic techniques, design
scenarios requiring more than forty clock cycles could not
be addressed. It is worth noting that our attempts to apply
industrial semiformal verification tools yielded no tangible
results. This was due to complex environments that needed
to be synchronized and to the unique properties and large size
of the CPU design blocks.

The first block, a Request Tracker, is responsible for mana-
ging various request types and ensuring the correct execution
order of the requests, giving preference to high-priority re-
quests while not starving low-priority requests. Requests arrive
from various sources, and each is associated with a unique
identifier (ID). A high-level diagram of Request Tracker is
shown in Fig. 6.

The different request types vary in the time needed to
process them, e.g. a REQ1 request (path REQ1 — OUT1)
requires considerably fewer clock cycles than a REQ2 request
(path REQ2 — OUT2). We chose to experiment with REQ2,
which had not been properly addressed in FV due to BMC
bound limitations.
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Fig. 7: Resource Manager

The second block, a Resource Manager, is responsible for
controlling resources and making sure that no resource is
allocated twice and that none are lost. The resources are kept
in the pool and allocations/deallocations are recorded using a
cyclic table. See Fig. 7 for a high-level diagram of the block.

The third block, a Flow Manager, implements a mechanism
to control a complex flow involving many agents. It comprises
a central FSM with additional smaller FSMs around it, each
being responsible for a specific flow scenario or sending
and receiving data from a certain agent. The central FSM
controls the flow, supervising all the smaller FSMs around it.
This block was used for algorithm experiments with liveness
properties, as the main concern is that the flow will eventually
finish successfully without getting stuck in live-lock due to a
bug in one of the FSMs.

VI. RESULTS

In this section we describe the results of applying the
proposed SFV algorithm to the RTL blocks described in
Section V. The most important result was the exposure of
three real corner-case bugs described in Section VI-A. We
also inserted several artificial corner-case bugs described in
Section VI-B. We sought to corroborate different characteris-
tics of the algorithm, namely its ability to adequately cover
design state space using the multiple witness approach.

A. Real Corner-Case Bugs in Mature Designs

Our SFV algorithm revealed the following bugs in the
Resource Manager, two of them critical. These bugs could be
revealed neither in simulation, nor using traditional FV, nor
using SFV with a single witness.

• Incorrect STALL calculation in a very specific combina-
tion of allocation requests, which causes resources to be
lost.

• A bug in recovery/restart event handling which results
in not all of the allocated resources being correctly sent
back to the resource pool.

• Corruption, in a scenario involving extremely high allo-
cation traffic, of a mechanism which validates resource
integrity in the Resource Control Unit.

B. Testing the Ability to Adequately Cover Design State

We inserted an artificial corner-case bug in the Request
Completion Logic sub-block which causes a failure when
multiple REQ2 type requests from particular sources and ID
ranges arrive in a particular order. The bug results in one of
the requests being incorrectly marked as completed. This bug
could not be revealed with the simulation regression.

TABLE IV: Resource Manager Verification Results

CP/Asrt BMC SFV, single SFV, multiple
Result Bound Result Bound Result Bound

Line 4 covered 69 covered 69 covered 69
Line 8 covered 71 covered 77 covered 77..83

Line 12 uncov. 24 covered 89 covered 85..95
Line 16 uncov. 26 covered 99 covered 93..107

Line 19 uncov. 26 covered 113 covered 99..119
Line 0 N/A N/A covered 129 covered 107..133

Asrt TO 38 TO 42 failed 142

We used nine different waypoints modeling several REQ2
requests in various pipe stages on a path REQ2 — OUT2; for
example, the one marked by a star in Fig. 6. In this and other
experiments we used general waypoints (waypoints previously
defined by validation engineers for other purposes) in order
to eliminate the possibility that prior knowledge about the
bugs might lead us unconsciously to craft waypoints leading
directly to them. For each waypoint we calculated 5 witnesses,
targeting each of the twelve assertions from 9×5=45 different
initial states defined by these witnesses. The cover points
occurred at bounds 64–70, and verification took 1406–3379
seconds (on a machine with 4Gb memory and two Intel Xeon
CPU 3.60 processors). A failure was detected by one out of
12 assertions from only one initial state, whereas runs from
the other 44 initial states missed the problematic scenario.
It occurred at bound 34 (70+34=104 clock phases from the
original initial state) after 14707 seconds.

We inserted an artificial corner-case bug into the Resource
Manager logic which calculates the condition for next request
STALL. This caused Next free pointer to wrap around early
due to illegal allocation, thereby running over other resources
in the table. We used general cover points as waypoints
asserting that table lines were allocated, and the table was
incrementally filled up until the wraparound. We ran traditional
BMC and SFV with single as well as multiple witnesses. The
assertion verified that resources were not being lost in the
system. In all cases a timeout of 20 hours was used. Results
are summarized in Table IV.

A wraparound happens after the 19th table line is allocated,
as the cyclic allocation table size is 20. BMC could not get
beyond the allocation of line 8, and the multiple witness
approach was needed in order to come across the problem-
atic combination of resource requests. The total number of
verification runs was 3(witnesses)6(waypoints)=729. Note that
the SFV algorithm does not necessarily produce the shortest
counterexample — line 8 was reached with bound 71 using
BMC whereas using SFV it was reached with bound 77 to 83.

We experimented with liveness properties in the Flow
Manager block. The properties validate forward progress with
the control FSM (dispatcher), eventually reaching predefined
control points without getting stuck, e.g. due to a bug in
one of the FSMs. The proof assumes the legal behavior of
the surrounding agents. We used waypoints describing the

31



state transitions of the dispatcher FSM. Although we did not
find any real design bugs, we validated the correctness of
the algorithm by properly detecting a known deep bug using
our approach. The failure was detected faster: 1575 seconds
(509 seconds towards the waypoint and 1064 seconds to get a
counterexample) vs. 5470 seconds for traditional BMC (3.5X
faster). This is due to the run-time reduction phenomenon
described in Section II-A.

VII. CONCLUSION AND FUTURE WORK

The method suggested in this paper for pure SAT-based
semiformal verification is very simple to grasp and straightfor-
ward to implement, yet it exhibits a superior ability to achieve
good design coverage and detect deep, corner-case bugs in
industrial-scale designs. The experimental results confirm this
by exposing both real and artificial design bugs missed by
simulation (due to coverage limitations) and classic FV (due to
bound limitations). These encouraging results were achieved
with a relatively small amount of work on the part of the
validation engineers, much less than the effort required by the
traditional FV and simulation approaches applied prior to our
experiments. Moreover, the suggested method can save the
substantial effort usually invested in reducing designs to fit
the capacity limitations of FV tools, as it can replace such
activities.

As a by-product, we developed two SAT-based algorithms,
Rand-k-SAT and Guide-k-SAT, that are able to efficiently
find a number of heterogeneous models for a given problem.
We also discuss variations of Rand-k-SAT and Guide-k-SAT
that allow the user to achieve the desired balance between
performance and solution diversification quality. We have also
proposed an extension of the semiformal verification algorithm
for liveness properties.

In our future work we intend to study how different diver-
sification techniques affect bug detection capabilities and to
collect more experimental data on semiformal verification of
liveness properties to better understand the practical utility of
this technique.
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Abstract — System On Chips (SOCs) are being increasingly 
deployed in large number of applications and systems as they 
allow automation to be implemented to render ease and 
convenience in many human activities, a prime example being 
smart mobile phones. This renders their design 
implementation a fairly difficult task - with larger product 
space and product revisions, comes the requirement for larger 
feature integration in smaller die-sizes, smaller design 
turnaround times and lower power consumption. To address 
these issues, SOCs are being designed by integrating existing 
in house Intellectual Properties (IPs), or third party IPs 
provided by external vendors. 
 
DFT logic integration is an important design activity in any 
SOC design implementation, which gets carried out almost as 
a background activity, while not being accorded the due 
importance given to the prominent front-end design activity 
related to implementing functional features in the design of 
any SOC. Integration of DFT logic and the verification of this 
integration to other functional sub-systems and IPs in a SOC 
constitutes a significant portion of the overall design and 
verification effort. Any savings in this component helps in 
reducing the overall chip design and verification time and 
therefore, the cost. This is achievable through automation.  
The predominantly canonical and regular nature of the 
structures and behavior of most DFT IPs facilitates this, 
leading to the kind of convergence presently seen towards 
standardized configurable DFT logic architectures. Such 
standardized configurable DFT logic architectures lend 
themselves to auto-generation of their RTLs with ease.                           
In addition, this feature enables high re-usability at different 
levels of hierarchy in any SOC design because similar DFT 

functionalities are needed, whether it be at the IP level, sub-
system level or at the SOC level, albeit with increasing 
complexities in their functionality. Re-use further reduces the 
complexity, time and cost associated with verification. In this 
paper, while we emphasize the verification task of DFT logic 
in an SOC at the RTL level, which constitutes a significant 
portion of the entire DFT logic verification task, there are 
several gate level DFT Logic verification tasks which are 
better suited to simulation (through TDLs). Even for such gate 
level verification tasks, ensuring a clean DFT logic integration 
at the RTL level helps in reducing the overall effort, as many 
errors at this level of hierarchy, using earlier approaches, are 
attributable to RTL level integration errors. 
 
The principal objective of the proposed approach has been to 
1). Reduce simulation based DFT logic integration verification 
at the RTL level, 2). Improve robustness of Silicon quality by 
complete elimination of any bugs related to DFT logic, and 3). 
Enable re-use of DFT logic verification infrastructure across 
different SOCs and across different hierarchies within each 
SOC. These objectives have been achieved by taking the 
formal verification route with auto-generation of formal 
properties and the formal tool set up, on which the proof of 
these properties are executed. In this paper we give several 
examples which highlight our contributions to the above 
objectives across different hierarchies within an SOC and 
across different SOCs.    
 

Keywords - Formal Verification, DFT Logic,  SOC Integration  
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Abstract—In theory, counterexample-guided abstraction re-
finement (CEGAR) uses spurious counterexamples to refine
overapproximations so as to eliminate provably false alarms.
In practice, CEGAR can report false alarms because: (1) the
underlying problem CEGAR is trying to solve is undecidable; (2)
approximations introduced for optimization purposes may cause
CEGAR to be unable to eliminate a false alarm; (3)CEGAR has
no termination guarantee - if it runs out of time or memory then
the last counterexample generated is provably a false alarm.

We report on advances in theSLAM analysis engine, which
implementsCEGAR for C programs using predicate abstraction,
that greatly reduce the false alarm rate.SLAM is used by the
Static Driver Verifier ( SDV) tool. Compared to the first version
of SLAM (SLAM1, shipped in SDV 1.6), the improved version
(SLAM2, shipped in SDV 2.0) reduces the percentage of false
alarms from 25.7% to under 4% for the WDM class of device
drivers. For the KMDF class of device drivers,SLAM2 has
under 0.05% false alarms. The variety and the volume of our
experiments of SDV with SLAM2, significantly exceed those
performed for other CEGAR-based model checkers.

These results made it possible forSDV 2.0 to be applied as
an automatic and required quality gate for Windows 7 device
drivers.

I. I NTRODUCTION

A decade ago, the SLAM project [BR02b] introduced
the concept of counterexample-guided abstraction refinement
(CEGAR) for the analysis of temporal safety properties of
C programs. This work resulted in the Static Driver Verifier
(SDV) tool that Microsoft applies internally to its device
drivers and ships with the Windows Driver Development Kit
(WDK) for use by third-party device driver writers [BBC+06].

As shown in Figure 1, the essential points of the CEGAR
process, as implemented by SLAM, are: (1) the automated
creation of a Boolean programabstractionof an instrumented
C program that contains information relevant to the property
under consideration; (2)model checkingof the Boolean pro-
gram to determine the absence or presence of errors; (3) the
validation of a counterexampletrace to determine whether or
not it is a feasible trace of the C program. The last step can
either produce a validated counterexample trace or a proof
that the trace is invalid (a provably false alarm), in which
case information is added to the abstraction to rule out the
false alarm.

The CEGAR process has three distinct attributes: first, it
may terminate with either a proof of correctness (“verified”) or
a validated counterexample trace; second, if CEGAR proves a
counterexample trace is invalid then, in theory, it can rule out

Fig. 1. The SLAM realization of the CEGAR loop.

at least this trace from the abstraction (the so-calledprogress
property); third, even if CEGAR always makes progress it
still has no guarantee of terminating [BPR02].

Theoretically, the lack of a termination guarantee appears
to be the death knell for CEGAR: most program analyses
typically have termination guarantees despite having the prob-
lem of false alarms. However, we can set a time limit on a
CEGAR run. If the run is aborted, we have the result that
the last counterexample trace considered by CEGAR was
invalid (provably a false alarm). So, CEGAR with a time limit
has a three-valued outcome: (1) verified; (2) validated error
trace; (3) not-useful result (NUR) due to lack of progress or
timeout/spaceout. In the second case, the result still could be
a false alarm due to bugs in the environment model, temporal
safety property, or the SLAM engine itself. In the results
reported in the abstract and here in the introduction, we count
such cases as well as NURs as “false alarms”.

In order to improve the chances for CEGAR to terminate
with useful results and fewer false alarms, we explored four
main ideas in SLAM2, which was derived from SLAM1.

First, we increase the precision of the predicate transformer
over statement sequences. SLAM1 abstracts each C program
statement (such as an assignment orassumestatement rep-
resenting a conditional branch) to a corresponding Boolean
program statement. Thus, if the C program contains the state-
ment sequence(S1;S2) then the Boolean program abstrac-
tion computed by SLAM1 contains the statement sequence
(S1

#;S2
#), whereS# is the abstraction of statementS. We

call this approachfine-grainedabstraction. Our contribution
here is to show how to construct the Cartesian/Boolean pro-
gram abstraction [BPR01] for sequences of assignments and
assume statements, so that the statement sequence(S1;S2)
abstracts to(S1;S2)

#. We call this approachcoarse-grained
abstraction, which SLAM2 implements.
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Second, we use diverse strategies for exploring counterex-
ample traces. SLAM1 uses a “depth-first” strategy: it sym-
bolically executes a counterexample trace in the C program
forward from the initial state. As soon as it finds a trace
prefix that is inconsistent, it generates a set of refinement
predicates and a refined Boolean program abstraction. The
SLAM1 symbolic execution step is complicated because of
its use of symbolic (Skolem) constants, which must be tracked
and eliminated in order to later generate properly scoped
predicates [BR02a].

In contrast, SLAM2 uses both forward and backward
symbolic execution. Forward symbolic execution is a simple
interpreter that maintains a symbolic store. Backward symbolic
execution is based on preconditions, decomposed and cached
per program point in order to make predicate generation very
simple. The combination of forward and backwards symbolic
execution allows SLAM2 to detect inconsistencies near the
beginning of a counterexample trace as well as near the end
or in the middle, giving it more flexibility over SLAM1.

The third major difference is in how the two engines react
to the lack of progress, which can occur because SLAM com-
putes approximations to the best Boolean abstraction in order
to speed the search for both proofs and counterexamples. Upon
finding lack of progress (identified when none of the predicates
generated in the current iteration of CEGAR is new), SLAM1
refines the Boolean program transition relation [BCDR04]. We
call this the CONSTRAIN module of SLAM, which is common
to both SLAM1 and SLAM2. In contrast, SLAM2 detects
multiple inconsistencies in the same counterexample trace
when a lack of progress stops it; it interleaves the discovery
of new predicates with application of the CONSTRAIN module
so that it is less likely to get stuck.

Fourth, SLAM2 uses information computed during forward
symbolic execution to optimize backward symbolic execution
in several ways. In particular, the value of pointers computed
by the forward execution is critical to the optimization of
the precondition calculation for assignment statements and
procedure calls.

In addition to these four main ideas, SLAM2 has a com-
pletely re-implemented and more efficient pointer analysis. To
optimize predicate evaluation, SLAM2 uses the Z3 state-of-
the-art SMT solver [MB08] with two major improvements in
the interface between SLAM and Z3: an efficient encoding of
the predicates given to Z3 and a new set of axioms that express
the SLAM memory model, in particular, relations between
pointers and locations [BBdML10].

As the saying goes, “the proof is in the pudding”: compared
to SLAM1, SLAM2 reduces the percentage of false alarms
from 25.7% to under 4% for the WDM class of device drivers.
For the KMDF class of device drivers, SLAM2 has under
0.05% false alarms.1 These figures come from 5727 unique

1The Windows Driver Model (WDM) is a widely-used kernel-level API
that provides access to low-level kernel routines as well as routines specific
to driver’s operation and life-cycle. The Kernel-mode Driver Framework
(KMDF) is a new kernel-level API which provides higher-level abstractions
of common driver actions.

checks using both SLAM1 and SLAM2 on 69 device drivers
from the WDK against 83 temporal safety properties.

A common question about verification tools is “who verifies
the verifier?”. The typical answer is that one uses lots of
benchmarks and testing, as well as cross comparison to other
tools. In the development of SLAM2, we found numerous
deficiencies in SLAM1, including its overconstraining of the
abstract transition relation, which leads to “false verification”,
a real but little acknowledged problem with verification tools.

So, we also compared SLAM2 to the YOGI analysis en-
gine [NRTT09] on the same benchmarks. For WDM, SLAM2
provides 7% fewer NURs, fewer false defects (2 versus 18),
while finding 18 true defects that YOGI misses (YOGI finds
2 true defects that SLAM2 misses), and is two times faster
than YOGI. For KMDF, SLAM2 produces 58 times fewer
NURs (2 versus 117), and is 8 times faster than YOGI.

SLAM2 moves closer to the CEGAR promise to “abstract-
and-refine” until it produces a proof of correctness or a
validated trace. The false alarm rate of SLAM2 is so low
that SLAM2 empowers a truly push-button software model
checking experience for users of the SDV tool, which resulted
in the technology being required as quality gate for shipping
of Microsoft-produced Windows 7 device drivers.

The rest of this paper is organized as follows: Section II
presents the coarse-grained abstraction; Section III describes
the forward and backwards symbolic interpreters; Section IV
describes how SLAM2 uses these interpreters to optimize the
CEGAR loop; Section V presents the treatment of precondi-
tions for assignments and procedure calls in the presence of
pointers; Section VI presents experiments results; Section VII
reviews related work, and Section VIII concludes the paper.

II. COARSE-GRAINED BOOLEAN ABSTRACTION

Given a C programP , a set of Boolean expressionsE,
SLAM’s predicate abstraction step produces the Boolean
program abstractionBP (P,E) containing variablesV =
{b1, b2, . . . , bn}. Each variablebi in V corresponds to the
Boolean expression (predicate)φi in E. Boolean programs
contain all the control-flow constructs of C, including pro-
cedures and procedure calls. We will focus here on the
abstraction of a procedure with no procedure calls, as the
handling of procedure calls and returns remain unchanged
compared to SLAM1 [BMR05].

Each procedure of a C program is represented by a control-
flow graph with basic blocks, where each basic block is a
sequence of assignments, skips, andassumestatements. The
assumestatements are used to model the semantics ofif-
then-elsestatements as well as assumptions about data (non-
nullness of pointers).

SLAM2 generalizes the abstraction step compared
to SLAM1 by abstracting sequences of statements as
opposed to single statements:

S → S1;S2 | skip | x := e | ∗ x := e | assume(e)

The main advantage of coarse-grained abstraction compared
to fine-grained is increased precision [CC77].
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S pre(S, Q) wp(S, Q)
skip Q Q

x := e Q[e/x] Q[e/x]
∗x := e (x = &y1 ∧Q[e/y1]) ∨ . . . ∨ (x = &yk ∧Q[e/yk]) same aspre(S, Q)

assume(e) e ∧Q e =⇒ Q
S1;S2 pre(S1, pre(S2, Q)) wp(S1, wp(S2, Q))

Fig. 2. Predicate transformerspre andwp.

A. Transformation

We use the standard precondition (pre) and weakest pre-
condition (wp) predicate transformers to assign meaning to
C programs as well as to perform the abstraction to Boolean
programs. Figure 2 shows the predicate transformers for the
statementsS under consideration. Recall thatwp(S, Q) =
¬pre(S,¬Q).

We use a source-to-source transformation on the C program
to simplify the abstraction process. Any statement sequence
S is equivalent toassume(pre(S, true));sub(S), where the
functionsub(S) is defined to be the maximal subsequence ofS
containing only assignment statements ofS (and is defined to
be theskip statement in the case thatS contains no assignment
statements).

Lemma 1 (Correctness of transformation). For all statement
sequencesS and predicatesQ:

wp(S, Q) ⇐⇒ wp(assume(pre(S, true));sub(S), Q)

Proof. By induction on length of statement sequenceS, show
that

wp(S, Q) ⇐⇒ (pre(S, true) =⇒ wp(sub(S), Q))

[The proof is straightforward but omitted due to lack of space]

B. Abstraction

A cubeover V is a conjunctionci1 ∧ ci2 ∧ . . .∧ cik
, where

eachcij ∈ {bij ,¬bij} for somebij ∈ V . For a variablebi ∈ V ,
let E(bi) denote the corresponding predicateϕi, and letE(¬bi)
denote the predicate¬ϕi. ExtendE to cubes and disjunctions
of cubes in the natural way.

For any predicateϕ and set of Boolean variablesV , let
FV (ϕ) denote the largest disjunction of cubesc over V such
that E(c) implies ϕ. The predicateE(FV (ϕ)) represents the
weakest predicate overE(V ) that impliesϕ. The correspond-
ing weakening of a predicate is also defined similarly. Let
GV (ϕ) be¬FV (¬ϕ). The predicateE(GV (ϕ)) represents the
strongest predicate overE(V ) that is implied byϕ.

Following Lemma 1 and the definition of Cartesian/Boolean
abstraction [BPR01], Figure 3 shows the translation of a state-
mentS to a guarded parallel assignmentin the Boolean pro-
gram. Here the∗ value represents a value non-deterministically
chosen from{true, false}. The computation of the predicate
abstraction of a formulaφ, as represented byFV (φ), typically
relies on an automated theorem prover [GS97]. SLAM1 and
SLAM2 both rely on a specialized algorithms for predicate
abstraction [LBC05].

assume(GV (pre(S, true)));

b1 := if (FV (wp(sub(S), ϕ1)) then true else
if (FV (wp(sub(S),¬ϕ1))) then false else∗,

. . .

bn := if (FV (wp(sub(S), ϕn)) then true else
if (FV (wp(sub(S),¬ϕn))) then false else∗;

Fig. 3. Cartesian/Boolean abstraction of statement sequenceS.

III. C OUNTEREXAMPLE TRACE VALIDATION

In this section, we explain the two symbolic interpreters
that SLAM2 uses to perform counterexample trace validation
on C programs and predicate discovery. The first is a forward
interpreter and the second a backwards interpreter (SLAM1
only performs forward symbolic execution). The next section
will discuss more about how the two interpreters are used
together.

The language of compound statements introduced in the
previous section for the abstraction of basic blocks also serves
as the basis for our discussion of symbolic execution of an
execution trace. An execution trace is simply a sequence
of basic blocks through the control-flow graph, whose code
can be modeled by a sequence of assignment andassume
statements (one very long basic block). For the rest of this
section, letS1 . . . Sn represent the sequence of statements in
the execution trace under consideration.

A. Forward Symbolic Execution

Forward Symbolic Execution (FSE) processes theentire
traceS1 . . . Sn with two goals: (1) to find an invalid execution
trace prefix of the formS1 . . . Si; (2) to populate a “trace
database” that maps each statementSj to the store computed
by FSE just before execution ofSj . The main use of the trace
database is to resolve pointer-aliasing questions in a trace-
sensitive manner, as detailed in Section V.

Operationally, forward symbolic execution is an interpreter
that computes the strongest post-condition (sp(P, S)) of a
statement sequenceS with respect to the initial predicate
P = true. Recall that

sp(P, skip) = P
sp(P, assume(e)) = P ∧ e
sp(P, x := e) = ∃θx.P [x/θx] ∧ (x = e[x/θx])
sp(P, S1;S2) = sp(sp(P, S1), S2)
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C-like Program Precondition Vectors
1: void main(){
2: int x, y, a;
3: x := y;
4: x := x+1;
5: if(a>0)
6: a := a+1;
7: if(x = y+2){
8: SLIC_ERROR:0;
9: }
10: }

↑ 0 1 2
3-4 true y + 1 = y + 2 ¬(a > 0)
5 true x = y + 2 ¬(a > 0)
7 true x = y + 2
8 true

(a) (b)

Fig. 4. Backwards Symbolic Execution

(for brevity, we omit the rule for∗x := e).
FSE maintains a store mapping locations to values and

processes the statementsS1 . . . Sn in order from S1 to Sn.
Symbolic evaluation of an assignment (x:= e or ∗x := e)
involves: (1) evaluation of the RHS expressione in the context
of the current store to get a valuev; (2) evaluation of the
LHS expression in the context of the current store to get a
location l; (3) mapping locationl to value v in the store
(possibly overwriting the previous mapping for locationl).
During symbolic execution, if a locationl (such as the address
of variablex) doesn’t have a mapping in the store then a fresh
symbolic valueθl for the value ofl is created andl is mapped
to θl in the store.

Execution of a statementSi = assume(ei) first evaluates
the Boolean expressionei in the current store, which results
in an expressionφi solely over constants of the programming
language (such as1, 42, ...) and symbolic constants (such
as θl). FSE maintains a trace conditionφ (initially true),
which is the conjunction of theφi. A call to the theorem
prover Z3 [MB08] determinines the satisfiability of the for-
mula ∃θ.φ ∧ ei. If the formula is satisfiable, then there is
an assignment of values to the symbolic constantsθ (the
primary inputs to the execution trace) that witness the validity
of the execution trace. If it is unsatisfiable then the trace prefix
S1 . . . Si is inconsistent/invalid.

B. Backwards Symbolic Execution

Operationally, backwards symbolic execution (BSE) com-
putespre(S1 . . . Sk, true), k ≤ n, but decomposes and caches
the representation of each application ofpre in order to enable
predicate generation if the counterexample is determined to
be invalid. The benefits of symbolic execution withpre are:
(1) there is no need to introduce symbolic constants; (2)
assignments to variables that don’t appear in the postcondition
Q have no effect. An issue with the use ofpre is a blow-up
in the size of the precondition formula due to pointer aliasing
(see the rule for∗x := e in Figure 2), which we will return
to later.

The decomposition ofpre is based on the simple ob-
servation thatpre(assume(e), Q) = (e∧ Q). If Q is a
conjunction(q0 ∧ . . . ∧ qr), represented implicitly by the
vector < q0, . . . , qr >, then we represent(e ∧ Q) by

< q0, . . . , qr, e >, which preserves the positions of theqi

in the vector.
BSE starts with the one element vectorQ = < true >.

Processing of anassumestatement lengthens the vector by one
element, as described above. For an assignment statement, the
pre computation for the assignment is applied point-wise to
the input vector, resulting in a new vector of the same length.

We can visualize the computation ofpre as creating an
upper-left-triangular matrix of row vectors, where the first
column containstrue everywhere and each subsequent column
represents the history of a subformula introduced by an
assumestatement. The last row (k+1) of the matrix represents
the starting point whereQk =< true >. The ith row of the
matrix (1≤ i < k) representsQi = pre(Si . . . Sk, true).

For each new precondition vectorQi computed, Z3 is
called to query if the conjunction of formulas in the vector
is satisfiable. If it is unsatisfiable then the traceSi . . . Sk

is invalid and the predicate discovery algorithm starts, as
described in the next subsection. Otherwise, BSE proceeds
to consider statementSi−1 in the trace. If BSE determines
that Q1 is satisfiable then the execution trace is valid.

Figure 4 illustrates BSE on a simple C program (a).
Consider the false counterexample trace2-3-4-5-7-8. Fig-
ure 4(b) shows the vector-based computation ofpre on this
trace, with the corresponding trace step numbers in the left-
most column (only the steps where the preconditions change
are shown).

Columns 0-2 in the table show the precondition computation
for each step of the trace, going backwards from the error step
7. For example, at step 6 a new vector elementx = y + 2 is
added, which corresponds to thethen branch of the condi-
tional. At steps 3 and 4, which correspond to the sequence of
assignmentsy := x;x := x + 1, the precondition in column 1
is computed aspre(y := x;x := x+1, x = y+2) = (y+1 =
y +2), whereas the precondition in column 2 is not affected.2

C. Predicate Discovery

Given an invalid execution traceSi . . . Sk, the goal of
predicate discovery is very simple: find a set of predicates

2Note that the two assignment statements occupy the same basic block, so
are treated together, just as they are during the abstraction step. This reduces
the number of predicates generated.
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E such that the abstract version ofpre induced byE (preE)
can proveSi . . . Sk is an invalid execution trace.

More formally, let αE(φ) be the weakest formulaφ′ (in
the implication ordering) such thatφ′ is a Boolean combi-
nation of the predicates inE and φ′ implies φ. Then for
a basic blockS, preE(S, Q) = αE(pre(S, Q)) and for a
sequence of two basic blocksS1 andS2, preE(S1;S2, Q) =
preE(S1, preE(S2, Q)). Suppose thatpre(Si . . . Sk, true) =
false, where theSx are basic blocks, then we wish to find a
sufficientset of predicatesE such thatpreE(Si . . . Sk, true) =
false.

Once BSE has discovered that a precondition vectorQi is
unsatisfiable, it is clear that the set of predicates in the pre-
condition matrixMi+1 =< Qi+1 . . . Qk > are sufficient. Of
course, we can do much better: the underlying theorem prover
can provide us an unsatisfiable core ofQi, a small subset of the
elements ofQi whose conjunction is unsatisfiable. This subset
identifies a set of “inconsistent” columns inMi+1. Again, it
is clear that the set of predicates from this set of columns are
sufficient. In our example at line 3, the formula

∃y.∃a.true ∧ (y + 1 = y + 2) ∧ ¬(a > 0)

is unsatisfiable. An unsatisfiable core is{(y+1 = y+2)}. So,
a sufficient setE includes predicates from the second column:
{x = y + 2}.

IV. OPTIMIZING THE CEGAR LOOP: MULTIPLE

INCONSISTENCIES

Optimizations of the CEGAR loop are based on analysis
of the cases when SDV fails on Windows device drivers with
“not-useful results” (NURs, in SDV terminology). In theory,
for a CEGAR run, the set of predicates strictly increases
as the iterations of CEGAR increase. LetEi be the set of
predicates discovered by iterationi of CEGAR. In practice,
both SLAM1 and SLAM2 may discover predicatesEj such
that Ej ⊆

⋃
0≤i<j Ei. This lack of progress condition can

arise due to approximations introduced in the abstraction step,
which can result in the same counterexample trace being
produced in consecutive iterations.

Upon finding lack of progress, SLAM1 employs a tool
called CONSTRAIN to refine the Boolean program abstraction
computed for the current set of predicates [BCDR04]. Our
experiments indicated that CONSTRAIN was a bottleneck in
SLAM1, so we experimented with techniques in SLAM2 to
reduce the need to use CONSTRAIN.

The optimized CEGAR loop makes use of both FSE and
BSE, as well as the CONSTRAIN module. Given a counterex-
ample traceS1 . . . Sn, SLAM2 first applies FSE. If FSE finds
an invalid trace prefixS1 . . . Si then BSE is applied to the
traceS1 . . . Si to discover new predicates.

The approach outlined above is similar to SLAM1: pred-
icates are discovered based on invalid traceprefixes. How-
ever, an invalid trace can have several invalid subtraces. So,
SLAM2 also uses BSE in two new ways to discover more
invalid subtraces. First, if there is lack of progress on invalid
trace prefixS1 . . . Si, SLAM2 will apply BSE to the entire

traceS1 . . . Sn to try to find an invalid trace suffixSk . . . Sn.
Second, if there is lack of progress on invalid trace suffix
Sk . . . Sn, SLAM2 will perform a partial reset of the pre
computation and continue BSE, as follows. Suppose that
the set of inconsistent columns of the precondition matrix
after processingSk . . . Sn arek1, k2, . . . , km. The partial reset
removes these columns from the precondition matrix and
resumes BSE at statementSk−1. The partial reset can be done
multiple times to find multiple invalid traces.3

The above approach is interleaved with the application of
the CONSTRAIN module, which is applied just once when a
lack of progress is first identified. SLAM1 does not attempt
to find multiple invalid subtraces. Upon lack of progress,
it attempts to resolve the issue using CONSTRAIN. If lack
of progress continues, SLAM1 terminates with a “GiveUp”
result, whereas SLAM2 will continue to analyze the trace to
find new predicates. If SLAM2 finishes exploringS1 . . . Sn

with no new predicates, it too will terminate with a “GiveUp”
result.

V. PROCEDURECALLS AND POINTERS

A key aspect of the SLAM approach to CEGAR is that
the Boolean program abstraction contains procedures and pro-
cedure calls. Thus, Boolean variables introduced by predicate
discovery can be locally scoped to a procedure, which reduces
the cost of model checking.

SLAM2 remains unchanged with respect to SLAM1 re-
garding Boolean program abstractions with procedures. BSE
performs precondition evaluation at procedure return and pro-
cedure call steps by converting the precondition from the scope
of the caller into the scope of the callee (for returns) and back
(for calls). This is done by using relations between actual and
formal parameters of the call/return, and between the return
value of the procedure call (if any) and the return variable of
the callee.

As discussed before, the precondition computation applied
during BSE has the potential to blow up in size because of
pointers. But, in fact, SLAM2 eliminates this possibility by
making thepre computation trace-sensitive for BSE, using
the pointer aliasing information computed by FSE. Consider
a statementSi : ∗x := e in the trace. Recall thatpre(∗x :=
e,Q) is

(x = &y1 ∧Q[e/y1]) ∨ . . . ∨ (x = &yk ∧Q[e/yk])

To reduce the size of this formula, BSE looks up the location
pointed to byx in the store computed by FSE on entry to
statementSi. Suppose that in this storex maps to&yj . Then
the above equation reduces toQ[e/yj ].

VI. EXPERIMENTAL RESULTS

We now present a comparison of SLAM2, SLAM1
and YOGI by running SDV on two large test suites developed
and maintained by Microsoft quality assurance teams for
testing SDV. We first describe our evaluation platform and

3One could also perform a full reset of the precondition matrix to the initial
vector< true > - we did not experiment with this approach.
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Metric SDV 1.6 (SLAM1) SDV 2.0 (SLAM1) SDV 2.0 (SLAM2)
Drivers 69 69 69
Rules 68 83 83
Total checks 4692 5727 5727

LightweightPass results - 2477 2477
Pass results - 2563 2551
NUR results 6% (285/4692) 2.1% (123/5727) 3.3% (187/5727)
Defects reported 157 564 512
GiveUp results only - 0.52% (30/5727) 0.3% (16/5727)
False defects 19.7% (31/157) 9.04% (51/564) 0.4% (2/512)
Time for identical pass - 39922 65800
Time for identical defect - 4440 2669

TABLE I
COMPARISON OFSLAM1 AND SLAM2 FOR WDM DRIVER CHECKS.

criteria. At Microsoft, SDV is used for verification of device
drivers built in multiple driver development models. For our
analysis, we have chosen test suites developed for WDM
and KMDF drivers. These comprehensive test suites include
drivers of different sizes (1-30K LOC), with a mix of test
drivers written to test SDV rules (with injected defects),
sample drivers that are shipped in WDK to provide guidance
to driver developers, and drivers that are shipped as part of the
Windows operating system. Note that all the data presented in
this section has been extracted from test runs performed by
the test team.

Most of the metrics used in this section were explained
in previous sections. New to this section are the following
metrics. A “check” is a run on one driver for one rule. A
“L IGHTWEIGHTPASS” result refers to the fact that before
starting the CEGAR loop, SDV first applies property instru-
mentation, pointer analysis, and function pointer resolution to
show that the error state of a rule is not reachable in the
call-graph of the C program. An “out of resource” (OOR)
result refers to checks that exceeded the allocated time or
memory resources. The NUR results include both the OOR
and GiveUp results.

SDV can report a false defect for a number of reasons: a
bug in the verification engine, a bug in the rule, or a bug in
the environment model (the C code that calls into a driver
and provides stubs of kernel routines used by drivers). Hence,
improvements to any of those components can result in the
reduction in the number of false defects.

SDV can report a Pass result which is actually a “false
verification”, due to overconstraining of the abstract transition
relation. This problem can be revealed by comparing SDV
runs with different engines, for example, SLAM1 versus
SLAM2. In particular, we observed that some Pass results
with SLAM1 turn into Defect or OOR results with SLAM2.
The OOR result would mostly occur on the runs for large
drivers and/or hard rules. Specific data for such cases are
presented in Tables I and II.

For the purposes of profiling SDV and comparing the
analysis engines, we use the two official releases of SDV,
SDV 1.6 and 2.0, and also runs of SDV 2.0 with SLAM1,
for a more accurate comparison.

Table I compares the data for the WDM drivers for SLAM1
as part of both SDV 1.6 and SDV 2.0, and for SLAM2 as

SDV 2.0 (SLAM1) SDV 2.0 (SLAM2) COUNT CHANGE
OOR Pass 31

√

Defect (false) Pass 5
√

Defect (true) Pass 2 ×
GiveUp Pass 15

√

OOR Defect (true) 2
√

Defect (false) OOR 36
√

GiveUp OOR 13
√

Pass OOR 64 ∼
OOR GiveUp 2 ∼
Defect (false) GiveUp 11

√

Defect (true) GiveUp 1 ×

TABLE II
BREAKDOWN OF CHANGES OBSERVED BETWEENSLAM1 AND SLAM2

USING SDV 2.0FOR WDM DRIVERS.

part of SDV 2.0. Dashes in the table indicate that the data is
not available for that particular metric.

Table I shows significant reduction in the number of false
defects and GiveUp results for SLAM2. This is due to the
better precision of coarse-grained abstraction, as well as to
the improved trace validation and predicate discovery. All
three factors play a role in these improvements. In particular,
better predicate discovery helps make progress (discover new
predicates) in the cases where SLAM1 couldn’t; more precise
abstraction reduces the need for additional predicates in the
first place. The number of NURs significantly decreased be-
tween SDV 1.6 and SDV 2.0 for both engines. This is mostly
due to the improvements in SDV environment and rules, in
particular, NULL pointer dereference bugs. Those bugs have
been found by running SDV with SLAM2 (but not with
SLAM1). Finally, SLAM2 is faster in finding defects, but
takes more time to prove Pass results. The time difference for
the Pass results is due to the problem of overconstraining of the
abstract transition relation in SLAM1, i.e., “false verification”.

According to Table I, for WDM drivers, SLAM2 provides
a useful result 96.7% of the time, and upon discovery of a
defect, provides a 99.6% guarantee that this is a true defect.

Table II shows the breakdown of the individual results
and changes observed between SDV 2.0 with SLAM1 and
with SLAM2 for WDM drivers. The leftmost column is the
result reported by SLAM1, followed by the result reported
by SLAM2 and the count for such changes. The rightmost
column indicates whether the changes are in favor (

√
), against
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Metric SDV 2.1 (SLAM2) SDV 2.1 (YOGI)
LightweightPass results 2457 2457
Pass results 2556 2538
NUR results 3.3% (194/5727) 3.65% (209/5727)
Defects reported 520 523
False/reported defects 0.4% (2/520) 3.4% (18/523)
Missed defects 2 18
Time for identical pass 76922s 147189s (∼2x)
Time for identical defect 1795s 9984s (∼6x)

TABLE III
COMPARISON OFSLAM2 WITH YOGI USING SDV 2.1FOR WDM

DRIVERS.

(×), or neutral (∼), for SLAM2 with respect to SLAM1.
There are 28 cases where GiveUp results by SLAM1

changed into Pass (15 cases) or OOR (13 cases) for SLAM2.
The change from GiveUp to OOR indicates that progress has
been made beyond the GiveUp point (but not until a definite
result, due to insufficient resources). Out of 14 cases where
SLAM2 produces a GiveUp, there are 11 cases for which
SLAM1 produces a (false) defect. There are 36 cases where
false defects reported by SLAM1 changed into OOR for
SLAM2, which is clearly favorable for SLAM2. Finally, we
mark the changes from the Pass result for SLAM1 into the
OOR result for SLAM2 (64 cases) as neutral, because we
have a strong evidence that SLAM1 was able to prove the Pass
result by overconstraining, but it is unrealistic to investigate
each case to validate this claim. Note that the two defects
found by SLAM1 but not by SLAM2 are being investigated.

Table III presents a comparison of SLAM2
with YOGI [NRTT09] for WDM drivers. SLAM2 provides
7% fewer NURs, fewer false defects (2 versus 18), while
finding 18 true defects that YOGI misses (the respective
number for YOGI is 2), and is two times faster than YOGI.
Note that YOGI does not report GiveUp results in the same
way as SLAM does, so this analysis is not performed -
instead, the GiveUp cases are included into the NUR cases.
Notably, YOGI takes 6 times longer for finding the same
defects as SLAM2, but only 2 times longer for finding the
same proofs as SLAM2.

According to Table III, for WDM drivers, YOGI provides
a useful result 96.3% of the time, and upon discovery of a
defect, provides a 96.6% guarantee that this is a true defect.
SLAM2 provides a useful result 96.6% of the time and a true
defect guarantee of 99.8%.

Table IV provides a breakdown of the changes observed
between SLAM2 and YOGI using SDV 2.1 on WDM drivers.
The format is the same as in Table II. The table shows
that in general, SLAM2 provides a higher rate of useful
results: 114 Pass results and 10 defect reports for which YOGI

reports NUR. There are 8 Pass results for SLAM2 for which
YOGI reports false defects. There are 11 cases where SLAM2
finishes with an NUR result, and YOGI reports a false defect.

On the other hand, there are two cases where YOGI finds
a defect which SLAM2 is unable to find (GiveUp) - those
proved to be useful in identifying limitations of SLAM2.

Table V compares SLAM1, SLAM2, and YOGI using SDV

SDV 2.1 (YOGI) SDV 2.1 (SLAM2) COUNT CHANGE
NUR Pass 114

√

Defect (false) Pass 8
√

NUR Defect (true) 10
√

Pass Defect (true) 8
√

Defect (false) OOR 1
√

Pass OOR 94 ×
NUR GiveUp 4 ∼
Defect (false) GiveUp 10

√

Defect (true) GiveUp 2 ×
Pass GiveUp 2 ×

TABLE IV
BREAKDOWN OF CHANGES OBSERVED BETWEENSDV 2.1WITH SLAM2

AND SDV 2.1WITH YOGI FORWDM DRIVERS.

on KMDF drivers. Note that KMDF drivers are significantly
smaller than WDM drivers, due to the higher level of the APIs
provided by the KMDF model. This explains the comparable
results for both SLAM1 and SLAM2. There is a significant
improvement in the number of NURs (1% to 0.04%) and false
defects (25% to 0%) between SDV 1.6 and SDV 2.0, regard-
less of the SLAM version. This improvement is primarily
due to the improvements in the KMDF environment model
and rules between the two releases. Comparing SLAM2 to
YOGI, we observe significantly larger number of NURs for
YOGI: 117 vesus 2 for SLAM2. Additionally, YOGI takes
8 times longer than SLAM2 for checks with the identical
results. Note that the defect analysis (true versus false defects)
for comparing YOGI to SLAM2 has not been performed
for KMDF drivers.

Table V shows the comparison of SLAM1, SLAM2,
and YOGI for KMDF drivers. SLAM2 provides a useful result
99.8% of the time, and upon discovery of a defect, provides
a 100% guarantee that this is a true defect. Comparatively,
YOGI provides a useful result 97.8% of the time.

In summary, our comprehensive analysis of the realistic
empirical data confirms that SLAM2 provides highly reliable
results by reporting defects with a high degree of confidence
that those are true defects, or finding proofs when there’s no
defect. Our comparison involves two driver models and three
verification engines and is based on the data obtained in an
industrial setting by independent testers.

VII. R ELATED WORK

Coarse-grained Abstraction. After the development of
SLAM1, it became clear that we were underutilizing the
power of automated theorem provers such as Z3 to cope with
complex Boolean formulae, relying instead on the Boolean
program model checker to deal with arbitrary Boolean combi-
nations of predicates. With coarse-grain abstraction, we give
Z3 a little bit more work to do and increase the precision
of the abstraction. However, one can do much more, as
explored by Beyer and colleagues in their work on “software
model checking via large-block encoding” [BCG+09]. They
show that one can abstract over loop-free fragments of code
such as sequences ofif-then-elsestatements. They compared
their large-block approach to the approach where each single
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Metric SDV 1.6 (SLAM1) SDV 2.0 (SLAM1) SDV 2.0 (SLAM2) SDV 2.1 (SLAM2) SDV 2.1 (YOGI)
Driver 51 51 51 51 51
Rules 61 102 102 103 103
Total checks 3111 5202 5202 5253 5253

NUR results 1% (31/3111) 0.04% (2/5202) 0.04% (2/5202) 0.04% (2/5253) 2.2% (117/5253)
Defects reported 300 271 271 271 -
False defects 25% (75/300) 0% (0/271) 0% (0/271) 0% (0/271) -
Total time for identical checks - - - 8414s 63645s (∼8x)

TABLE V
COMPARISON OFSLAM1, SLAM2 AND YOGI USING SDV FOR KMDF DRIVERS.

statement is abstracted in isolation. It would be interesting to
compare their approach to the presented approach.

Multiple Inconsistencies Per Trace. We are not aware of
other work that explores the idea of finding multiple invalid
subtraces of a single counterexample trace. We found this
technique to be very valuable for making more progress,
but it does come at an increased cost in model checking,
as more predicates are introduced. The ability to recover
from “irrelevant refinements” (retracting predicats that are
not useful) would be valuable in order to explore multiple
inconsistencies during CEGAR. McMillan explores how to
give CEGAR such a flexibility, which would be very helpful
for the case of detecting multiple inconsistencies. [McM10]

Path/Trace-Sensitive Pointer Aliasing. SLAM2’s use of
pointer aliasing information, computed by forward symbolic
execution, to refine the precondition computation is very
similar to that used by the DASH algorithm [BNRS08], that
forms the basis of the the YOGI tool we compare against.
However, SLAM2 only uses this technique during symbolic
execution and not the abstraction process, as YOGI does.

VIII. C ONCLUSION

We have described major improvements in the SLAM
verification engine, shipped with SDV 2.0 in September, 2009
as a part of the Windows 7 WDK. SLAM2 significantly
improved the reliability, robustness and precision of SDV.
SDV adoption inside Microsoft proved to be very successful,
with “SDV clean” being a requirement for Microsoft drivers
to be shipped with Windows 7.

Our results show that SDV 2.0 with SLAM2 is an industrial
quality static analysis tool, compared to previous versions
of SDV based on SLAM1, which was in many respects a
research prototype. The SDV tool has benefited greatly from a
multi-engine approach, allowing us to easily compare SLAM2
to YOGI.
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Abstract—Most closed source drivers installed on desktop
systems today have never been exposed to formal analysis.
Without vendor support, the only way to make these often hastily
written, yet critical programs accessible to static analysis is to
directly work at the binary level. In this paper, we describe a
full architecture to perform static analysis on binaries that does
not rely on unsound external components such as disassemblers.
To precisely calculate data and function pointers without any
type information, we introduce Bounded Address Tracking, an
abstract domain that is tailored towards machine code and is
path sensitive up to a tunable bound assuring termination.

We implemented Bounded Address Tracking in our binary
analysis platform Jakstab and used it to verify API specifications
on several Windows device drivers. Even without assumptions
about executable layout and procedures as made by state of the
art approaches [1], we achieve more precise results on a set of
drivers from the Windows DDK. Since our technique does not
require us to compile drivers ourselves, we also present results
from analyzing over 300 closed source drivers.

I. INTRODUCTION

Software model checking and static analysis are successful
methods for finding certain bugs or proving their absence in
critical systems software such as drivers. Source code analysis
tools like SDV [2] are available for developers to statically
check their software for conformance to specifications of the
Windows driver API. For instance, if a driver calls the API
method IoAcquireCancelSpinLock, it is required to call IoRe-
leaseCancelSpinLock before calling IoAcquireCancelSpinLock
again [3]. The vendors, however, are not forced to use these
analysis tools in development, and they are unwilling to submit
their source code and intellectual property to an external
analysis process. Without source code, certification programs
such as the Windows Hardware Quality Labs (WHQL) have to
rely on testing only, which cannot provide guarantees about all
possible executions of a driver. A solution to this problem is to
relocate the static analysis to the level of the compiled binary.
If the analysis does not require source code or debug symbols,
an analysis infrastructure can be created independently of
active vendor support.

Working with binaries poses several specific challenges. In
general, code cannot be easily identified in x86 executables
such as Windows device drivers. Data can be arbitrarily
interleaved with code, and bytes representing code can be
interpreted as multiple different instruction streams depending
on the alignment at which decoding starts [4]. Therefore, a ma-
jor challenge in analyzing binaries is to reliably extract those
instructions that are actually executed at runtime and to build

a control flow graph that accurately represents the possible
targets even of indirect jumps. Existing approaches to static
analysis of binary executables rely on a preprocessing step
performed by a dedicated, heuristics based disassembler such
as IDA Pro [5] to produce a plain text assembly listing [6].
This decouples the analysis infrastructure from disassembly
itself and makes it difficult to use results from static analysis
towards improving the control flow graph. Furthermore, since
the analysis builds on an external disassembler, soundness can
only be guaranteed with respect to the (error prone) output
produced by the disassembler.

To overcome this problem, we propose an architecture for
single pass disassembly and analysis, which does not dis-
criminate between disassembly and analysis stages (Figure 1).
Its integrative design is based on the following key insight:
Following the control flow of a binary in order to decode
the executed instructions is already an analysis of reachable
locations. This is non-trivial in presence of indirect control-
flow and should not be left to heuristic algorithms.

Another challenge in statically analyzing binaries is that the
lack of types and the a priori unknown control flow make a
cheap points-to analysis impossible. Every dereference of an
unknown pointer can mean an access to any memory address,
be it the stack, global memory, or the heap. A write access
then causes a weak update to the entire memory: After the
write, every memory location may contain the written value,
which dramatically impacts the precision of the analysis. Worst
of all, weak updates potentially overwrite return addresses
stored on the stack (or function pointers anywhere in memory),
which can cause spurious control flow to locations that are
never executed at runtime. The goal of a sound and precise
analysis on binaries is thus to achieve strong updates wherever
possible: If a pointer can only point to one specific address in
a state, the targeted memory location must contain the written
value after a write access [7].

read decode

abst. int.check

pc value translate
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Environment
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Fig. 1. Disassembly and analysis architecture.
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In essence, an analysis capable of dealing with the lack
of types in binaries needs to be precise enough to represent
addresses without over-approximation that might introduce
spurious control flow into non-code regions. On the other
hand, high precision analyses are known not to scale to larger
programs, so abstraction has to be introduced where possible.
In this paper, we present our approach to dealing with these
challenges without sacrificing soundness. In particular, our
paper makes the following contributions:
• We describe an architecture for checking specifications

on binary executables without access to source code and
without a heuristics based, separate disassembly step. The
control flow of the binary is reconstructed in a single pass
with static analysis, following the approach presented
in [8]. Abstractions of the execution environment can be
written in C and are compiled into a separate module.

• We introduce Bounded Address Tracking, an abstract
domain based on tracking a selection of register and
memory values up to a given bound (inspired by [9]). The
path sensitivity of our analysis allows strong updates to
allocated heap regions. Since path sensitivity subsumes
context sensitivity, we do not require assumptions about
a separate call stack or well-structured procedures.

• In our path-sensitive analysis, nondeterminism in the pro-
gram (e.g., from modeling input) is especially expensive.
To address this issue, we offer two different constructs for
nondeterminism, havoc and nondet, which cause explicit
enumeration of variable values or their abstraction to an
unknown value, respectively.

II. BACKGROUND

We extended our own iterative disassembler JAKSTAB [10]
to implement the integrated analysis architecture for single
pass disassembly and static analysis (Figure 1). Using the
entry point of the executable as the initial program counter
(pc) value, our tool decodes one instruction at a time from
the file offset that corresponds to pc. This instruction is then
translated into one or more statements of the intermediate lan-
guage (IL). Depending on the abstract domain chosen for the
analysis, JAKSTAB calculates successor states by interpreting
the abstract semantics of the IL. If a newly reached state is an
error state according to the specification, an abstract error trace
is generated. Otherwise, JAKSTAB concretizes new pc values
from the states and uses these to decode the next instructions
to be interpreted.

A. Low Level Intermediate Language

CISC architectures such as x86 offer very rich instruc-
tion sets, in which a single instruction can affect multiple
registers and status flags and can even represent non-trivial
operation sequences including loops. To avoid dealing with
hundreds of different concrete and abstract state transformers
when analyzing machine code, we translate each instruction
into a sequence of IL statements using specifications of the
instruction semantics. For instance, the instruction push eax,
which pushes the contents of register eax to the stack and

decrements the stack pointer, is specified to translate to the IL
code m[esp] := eax ; esp := esp−4. Note that for simplicity of
the exposition, in this paper we assume all memory accesses
and all bit vectors to be 32 bit. The actual implementation
allows arbitrary word lengths using bit masking expressions.

The IL uses a finite set of bit vector type registers V =
{v0, . . . , vn}, a store m[·], and the program counter pc. The
set Exp of expressions of the IL contains common arithmetic,
Boolean, and bit-manipulation operations. All expressions are
of the 32-bit bit vector type I32; Boolean true and false are
represented by the bit vectors 1 and 0, respectively. To model
input from the hardware, expressions can contain the keyword
nondet , which nondeterministically evaluates to some bit
vector value in its concrete semantics.

A program is made up of IL statements of the form [stmt ]``′ ,
where ` ∈ I32 is the address of the statement, `′ ∈ I32 is the
address of the next statement, and stmt ∈ Stmt is one of
nine types of statements:
• Register assignments v := e, with v ∈ V and e ∈ Exp,

assign the value of expression e to register v.
• Store assignments m[e1] := e2, with e1, e2 ∈ Exp,

assign the value of expression e2 to the memory location
at the address computed by evaluating e1.

• Guarded jumps if e1 jmp e2, with e1, e2 ∈ Exp, transfer
control to the target address resulting from evaluating e2

if the guard expression e1 does not evaluate to 0.
• A halt statement terminates execution.
• Allocation statements alloc v, e, with v ∈ V and e ∈

Exp, reserve a block of memory of the size determined
by evaluating e and write the address to register v.

• Deallocation statements free v release the block of mem-
ory pointed to by v ∈ V for reallocation.

• Statements assume e terminate execution if e ∈ Exp
evaluates to 0, and do nothing otherwise.

• Assertions assert e are similar to assume statements, but
signal an error on termination.

• Statements havoc v <u n, with v ∈ V, n ∈ I32, nonde-
terministically assign a value x with 0 ≤u x ≤u n to v,
where ≤u denotes unsigned comparison. The same effect
can be achieved using v := nondet ; assume v ≤u n. The
point of having two different sources of nondeterminism
becomes apparent in Section III-C, where they will be
used for selective abstraction.

The statements alloc, free, assert, and havoc are never gen-
erated from regular instructions, but are encoded in our ab-
stracted model of the operating system (Section IV-C).

Note that call and return instructions receive no special
treatment in our IL but are translated to assignments and
jumps. In x86 assembly, these instructions simply store the
current program counter on the stack and jump to a target, or
read an address from the stack and jump to it, respectively.
There is no fixed concept of procedures in x86 assembly,
so relying on binary code to respect high level procedural
structuring can introduce unsoundness into the analysis.

The concrete IL semantics is defined in terms of states
S = Loc×Val× Store×Heap, consisting of the location
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postJ[v := e]``′K(s) := s[v 7→ evalJeK(s)][pc 7→ `′]

postJ[m[e1] :=e2]``′K(s) := s[m[evalJe1K(s)] 7→evalJe2K(s)][pc 7→`′]

postJ[if e1 jmp e2]``′K(s) :=

{
s[pc 7→ `′] if evalJe1K(s) = 0
s[pc 7→ evalJe2K(s)] otherwise

postJ[halt]``′K(s) := ⊥
postJ[alloc v, e]``′K(s) := s[v 7→ h][pc 7→ `′], min. h > h0 s.t.

∀(h′, z′) ∈ s(H).h ≥ h′ + z′ ∨ h + z ≤ h′, where z = evalJeK(s)

postJ[free v]``′K(s) := s[H 7→ H \ (v, ·)][pc 7→ `′]

postJ[assume e]``′K(s) :=

{
⊥ if evalJe1K(s) = 0

s[pc 7→ `′] otherwise

postJ[assert e]``′K(s) :=

{
⊥(raise error) if evalJe1K(s) = 0

s[pc 7→ `′] otherwise

postJ[havoc v<un]``′K(s) := s[v 7→ x][pc 7→ `′], with some x ≤ n

Fig. 2. Concrete semantics of the intermediate language.

valuation Loc := {pc} → I32, the register valuation Val :=
V → I32, the store valuation Store := I32 → I32, and a heap
set Heap := I32 → I32, which maps addresses of allocated
heap objects to their corresponding sizes. Allocation of heap
objects starts above some constant h0 in the address space. We
denote access to parts of the state by s(pc), s(vi), s(m[·]),
s(H(p)). The syntax s[· 7→ ·] denotes the state obtained
by updating part of state s with a new value. The concrete
semantics is then given by the concrete post operator from
states and statements to states in Figure 2. It uses the operator
eval :: Exp→ I32 to concretely evaluate IL expressions.

B. Control Flow Reconstruction

In [8], we proposed an integrated theoretical framework for
building the most precise control flow graph of a low level
program while calculating data flow facts, akin to control
flow analysis in functional programming languages. The basic
idea of the framework is to translate low level statements into
edges (I32 × Stmt × I32) of the control flow automaton (a
control flow graph where edges instead of vertices carry the
statements). The edges over-approximate the concrete control
flow of the program, eliminating any indirect jumps.

In particular, every guarded jump [if e1 jmp e2]``′ is trans-
formed into a set E of edges labeled with assume statements:
If e1 = 0, E contains the fall-through edge (`, assume (e1 =
0), `′). If e1 6= 0, E also contains all of the possible
target edges {(`, assume (e1 6= 0 ∧ e2 = `′′), `′′) | `′′ ∈
êvalJe2K(p̂ostJassume (e1 6= 0)K(s))}, where p̂ost and
êval denote the abstract post and eval operator of a suitable
abstract domain, respectively. The key feature that allows this
approach to produce the most precise control flow automaton
is that the conditions for taking a particular edge from a
guarded jump, i.e., the jump condition and the jump target,
are encoded into the assumption.

As a result, an abstract domain used with this framework
only needs to supply implementations of the p̂ost (for state-
ments other than jmp) and êval operators and does not need
to deal specifically with indirect jumps.

III. PRECISE POINTER AND VALUE ANALYSIS

The translation of guarded jumps to labeled edges requires a
precise evaluation of the target expression, otherwise spurious
control flow edges can be introduced that point into code or
data sections never meant to be executed, causing a cascading
loss of precision. Furthermore, the lack of types in binaries
prohibits a limited over-approximation of points-to sets. While
in regular source based static analysis an unknown pointer
may point to all variables of the matching type, an unknown
pointer in untyped assembly code may point to any location
in the entire memory, including code.

We have therefore devised a highly precise abstract domain
for tracking states as valuations of registers and memory
locations that supports pointer arithmetic and the ambiguity
between integer values and addresses (there is no distinction
between pointers and regular values in machine code).

A. Memory Model
The virtual memory available to a process is organized as

one large, continuous array. The stack, the heap, and global
variables all share this address space. The runtime environment
initializes the stack and heap locations to reasonable values
such that they do not interfere, and it uses buffer pages
between these logical memory regions to detect overflows.
Correct implementations of malloc (and its kernel-level equiv-
alents available to drivers) guarantee that allocated memory
blocks in the heap do not overlap. Therefore, we use a concrete
memory model based on a set R of separate memory regions:
• The global region, containing code, global variables, and

static data,
• a single stack, holding local variables, parameters, and

return addresses at runtime,
• and zero or more allocated heap regions, which corre-

spond to memory blocks allocated using malloc.
We thus treat every memory address as a pair of memory

region and offset from R×I32. Pointers into the global region
are denoted by (global, offset); the stack pointer is assumed to
be initialized to a value of (stack, 0). Subsequent modifications
to the stack pointer then change the offset, but let it stay
within the stack region. In x86, the stack grows downward,
so the stack pointer will always have negative offsets within
valid code. The number of heap regions is unbounded, and a
fresh heap region is created by any call to malloc. A fresh
identifier tags the individual heap region, creating pointers
such as (allocid , offset).

Strictly speaking, this memory model presents an abstrac-
tion of the actual x86 memory layout, since it ignores the
relative position of regions to each other. If for whatever reason
the memory region model is too imprecise for the kind of code
being analyzed, it can be effectively turned off by initializing
the stack pointer and any newly allocated memory into the
global address space.

Our memory model combines integer and pointer values
similarly to Value Set Analysis [6]; it does not make the
assumption of separated procedure stack frames, however, but
uses a single region for the entire stack instead.
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(>R,>32)

(global,>32) (stack,>32) (alloc1,>32)(alloc2,>32) · · ·
...

...

(global, 4) · · · (stack,−8) (stack,−7) · · · (alloc2, 0) · · ·

⊥

Fig. 3. Diagram of the lattice of abstract addresses Â.

B. Bounded Address Tracking

To build our abstract domain, we extend the model of
memory addresses to a lattice that includes a top element
(>R,>32) representing a memory address with the unknown
region >R and unknown offset >32. We further introduce an
intermediate level of pointers with known region but unknown
offset of the form (region,>32), which represents the join
of different addresses within the same region (e.g., (r, 4) t
(r, 8) = (r,>32)). We thus define the set of abstract memory
addresses as Â = {(>R,>32)} ∪ (R × {>32}) ∪ (R × I32).
The resulting lattice for Â is sketched in Figure 3.

Our analysis over-approximates the set of reachable con-
crete states of the program by calculating a fixpoint over
the abstract states. Abstract states form the set Ŝ = Loc ×
V̂al × Ŝtore, consisting of an abstract register valuation
V̂al := V → Â and an abstract store Ŝtore := Â →
Â. The initial state at the entry point of the executable
is initialized to (`start, {esp → (stack, 0)}, {(stack, 0) →
`end, (global, a0) → d0), . . . , (global, an) → dn)}), where
a0, . . . , an denote static data locations in the executable (e.g.,
initial values for global variables, integer or string constants)
and d0, . . . , dn their respective values. Location `end points
to a halt statement that catches control flow when the main
procedure returns, the esp register is initialized to point to
this return address on the stack. All registers and memory
locations (including all offsets in all heap regions) not shown
are implicitly set to (>R,>32).

Our analysis is path sensitive, i.e., it does not join abstract
states when control flow recombines after a conditional block
or loop. To ensure termination, we introduce bounds on the
number of values tracked for each register and memory loca-
tion (hence the name Bounded Address Tracking). In particular,
the analysis bounds the number of abstract addresses per
variable per location that it explicitly tracks and performs
widening in two steps. Before calculating abstract successors
for a state s at location `, the analysis checks for each register
or memory location x whether the total number of unique
abstract values for x in all reached states at ` exceeds the
configurable bound k. If it does, then the value of x is widened
to (r,>32), where r is the memory region of x in s. If the
number of unique memory regions also exceeds the bound k,
then x is widened to (>R,>32) (see BOUND rule in Figure 5).

Consider the example code in Figure 4. The single initial
abstract state is (0, {x → (>R,>32), b → (>R,>32)}, ∅), so

0

1

2

3

4

5

x := alloc(100)

b := x

m[x] := 0

x := x + 1

assume x ≥ b+100

a
ss

u
m

e
x

<
b
+

1
0
0

` # x # b
0 1 1
1 1 1
2 6 1
3 6 1
4 6 1
5 1 1

# x, # b: Number of unique val-
ues for x and b.

Fig. 4. Example code fragment and final value counts.

there is one unique value per variable. We choose to set the
bound k to 5. After creating a new abstract heap region and
copying the pointer into b, the analysis enumerates states in
the loop 2, 3, 4 while the edge (4, assume x ≥ b + 100, 5)
remains infeasible. When the state (2, {x → (global, 5), b →
(global, 0)}, {(alloc1, 0) → (global, 0), . . .}) is reached, the
analysis counts 6 unique values for x in location 2, and widens
x to (alloc1,>32). This causes a weak update to alloc1 once
x is dereferenced. At the end of the loop, both assume edges
are now feasible, and the analysis reaches a fixpoint.

The abstract semantics of Bounded Address Tracking is
given using the abstract evaluation operator êval :: Exp →
Ŝ → Â, the bounding operator bound :: Ŝ → (V ∪ Â)→ Ŝ,
and the abstract transfer function p̂ost :: Stmt → Ŝ → 2Ŝ

from statements and abstract states to sets of abstract states
defined in Figure 5. A worklist algorithm extended to apply
and adapt precision information [11] (in our case bounds over
the number of abstract values) enforces the bound for all
registers and memory locations before calculating the abstract
transfer function.

Global addresses (global, n) are absolute integers and thus
expressions over them are calculated concretely (first case
of EVALOP). Addresses for other regions have no statically
known absolute value, so only additions of positive or negative
integers to their offset can be precisely modeled (second and
third case); if pointers to different regions are added or pointers
are involved in other types of expressions (including compar-
isons), the resulting abstract value is safely over-approximated
to (>R,>32) (fourth case). Other operations (bit extraction,
sign extension, etc.) are interpreted analogously. Explicit
nondeterminism in expressions evaluates to (>R,>32), and
memory reads are interpreted by joining the values stored at
the addresses in the concretization of the abstract pointer.

A register assignment is interpreted concretely and replaces
an existing mapping in the new abstract state. For an as-
signment to a memory location (i.e., an assignment to a
dereferenced pointer), we distinguish three cases depending
on the abstract value of the pointer. We can perform a:
• Strong update, if both region and offset of the pointer are

known. A strong update allows to replace the old value
of the memory location in the new state.

• Weak update to a single region, if the region of the pointer
is known but the offset is >32. Since the precise offset is
not known, all memory locations in the region may hold
the new value, so the existing values have to be joined
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EVALOP êvalJe1 � e2K(s) := let(r1, o1) := êvalJe1K(s), (r2, o2) := êvalJe2K(s)
(global, o1 � o2) if � not + and r1 = global ∧ r2 = global

(r1, o1 + o2) if � is + and r2 = global
(r2, o1 + o2) if � is + and r1 = global

(>R,>32) otherwise

EVALNONDET êvalJnondetK(s) := (>R,>32)

EVALMEM êvalJm[e]K(s) := let(r, o) := êvalJeK(s)

 s(m̂[r, o]) if r 6=>R ∧ o 6=>32⊔
i∈I32 s(m̂[r, i]) if r 6=>R ∧ o=>32

(>R,>32) if r=>R ∧ o=>32

BOUND bound(s, x) :=

 s if |{s(x) | s ∈ {s′|s′(pc) = `}}| ≤ k
s[x 7→ (>R,>32)] if |{r | (r, o) = s′(x).s′ ∈ {s′′|s′′(pc) = `}}| > k

let(r, o) = s(x).s[x 7→ (r,>32)] otherwise

ASSIGNREG p̂ostJ[v := e]``′K(s) :=
{

s[v 7→ êvalJeK(s)][pc 7→ `′]
}

ASSIGNMEM p̂ostJ[m[e1] := e2]
`
`′K(s) := let(r, o) := êvalJe1K(s), a := êvalJe2K(s), s′ := s[pc 7→ `′]

strong update
weak update single region

weak update all regions

 {s′[m̂[r, o] 7→ a]} if r 6=>R ∧ o 6=>32

{s′[m̂[r, i] 7→ s(m̂[r, i]) t a][. . .] for all i ∈ I32} if r 6=>R ∧ o=>32

{s′[m̂[r, i] 7→ s(m̂[j, i]) t a][. . .] for all j ∈ R, i ∈ I32} if r=>R

ALLOC p̂ostJ[alloc v, e]``′K(s) :=
{
s[v 7→ (r, 0)][pc 7→ `′] where r is a fresh region identifier

}
FREE p̂ostJ[free v]``′K(s) := let(r, o) := s(v), s′ := s[pc 7→ `′]{

∅ (raise error) if r=>R ∨ o 6= 0
{s′[m̂[r, i] 7→ (>R,>32)][. . .] for all i ∈ I32} otherwise

ASSUME p̂ostJ[assume e]``′K(s) :=

{
∅ if êvalJeK(s) = (global, 0)

{s[pc 7→ `′]} otherwise

ASSERT p̂ostJ[assert e]``′K(s) :=

{
∅ (raise error) if êvalJeK(s) = (global, 0)
{s[pc 7→ `′]} otherwise

HAVOC p̂ostJ[havoc v<u n]``′K(s) :=
{
s[v 7→ (global, i)][pc 7→ `′] | i <u n, i ∈ I32

}
Fig. 5. Definition of abstract evaluation and abstract post operators for Bounded Address Tracking.

with the new value (with respect to the lattice of abstract
addresses shown in Figure 3).
Note that this rule makes the assumption that a memory
write to a specific region never exceeds the bounds to
write to an adjacent heap regions, since the goal of
this work is not to prove memory safety but check API
specifications. For full soundness, however, we would
have to perform a weak update to all regions.

• Weak update to all regions, if neither region nor offset
of the pointer are known. All memory locations in all
regions have to be joined with the new value.
In practice, the state becomes too imprecise to continue
analysis. In particular, all return addresses will be affected
by the weak update. Our implementation thus signals
an error for writing to an unknown (possibly also null)
pointer in this case.

Besides the fact that region and offset have to be known,
there is another prerequisite for performing strong updates:
The region of the pointer must not be a summary region,
i.e., on all execution paths, the abstract region corresponds
only to one concrete memory region [7]. Our analysis never
creates summary regions, which can be seen from the ALLOC
rule in Figure 5. New regions are tagged with fresh, unique

identifiers. The only way the abstract region value of a pointer
can represent multiple regions is if the number of regions for
the pointer exceeds the value bound k and is joined to >R.
In this case, a weak update to all regions will be performed
when the pointer is dereferenced, which is a sound over-
approximation for an assignment to a summary region.

The abstract post operator for free sets all memory locations
in the freed region to (>R,>32). The abstract semantics for
assume and assert is similar to the concrete case and only
adapted to the abstract address model. The abstract post for
havoc is the only implementation that returns a non-singleton
set: It splits abstract states by enumerating absolute integer
values for the given register.

C. Abstraction of Nondeterminism

Abstraction by approximating multiple concrete program
states with abstract states is the key to achieving scalability
of an analysis. In static analysis, abstraction is introduced by
choosing a suitable abstract domain for the program to be
analyzed. In software model checking, an iterative refinement
finds a suitable abstraction by adding new predicates over
program variables. Control flow reconstruction from binaries
requires concrete values for jump targets, however, and the
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lack of types requires precise values for pointer offsets.
Therefore, existing mechanisms for abstraction are not well-
suited for a precise analysis of binaries. Still, abstraction has
to be introduced to make the analysis feasible.

Even though Bounded Address Tracking resembles software
model checking in the way that states from different paths
are not merged, it allows registers and memory locations
to be unknown, i.e., set to (>R,>32). This is especially
useful when representing nondeterminism in the execution
environment (e.g., input, unspecified behavior). Setting parts
of the state to unknown avoids an exponential enumeration of
value combinations. When designing the environment model
for a program, we often have a good idea of what needs to be
precisely modeled and where we can safely over-approximate.
For instance, the standard calling convention of the Windows
API specifies that upon return the contents of registers eax,
ecx, and edx are undefined. Enumerating all possible values for
the registers in a full explicit state exploration would require
creating 296 states. By abstracting the nondeterministic choice
of values to (>R,>32) for all three registers, we only need
a single abstract state. It is extremely unlikely to produce
a spurious counterexample from this abstraction, since code
should not depend on undefined side-effects.

On the other hand, there are occasions when abstracting to
an unknown value increases the requirements for the abstract
domain. Consider the following code, which is a stub for the
Windows API function IoCreateSymbolicLink:

int choice = nondet32; mov eax, nondet32
if (choice == 0) neg eax
return STATUS_SUCCESS; sbb eax, eax

else and eax, 0xC0000001
return STATUS_UNSUCCESSFUL; ret

Here, the compiler replaced the if-statement with bit-
manipulation of the return value. Our abstract domain can
only deduce that eax is (>R,>32) at the return statement, even
though eax actually can be only either 0 or 0xC0000001.
Therefore we added the havoc statement to the IL; it causes
the analysis to generate multiple successor states with different
integer values for a register (HAVOC in Figure 5). With it,
we can change the first line of the stub to int choice;
havoc(choice, 1). This causes the analysis to create two
states; one with eax set to 0, and one with eax set to 1. From
these states it can easily compute the two possible states at
the return statement: In the first case eax becomes 0, in the
second case 0xC0000001.

IV. IMPLEMENTATION

We have implemented the architecture and approach de-
scribed in this paper in our binary analysis platform JAKSTAB
(Java toolkit for static analysis of binaries). As input, JAK-
STAB is able to process Windows PE files (the format used in
32-bit Windows for .exe, .dll, .sys, and more), unlinked
COFF object files, and Linux ELF executables. It can load an
executable in combination with multiple dynamic libraries and
will resolve dependencies between the files.

A. Instruction Sets

JAKSTAB currently supports only the x86 architecture, but
can be extended to other architectures by supplying an opcode
table and a description of instruction semantics. Instructions
are specified using the semantic specification language of
the Boomerang decompiler [12], [13]. We used Boomerang’s
existing x86 specifications as a starting point, which we
rewrote and extended heavily.

Our current description of x86 instruction semantics covers
over 500 instructions, which includes all instructions that we
encountered in the executables analyzed during the experi-
ments. Large parts of the floating point instruction set and
the various SSE extensions are supported. The instruction
semantics are specified on the level of registers and flags, I/O
instructions are specified to read nondeterministic values.

B. Analysis Architecture

JAKSTAB’s analysis architecture is based on the Config-
urable Program Analysis API by Beyer et al. [9], [11], which
allows to seamlessly combine state splitting and state joining
analyses such as predicate abstraction and interval analysis,
respectively. For the work described in this paper, we used
only our Bounded Address Tracking domain combined with
the trivial location domain that expands the state space of the
program to at least one state per IL statement.

C. OS Abstraction and Driver Harness

Executables in general and drivers in particular frequently
interact with the operating system. As in source based anal-
yses, we abstract system calls using stubs, which model
the relevant side effects such as memory allocation or the
execution of callback routines. Following the approach of the
source code software model checker SDV [2], we load the
driver into JAKSTAB together with a separate harness module,
that includes system call abstractions relevant to drivers and
contains a main function that nondeterministically exercises
the driver’s initialization and dispatch routines. The harness is
written in C and compiled into a dynamic library (DLL) for
loading; it is based on SDV’s osmodel.c and follows SDV’s
invocation scheme for plug&play drivers. For our experiments,
we manually encoded specifications in the harness by inserting
state variables and assertions at the locations where SDV
places hooks into its specification files.

Several parts of the SDV harness and rules had to be mod-
ified to make it suitable for binary analysis. For example, the
preprocessor macro IoMarkIrpPending, which sets a bit in the
control word of interrupt request packets (IRPs), is intercepted
by SDV to change the state for the PendedCompletedRequest
rule. Since macro invocations are no longer explicit in the
binary, we had to modify the rule’s assertion to check the bit
directly instead of a separate state variable. Furthermore, we
replaced SDV’s statement for nondeterminism by either havoc
or nondet , depending on the context.

The IL statements alloc, free, havoc, and assert are exclu-
sively generated by the harness, since they do not correspond
to any real x86 instructions. These statements are encoded
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DDA/x86 JAKSTAB
Driver Instr Time Result k kh States Instr Time Result
vdd/dosioctl/krnldrvr/krnldrvr.sys 2824 14s X 28 5 378 413 2s OK
general/ioctl/sys/sioctl.sys 3504 13s X 28 5 3947 630 7s X
general/tracedrv/tracedrv/tracedrv.sys 3719 16s X 28 5 486 439 2s X
general/cancel/startio/cancel.sys 3861 12s X 28 5 633 759 2s X
general/cancel/sys/cancel.sys 4045 10s X 28 5 600 780 2s X
input/moufiltr/moufiltr.sys 4175 3m 3s × 28 5 3830 722 9s ×
general/event/sys/event.sys 4215 20s X 28 5 663 690 2s X
input/kbfiltr/kbfiltr.sys 4228 2m 53s × 28 5 3834 726 8s ×
general/toaster/toastmon/toastmon.sys 6261 4m 1s X 28 25 4853 977 9s X
storage/filters/diskperf/diskperf.sys 6584 3m 17s X 28 5 19772 1409 46s X
network/modem/fakemodem/fakemodem.sys 8747 11m 6s X 28 5 13994 1887 24s ×m

storage/fdc/flpydisk/flpydisk.sys 12752 1h 6m FP 100 35 186543 1782 39m34s X
input/mouclass/mouclass.sys 13380 40m 26s FP 28 28 3055 1763 8s FPc

input/mouser/sermouse.sys 13989 1h 4m FP 28 28 1888 1293 4s FP
kernel/serenum/SerEnum.sys 14123 19m 41s X 28 25 5213 1503 8s X
wdm/1394/driver/1394diag/1394DIAG.sys 23430 1h33m FP 28 28 2181 2426 4s FPm

wdm/1394/driver/1394vdev/1394VDEV.sys 23456 1h38m FP 28 28 2837 2872 5s FPm

Fig. 6. Comparison of experimental results on Windows DDK drivers between DDA/x86 (on a 3GHz Xeon) and JAKSTAB (on a 3GHz Opteron).

into the compiled harness object file using illegal instructions,
which are directly mapped to the corresponding IL statements
during disassembly. For instance, an alloc statement can be
generated from the C source of the harness by inlining the
assembly instruction lock rep inc eax.

V. EXPERIMENTS

For direct comparison with the IDA Pro and CodeSurfer/x86
based binary driver analyzer DDA/x86 described in [1], we ran
JAKSTAB on the same set of drivers from the Windows Driver
Development Kit (DDK) release 3790.1830 and checked the
same specification PendedCompletedRequest. The rule speci-
fies that a driver must not call IoCompleteRequest and return
STATUS PENDING unless it invokes the IoMarkIrpPending
macro on the IRP being processed. We compiled the drivers
without debug information using default settings. Note that
unlike [1], we did not compile and link the driver source
code against the harness; our approach is directly applicable
to drivers without access to source code.

Our experimental results are listed alongside those reported
in [1] in Figure 6. The number of instructions include instruc-
tions from the harness in both cases. Note that the tools report
very different numbers of instructions for the same binaries;
this is due to the fact that JAKSTAB disassembles instructions
only on demand, i.e., if they are reachable by the analysis.
In contrast, CodeSurfer/x86 uses IDA Pro as front end, which
heuristically disassembles all likely instructions in the exe-
cutable. Since for DDA/x86 the entire harness was compiled
and linked with the driver, IDA Pro disassembled all code from
the harness, including code that is unreachable from the driver
under analysis. Conversely, it is possible that some driver code
is unreachable from the harness. For the experiments we used
two value bounds which we determined empirically; k shows

the value bound for registers and stack locations, kh the value
bound for memory locations in allocated heap regions.

For flpydisk.sys, JAKSTAB was able to verify the spec-
ification, while DDA/x86 found a false positive (FP). This is
due to the only limited degree of path sensitivity in DDA/x86,
which follows the ESP approach [14] for differentiating paths
based on states of a property automaton. In [1], the property
automaton is extended to track updates to the variable holding
the return value, but it can miss updates due to its heuristic for
detecting interprocedural dependencies for the return value.

In fakemodem.sys, JAKSTAB encountered a potentially
unsafe memory access (marked as ×m), where an uninitialized
value, i.e., (>R,>32), is used as the index for a write to
an array. We manually confirmed the feasibility of the error
trace for the execution environment simulated by the harness.
DDA/x86 does not check for memory safety due to the large
number of false positives [1], so it did not detect this bug. As
mentioned in Section III-B, our analysis signals an error on
weak updates to all regions. This amounts to implicitly check-
ing for write accesses to uninitialized pointers, which allows
JAKSTAB to detect the error. As a consequence of building on
the SDV harness, which is not designed for checking memory
safety and often omits proper pointer allocation, our analysis
yielded false positives where the result shows FPm in Figure 6.
In mouclass.sys, a switch jump could not be resolved
because the switch variable was over-approximated leading
to a false positive of invalid control flow (FPc). Currently,
we manually investigate abstract error traces and extend the
harness if necessary to eliminate false positives. We leave a
partial or full automation for future work.

The comparison of execution times should be taken with
a grain of salt, since both prototypes were run on different
machines. DDA/x86 was run on a 64-bit Xeon 3GHz processor
with 4GB of memory per process, while the experiments with
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JAKSTAB were conducted on a 64-bit AMD Opteron 3GHz
processor with 4GB of Java heap space (we report the average
time of 10 runs per driver). Still, it is possible to see that
execution times for JAKSTAB appear favorable overall.

We do not have to recompile and link drivers with the
harness, so we were able to extend our experiments beyond
the Windows DDK. We ran our prototype on all 322 drivers
from the system32\drivers directory of a regular 32-bit
Windows XP desktop system, using k = 28 and kh = 5.
Besides the PendedCompletedRequest rule, we also checked
the CancelSpinLock rule, which enforces that a global lock is
acquired and released in strict alternation. Note that this set
of drivers also includes classes of drivers which are not even
supported by the SDV harness in source code analysis, such
as graphics drivers. Nonetheless, we were able to successfully
analyze 28% of these drivers. For 41% of the drivers, analysis
failed because of weak global updates, mostly due to missing
information about pointer allocation in the harness. In 31%
of the cases, the analysis failed due to unknown or erroneous
control flow, which can be again caused by unknown side
effects of API functions not supported by the harness, or by
coarse abstraction of variables used in switch jumps. Two
drivers timed out after 1 hour; in three drivers the analysis
found potential assertion violations. To our knowledge, this is
the first time static analysis was successfully applied to real
world, closed source, binary driver executables.

VI. RELATED WORK AND DISCUSSION

Bounded Address Tracking was inspired by the Explicit
Analysis of Beyer et al. [11], which tracks explicit values of
integer variables of C programs up to a certain bound. In their
work, explicit analysis is used for cheap enumeration of values
for a variable before it is modeled by the computationally more
expensive predicate abstraction.

As pointed out already, the CodeSurfer/x86 project is most
closely related to our work and faces similar challenges.
The major differences in approach are that CodeSurfer/x86
is implemented on top of the heuristics based IDA Pro, and
that its analyses (in particular Value Set Analysis (VSA) [6])
are based on more “classic” static analyses such as interval
analysis. VSA is path insensitive and thus requires the use of
call strings for reasonable results. Call strings, however, are
tied to the concept of procedures (which is unreliable in x86
assembly) and assume the existence of a separate call stack.
This issue lead us to the design of the bounded path sensitive
analysis presented in this paper.

Balakrishnan and Reps generally rely on summary nodes for
representing heap objects. They reduce the number of weak
updates by introducing a recency abstraction [15] of heap
nodes. Their approach extends the common paradigm of using
one summary node per allocation site (i.e., address of the call
to malloc), by splitting this summary node into (i) the region
most recently allocated in the current execution path and (ii)
a summary node for the remaining regions. In contrast, our
approach instead explicitly discriminates allocated regions up
to the value bound.

VII. SUMMARY

In this paper, we presented a framework for precise static
analysis of driver binaries. Compared to existing approaches, it
significantly reduces the sources of unsoundness by eliminat-
ing the separate, error-prone disassembly step. We introduced
Bounded Address Tracking, an abstract domain which allows
strong updates to memory locations on the heap, as long as
the number of different pointer values stays below a definable
bound. Experiments on several driver binaries confirm the
feasibility of our approach on small, but real world code and
demonstrate its improved performance compared to state of the
art approaches in spite of increased precision. Moreover, we
tried our approach on all drivers of a regular desktop system
and achieved encouraging results.

For scaling up to larger programs, however, we will attempt
to reduce precision where it is not required. One approach is to
reduce the value bound individually for variables not involved
with control flow or specifications. Starting from a generally
low bound, an iterative refinement loop can help to identify
memory locations and function stubs in the harness where
increased precision is required. Furthermore, we will investi-
gate the use of summaries that do not require assumptions on
procedure structure or calling conventions.
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Abstract—SystemC is becoming a de-facto standard for the de-
velopment of embedded systems. Verification of SystemC designs
is critical since it can prevent error propagation down to the
hardware. SystemC allows for very efficient simulations before
synthesizing the RTL description, but formal verification is still
at a preliminary stage. Recent works translate SystemC into the
input language of finite-state model checkers, but they abstract
away relevant semantic aspects, and show limited scalability.

In this paper, we approach formal verification of SystemC by
reduction to software model checking. We explore two directions.
First, we rely on a translation from SystemC to a sequential C
program, that contains both the mapping of the SystemC threads
in form of C functions, and the coding of relevant semantic aspects
(e.g. of the SystemC kernel). In terms of verification, this enables
the “off-the-shelf” use of model checking techniques for sequential
software, such as lazy abstraction.

Second, we propose an approach that exploits the intrinsic
structure of SystemC. In particular, each SystemC thread is trans-
lated into a separate sequential program and explored with lazy
abstraction, while the overall verification is orchestrated by the
direct execution of the SystemC scheduler. The technique can be
seen as generalizing lazy abstraction to the case of multi-threaded
software with exclusive threads and cooperative scheduling.

The above approaches have been implemented in a new soft-
ware model checker. An experimental evaluation carried out on
several case studies taken from the SystemC distribution and from
the literature demonstrate the potential of the approach.

I. INTRODUCTION

The development of System-on-Chips (SoCs) is often started
by writing an executable model, using high-level languages
such as SystemC [1]. Verification of SystemC designs is an
important issue, since errors identified in such models can
reveal errors in the specification and prevent error propagation
down to the hardware.

SystemC is arguably becoming a de-facto standard, since it
allows for high-speed simulation before synthesizing the RTL
hardware description. However, formal verification of SystemC
is still at a preliminary stage. In fact, a SystemC design is a
very complex entity, that can be thought of as multi-threaded
software, where scheduling is cooperative and carried out ac-
cording to a specific set of rules [2], and the execution of threads
is mutually exclusive.

There have been several works that have tried to apply model
checking techniques to complement simulation [3]–[7]. These
approaches map the problem of SystemC verification to some
kind of model checking problem, but suffer from severe lim-
itations. Some of them disregard significant semantic aspects,
e.g., they fail to precisely model the SystemC scheduler or
the communication primitives. Others show poor scalability of

model checking, because of too many details included in the
model.

In this paper we present an alternative approach to the veri-
fication of safety properties (in the form of program assertions)
of SystemC designs, based on software model checking tech-
niques [8]–[11]. The primary motivation is to investigate the
effectiveness of such techniques, that have built-in abstraction
capabilities, and have shown significant success in the analysis
of sequential software.

We explore two directions. First, we rely on a translation
from SystemC to a sequential C program, that contains both the
mapping of the SystemC threads in form of C functions, and
the coding of relevant semantic aspects (e.g. of the SystemC
kernel). In terms of verification, this enables the “off-the-shelf”
use of model checking techniques for sequential software.

However, the exploration carried out during software model
checking treats in the same way both the code of the threads
and the kernel model. This turns out to be a problem, mostly
because the abstraction of the kernel is often too aggressive, and
many refinements are needed to re-introduce abstracted details.

Thus, we propose an improved approach, that exploits the in-
trinsic structure of SystemC. In particular, each SystemC thread
is translated into a separate sequential program and explored
with lazy abstraction, i.e. by constructing an abstract reachabil-
ity tree as in [8], [12]. The overall verification is orchestrated by
the direct execution of the SystemC scheduler, with techniques
similar to explicit-state model checking. This technique, in the
following referred to as Explicit-Scheduler/Symbolic Threads
(ESST) model checking, is not limited to SystemC: it lifts lazy
abstraction to the general case of multi-threaded software with
exclusive threads and cooperative scheduling.

We have implemented our approaches into a tool chain that
includes a SystemC front-end derived from PINAPA [13], and
a new software model checker, called SYCMC, using several
extensions built on top of NUSMV and MATHSAT [14]–[16].
We have been experimenting the two approaches on a set of
benchmarks taken and adapted from the SystemC distribution,
and from other works that are concerned with the verification
of SystemC designs. First, we have run several software model
checkers on the sequential C programs resulting from the trans-
lation of SystemC designs. Finally, we have experimented with
the new ESST model checking algorithm. The results, although
preliminary, are promising. In particular, the ESST algorithm
demonstrates dramatic speed ups over the first approach based
on the verification of sequentialized C programs.

The structure of this paper is as follows. In Section II we
introduce SystemC. In Section III we reduce model checking
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of SystemC designs to model checking of sequential C. In
Section IV we present ESST model checking. In Section V
we discuss some related work. We present the results of the
experimental evaluation in Section VI. Finally, in Section VII
we draw conclusions and outline some future work.

II. BACKGROUND ON SYSTEMC

SystemC is a C++ library that consists of (1) a core language
that allows one to model a SoC by specifying its components
and architecture, and (2) a simulation kernel (or scheduler)
that schedules and runs processes (or threads) of components.
SoC components are modeled as SystemC modules (or C++
classes). Channels abstract communication between modules,
while ports in a module are used to bind the modules with
channels. The SystemC library provides primitive channels
such as signal, mutex, semaphore and queue.

A module contains one or more threads describing the par-
allel behavior of the SoC design. The SystemC library also
provides general-purpose events used for the synchronization
between threads. A thread can suspend itself by waiting for
an event e, i.e. by calling wait(e), or by waiting for some
specified time, i.e. by calling wait(t), for some time unit t
≥ 0. A thread can perform immediate notification of an event
e, by calling e.notify(), or delayed notification, by calling
e.notify(t) for some time unit t.

The SystemC scheduler is a cooperative non-preempting
scheduler that runs at most one thread at a time. During a simu-
lation, the state of a thread changes from sleeping, to runnable,
and to running. A running thread will only give control back
to the scheduler by suspending itself. The scheduler runs all
runnable threads, one at a time, in a single delta cycle, while
postponing the channel updates made by the threads. When
there are no more runnable threads, the scheduler materializes
the channel updates, and wakes up all sleeping threads that are
sensitive to the updated channels. If, after this step, there are
some runnable threads, then the scheduler moves to the next
delta cycle. Otherwise, it accelerates the simulation time to the
nearest time point where a sleeping thread or an event can be
woken up. The scheduler quits if there is no more runnable
thread after time acceleration.

Listing 1 depicts an excerpt of a simple producer-consumer
example in SystemC. It defines the producer that has two
threads, write and read. The thread write sends the value
stored in the variable d to the consumer by calling the function
put in the consumer, and then wait for the event e to be
notified. The method thread read reads from the channel bound
to the input port p_in and notify the event e. It is sensitive to
the input port p_in. A method thread only suspends itself by
exiting the function and becomes runnable when the channel
bound to the port is updated. The function dont_initialize

makes the thread read not runnable at the beginning of simu-
lation. The consumer consists of two threads: compute and
write_b. The thread compute is triggered by the event f

notified by the function put that was called by the producer.
The interface write_if contains the signature of put and
is derived from the SystemC interface. The thread compute

1 SC MODULE( producer ) {
2 private :
3 i n t d ;
4 sc event e ;
5 public :
6 sc in<int> p in ;
7 sc port<w r i t e i f> p w ;
8 SC HAS PROCESS( producer ) ;
9

10 producer ( sc module name name) : sc module (name) {
11 SC THREAD( w r i t e ) ;
12 SC METHOD( read ) ; sensit ive << p in ; d o n t i n i t i a l i z e ( ) ;
13 }
14
15 void w r i t e ( ) {
16 i n t t ;
17 wait (SC ZERO TIME ) ;
18 while ( 1 ) {
19 t = d ; / / Save o ld value o f d .
20 p w−>put ( d ) ; / / Wr i te d ’ s value to consumer .
21 wait ( e ) ;
22 assert ( d == t +1 ) ;
23 }
24 }
25
26 void read ( ) { d = p in . read ( ) ; e . not i fy ( ) ; }
27 }
28
29 SC MODULE( consumer ) , public w r i t e i f {
30 private :
31 i n t data ;
32 sc event f , g ;
33 public :
34 sc out<int> p out ;
35 sc export<w r i t e i f> ex w ;
36 SC HAS PROCESS( consumer ) ;
37
38 consumer ( sc module name name) : sc module (name) {
39 ex w(∗ th is ) ;
40 SC THREAD( compute ) ;
41 SC THREAD( wr i te b ) ;
42 }
43
44 void put ( i n t d ) { data = d ; f . not i fy ( ) ; }
45
46 void compute ( ) {
47 while ( 1 ) {
48 wait ( f ) ; ++data ; g . not i fy ( ) ;
49 }
50 }
51
52 void wr i te b ( ) {
53 while ( 1 ) {
54 wait ( g ) ; p out . w r i t e ( data ) ;
55 }
56 }
57 };
58
59 i n t main ( ) {
60 sc signal<int> s ;
61 / / Create producer and consumer ins tances .
62 produce ∗ p = new producer ( ”P” ) ;
63 consumer ∗ c = new consumer ( ”C” ) ;
64 / / I n te rconnec t s i g n a l .
65 p−>p in ( s ) ; c−>p out ( s ) ;
66 / / I n te rconnec t modules .
67 p−>p w( c−>ex w ) ;
68 / / S t a r t s imu la t i on .
69 sc start ( ) ;
70 }

Listing 1. Definition of a producer/consumer design in SystemC.

increments the value sent by the producer, and then notifies the
event g that subsequently activates the thread write_b. The
thread write_b then writes the incremented value to the chan-
nel connecting the producer and the consumer through the port
p_out. Finally, the main function shows that the producer p
and the consumer c are connected via the signal channel s. The
export construct of SystemC allows communication between
components without any intermediate channel, as shown by the
binding of port p_w of producer and port ex_w of consumer.

III. MODEL CHECKING SYSTEMC VIA
SEQUENTIALIZATION

In this section we describe the translation from SystemC
designs into an equivalent sequential C programs by using the
producer-consumer example introduced in the previous section.

A. Translating SystemC to C

In our translation each thread in the SystemC design is
translated into a C function. Members of module instances,
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1 i n t d ; /∗ Global v a r i a b l e f o r producer . ∗/
2 /∗ Events i n the design ∗/
3 i n t event e ; /∗ Status o f event e . ∗/
4 i n t event f ; /∗ Status o f event f . ∗/
5 i n t event g ; /∗ Status o f event g . ∗/
6 /∗ Local to thread producer : : w r i t e ( ) ∗/
7 i n t wr i te pc ; /∗ Program counter . ∗/
8 i n t w r i t e s t a t e ; /∗ Status o f thread . ∗/
9 i n t event wr i te ; /∗ Status o f thread event . ∗/

10 i n t t w r i t e ; /∗ Local v a r i a b l e t ∗/

Listing 2. Excerpt of the C preamble.

channels, and events are translated into a set of global variables.
We assume that the SystemC design does not contain any
dynamic creation of such components. We also assume that
each function call in the SystemC thread code can be inlined
statically.

To model context switches that occurs during the SystemC
simulation, for each thread t, we introduce the following
supporting variables: (1) t_pc keeps track of the program
counter of the thread; (2) t_state keeps track of the status
of the thread, whose possible values are SLEEP, RUNNABLE,
or RUNNING; (3) event_t describes the status of the event
associated with the thread, whose possible values are DELTA,
FIRED, TIME, or NONE; and (4) event_time_t keeps track
of the notification time of the event associate with the thread.
The status DELTA indicates that the event will be triggered at
the transition from current delta cycle to the next one. The
status TIME indicates that the event will be triggered at some
time in the future. The status FIRED indicates that the event
has just been triggered, while the status NONE indicates there is
no notification or triggering applied to the event. Similarly, for
each event e occurring in the design, we introduce a variable
event_e whose values range over event status and a variable
time_event_e that keeps track of the notification time. For
succinctness of presentation, we do not prefix the above vari-
ables with the names of module instances that own the threads.
Moreover, when the design has no time notification we omit the
TIME status and the variable that keeps track of the notification
time.

Member variables of a module instance are visible by all its
threads. Thus, they are translated into global variables in the C
program. For variables local to some thread, as context switches
require saving and restoring such variables, we introduce for
every local variable l of thread t a global variable l t of the
same type as l. Saving the value of l means assigning its value to
l t, while restoring the value of l means assigning l t’s value to
l. Listing 2 shows the variables introduced for the thread write
and for all the events of Listing 1.

Listing 3 shows the result of translating the thread write

of producer into a C function. First, the function is anno-
tated with program labels indicating the locations of context
switches. The function starts with a jump table whose targets
depend on the values of the program counter write_pc that
points to the location at which the thread has to resume its
execution. Second, we model calls to wait functions and their
variants by the following instructions: (1) an assignment setting
the thread’s status to SLEEP; (2) an assignment setting the
thread’s program counter to the location where the thread has to
resume its execution once it is woken up; (3) assignments sav-

1 void w r i t e ( ) {
2 i n t t ;
3 /∗ Local jump tab le ∗/
4 i f ( wr i te pc == WRITE ENTRY) goto WRITE ENTRY;
5 else i f ( wr i te pc == WRITE WAIT 2) goto WRITE WAIT 2 ;
6 else i f ( wr i te pc == WRITE WAIT 1) goto WRITE WAIT 1 ;
7 WRITE ENTRY:
8 /∗ wai t (SC ZERO TIME ) ; BEGIN ∗/
9 w r i t e s t a t e = SLEEP;

10 wr i te pc = WRITE WAIT 1 ;
11 event wr i te = DELTA;
12 t w r i t e = t ; /∗ Save t . ∗/
13 return ;
14 WRITE WAIT 1 :
15 t = t w r i t e ; /∗ Restore t . ∗/
16 /∗ wai t (SC ZERO TIME ) ; END ∗/
17 while ( 1 ) {
18 t = d ;
19 /∗ i n l i n e consumer : : put BEGIN ∗/
20 data = d ;
21 event f = FIRED ; /∗ f . n o t i f y ( ) BEGIN ∗/
22 ac t i va te th reads ( ) ;
23 event f = NONE; /∗ f . n o t i f y ( ) END ∗/
24 /∗ i n l i n e consumer : : put END ∗/
25 /∗ wai t ( e ) BEGIN ∗/
26 w r i t e s t a t e = SLEEP;
27 wr i te pc = WRITE WAIT 2 ;
28 t w r i t e = t ; /∗ Save t . ∗/
29 return ;
30 WRITE WAIT 2 :
31 t = t w r i t e ; /∗ Restore t . ∗/
32 /∗ wai t ( e ) END ∗/
33 assert ( d== t +1 ) ;
34 }
35 }

Listing 3. Sequential thread write of producer.

ing the values of thread’s local variables into the corresponding
global variables introduced above; (4) a return statement; (5) a
program label representing the location where the thread has to
resume its execution; and (6) assignments restoring the values
of thread’s local variables. For example, for wait(e) in the
thread write, we introduce the program label WRITE_WAIT_2
and set the program counter write_pc to WRITE_WAIT_2

before the function returns (see lines 25–32 of Listing 3). In the
case of wait(SC_ZERO_TIME) in the thread write, the thread
is suspended and will be woken up at the delta-cycle transition.
To model this, we set the variable event_write to DELTA.

An event e can be specified to be notified at immediate
time or at some time in the future. In the former case, ev-
ery thread that depends on the notified event has to be trig-
gered. To this end, we introduce for each thread t a function
is_t_triggered that returns 1 if the thread is triggered,
0 otherwise. Now immediate notifications can be modeled
by the following instructions: (1) an assignment setting the
event’s status to FIRED; (2) a list of queries checking if
threads are triggered, and if they are triggered, their status
are set to RUNNABLE; this list is represented by the function
activate_thread; and (3) an assignment setting the event’s
status to NONE. Lines 21–23 of Listing 3 shows the translation
of f.notify(). Listing 4 shows the code for thread activation.
The notification by e.notify(SC_ZERO_TIME) is modeled
similarly to wait(SC_ZERO_TIME), that is, we set the variable
event_e to DELTA. To model general time delayed notification,
one needs a statement that assigns the delayed notification time
to the variable associated with the event that keeps track of the
notification time.

Next, we inline the function calls in the SystemC code. For
instance, the inlining of the call p_w->put(d) in write is
shown in lines 19–24 of Listing 3. As we will discuss later,
function inlining can give advantages to the application of soft-
ware model checking techniques, particularly in the encoding
of the threads.
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1 i n t i s w r i t e t r i g g e r e d ( ) {
2 i f ( ( wr i te pc == WRITE WAIT 1)
3 && ( even t wr i te == FIRED ) ) return 1;
4 i f ( ( wr i te pc == WRITE WAIT 2)
5 && ( event e == FIRED ) ) return 1;
6 return 0;
7 }
8
9 void ac t i va te th reads ( ) {

10 i f ( i s w r i t e t r i g g e r e d ( ) ) w r i t e s t a t e = RUNNABLE;
11 i f ( is compute t r iggered ( ) ) compute state = RUNNABLE;
12 i f ( i s w r i t e b t r i g g e r e d ( ) ) w r i t e b s ta te = RUNNABLE;
13 i f ( i s read t r i gge red ( ) ) read sta te = RUNNABLE;
14 }

Listing 4. Thread activation.

A signal channel s is represented by two global variables
s_old and s_new. Writing to and reading from a port bound to
the channel is modeled as, respectively, an assignment to s_new

and an assignment from s_old. For each channel, we include
the update function of the channel in the resulting C program.
For a signal s, the update function simply assigns s_old with
the value of s_new if their values are different.

The SystemC scheduler is included in the C program result-
ing from the translation. The scheduler is shown in Listing 5. It
consists of five phases: the initial phase, the evaluation phase,
the update phase, the delta-notification phase, and the time
phase. (We based the definition of the scheduler on [2])

In the initial phase all channels are updated by calling the
corresponding update functions. The function init_thread

changes the status of a thread to SLEEP if dont_initialize
is specified for the thread. The function fire_delta_events

simply changes the status of an event to FIRED if it was pre-
viously DELTA, while the function reset_events changes the
status to NONE. Similarly for the function fire_time_events.
In the evaluation phase, denoted by function eval, all runnable
threads are run one at a time. Unlike the original SystemC
scheduler that explores only one schedule, in the verification
we want to explore all possible schedules. To this end, we use
the function nondet() that returns a non-deterministic value.

The scheduler enters the update phase when there is no more
runnable thread. In the update phase all channels are updated.
The scheduler then moves to the delta-notification phase. This
phase signifies the transition from the current delta phase to the
next one. In this phase the scheduler triggers all events whose
status are DELTA, and subsequently wakes up triggered events.
The time phase is entered if there is no runnable thread after
the delta-notification phase. In this phase the scheduler simply
accelerates the simulation time. The scheduler quits if there
are no more runnable threads. Note that, this encoding of the
scheduler admits one impossible schedule where no runnable
threads are selected to run. However, the existence of such a
schedule is benign given we are focusing on the verification of
safety properties.

To complete the translation, all variables related to threads
and events must be initialized. The program counter is initial-
ized to the entry label, for example, write_pc is initialized
to WRITE_ENTRY. All variables whose values represent thread
status are initialized to RUNNABLE, and all variables whose
values represent event status are initialized to NONE. These ini-
tializations are performed in the function init_model called
by the main function.

This translation from SystemC to sequentialized C preserves

1 void eval ( ) {
2 while ( ex is ts runnab le th read ( ) ) {
3 i f ( w r i t e s t a t e == RUNNABLE && nondet ( ) )
4 { w r i t e s t a t e = RUNNING; w r i t e ( ) ; }
5 i f ( compute state == RUNNABLE && nondet ( ) )
6 { compute state = RUNNING; compute ( ) ; }
7 i f ( w r i t e b s ta te == RUNNABLE && nondet ( ) )
8 { wr i te b s ta te = RUNNING; wr i te b ( ) ; }
9 i f ( read sta te == RUNNABLE && nondet ( ) )

10 { read sta te = RUNNING; read ( ) ; }
11 }
12 }
13
14 void s t a r t s i m u l a t i o n ( ) {
15 update channels ( ) ; /∗ I n i t i a l i z a t i o n phase . ∗/
16 i n i t t h r e a d s ( ) ;
17 f i r e d e l t a e v e n t s ( ) ;
18 ac t i va te th reads ( ) ;
19 reset events ( ) ;
20 do {
21 eval ( ) ; /∗ Eva lua t ion phase . ∗/
22 update channels ( ) ; /∗ Update phase . ∗/
23 f i r e d e l t a e v e n t s ( ) ; /∗ Delta−n o t i f i c a t i o n phase . ∗/
24 ac t i va te th reads ( ) ;
25 reset events ( ) ;
26 i f ( ! ex is ts runnab le th read ( ) ) {
27 f i r e t ime even ts ( ) ; /∗ Time−n o t i f i c a t i o n phase . ∗/
28 ac t i va te th reads ( ) ;
29 reset events ( ) ;
30 }
31 } while ( ex is ts runnab le th read ( ) ) ;
32 }
33
34 i n t main ( ) {
35 i n i t mode l ( ) ; s t a r t s i m u l a t i o n ( ) ;
36 }

Listing 5. Sequential SystemC scheduler and main.

the behavior of the original SystemC design.

B. Model Checking (SystemC as) C

The translation from SystemC to C presented above opens
up the possibility to reduce the verification of a SystemC
design to the problem of verifying the translated C program.
Verification of C programs is possible by using existing soft-
ware model checkers, such as SATABS [17], BLAST [8], and
CPACHECKER [18]. We notice that these model checkers im-
plement approaches that are complementary to the ones that
have been proposed in the past to verify SystemC.

Among the above approaches, one particularly promising
is the idea of model checking via lazy abstraction [10]. The
approach is based on the construction and analysis of an
abstract reachability tree (ART) using predicate abstraction.
The approach can be seen as combining an exploration of the
control flow automaton (CFA) of the program with explicit-
state techniques, while the data path is analyzed by means
of predicate abstraction. (See also [8]–[11], [18] for a more
thorough discussion) The ART represents reachable abstract
states obtained by unwinding the CFA of the program. An
ART node typically consists of a control flow location, a call
stack, and a formula representing a region or data states (i.e.
assignments to each variable of the program of a value in its
domain).

An ART node is expanded by applying the strongest post
operator followed by predicate abstraction to the region and
the outgoing CFA edge of the location labelling the node [12],
[18]. When the expansion reaches an error location, if the path
from the root to the node with the error location is feasible,
then the path is a counter-example witnessing the error (or
assertion violation). Otherwise, the path is analyzed to discover
new predicates to track and to determine the point in the ART
where to start the refinement to discard the spurious behavior.

Predicate abstraction can benefit from advanced SMT tech-
niques like [15] and [16]. Large block encoding (LBE) for lazy-
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abstraction has been proposed in [12] to reduce the number
of paths (and nodes) in the ART that have to be explored
independently. Intuitively, in LBE each edge in the CFA corre-
sponds to a rooted directed acyclic graph (DAG) in the original
CFA. Such an edge can be thought of as a summarization of
the corresponding rooted DAG in the original CFA. In LBE
function calls and loops in a program require block splitting.
As we want to keep the number of blocks as small as possible,
one can complementary apply function inlining to calls to
non-recursive functions and loop unrolling to the loops whose
bounds are known. The refinement can benefit from proof of
unsatisfiability and from interpolation based techniques. For
instance, in [11] it has been described an interpolation based
refinement approach where the relevant predicates at each lo-
cation of the infeasible path are inferred from the interpolant
between the two formulas that define the prefix and the suffix
of the path.

The idea of applying software model checking techniques to
the C program resulting from the translation of SystemC is, to
the best of our knowledge, novel. The hope is that the various
abstraction techniques may provide some leverage to tackle the
state explosion problem.

However, we remark that the exploration of the ART carried
out during software model checking will treat in the same
way both the code of the threads and the kernel model. In a
sense, a general purpose technique is being applied to programs
that have a very specific structure, resulting from the sequen-
tialization of concurrency. In the next section, we propose a
generalization to software model checking that exploits this
feature of the analyzed problems.

IV. EXPLICIT SCHEDULER + SYMBOLIC THREADS

In this section we propose a novel approach to the verification
of SystemC designs. First, unlike the previous approach, here
we decouple the scheduler from the threads. That is, the sched-
uler will no longer be part of the program, but is embedded in
the model checking algorithm. Second, we combine the explicit
model checking technique with the symbolic one based on lazy
predicate abstraction. In this combination we still represent the
state of each thread as a formula describing a region. But, unlike
the classical lazy abstraction, we keep track of the states of
scheduler explicitly. In the following, we refer to this technique
as Explicit-Scheduler/Symbolic Threads (ESST) model check-
ing. Fig. 1 shows an overview of this new approach.

We introduce several primitive functions to model SystemC
synchronization mechanism and for interacting with the model
checking algorithm. For example, the SystemC’s wait functions
wait(t) and wait(e) are modeled by primitive functions
wait(t) and wait_event(e), respectively. These primitive
functions perform synchronization by updating the state of the
scheduler. In the proposed algorithm the scheduler requires pre-
cise information about its state in order to schedule the threads.
To this end, we assume that in the SystemC design the values
of t and e in wait(t) and wait_event(e) can be determined
statically. This assumption does not limit the applicability of
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Fig. 1. An overview of the ESST approach.

our technique since, to the best of our knowledge, most real
SystemC designs satisfy the assumption.

A. Abstract Reachability Forest

We build an abstract reachability forest (ARF) to describe
reachable abstract states. An ARF consists of some ART’s,
each of which is obtained by unwinding the running thread.
The connections between one ART with the others in an ARF
describe context switches.

For a model with n threads, each node in the ARF is a tuple
(〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S), where (1) qi, si, and ϕi

are, respectively, the program location, the call stack, and the
region of thread i, (2) ϕ is the region describing the data state
of global variables, and (3) S is the state of scheduler. The state
S does all the book keeping necessary to model the behavior
of the scheduler. For example, it keeps track of the status of
threads and events, the events that sleeping threads are waiting
for, and the delays of event notifications.

To expand the ARF, we need to execute primitive functions
and to explore all possible schedules. To this end, we introduce
the function SEXEC that takes as inputs a scheduler state and a
call to a primitive function f , and returns the updated scheduler
state obtained from executing f . For example, the state S′ =
SEXEC(S, wait_event(e)) is obtained from the state S by
changing the status of running thread to sleep, and noting that
the now sleeping thread is waiting for an event e.

We also introduce the function SCHED that implements the
scheduler. This function takes as an input a scheduler state and
returns a set of scheduler states, each of which has exactly
one running thread. These resulting states represent all possible
schedules.

To describe the expansion of a node in ARF, we as-
sume that there is at most one running thread in the sched-
uler state of the node. The rules for expanding a node
(〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S) are as follows:
E1. If there is a running thread i in S such that the thread per-

forms an operation op, then the successor node is obtained
in the following way:

55



• If op is not a primitive function, then the suc-
cessor node is (〈q′1, s′1, ϕ′

1〉, . . . , 〈q′n, s′n, ϕ′
n〉, ϕ′, S′)

where ϕ′
i = SPπ(ϕi ∧ ϕ, op), ϕ′

j = SPπ(ϕj ∧
ϕ, HAVOC(op)) for j 6= i, ϕ′ = SPπ(ϕ, op), s′k = sk

for all k = 1, . . . , n, and S′ = S. SPπ(ϕ, op)
computes the abstract strongest post condition w.r.t.
precision π. In our case of predicate abstraction the
precision π can contain (1) a set of predicates that
are tracked for the global region ϕ, and (2) for all
i, a set of predicates that are tracked for each thread
region ϕi. HAVOC is a function that collects all global
variables that are possibly updated by the operation
op, and builds a new operation where these variables
are assigned with new fresh variables. We do this since
we do not want to leak variables local to the running
thread in order to update the region of other threads.

• If op is a primitive function, then the new node
is (〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S′) where S′ =
SEXEC(S, op).

E2. If there is no more running thread in S, then for each
scheduler’s state S′ ∈ SCHED(S) we create a node
(〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S′) such that the node
becomes the root node of a new ART that is then added
to the ARF. This represents the context switch that occurs
when a thread gives the control back to the scheduler.

In the same way as the classical lazy abstraction, one stops
expanding a node if the node is covered by other nodes. In our
case we say that a node (〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S) is
covered by a node (〈q′1, s′1, ϕ′

1〉, . . . , 〈q′n, s′n, ϕ′
n〉, ϕ′, S′) if (1)

qi = q′i and si = s′i for i = 1, . . . , n, (2) S = S′, and (3) ϕ →
ϕ′ and

∧
i=1,...,n(ϕi → ϕ′

i) are valid. We also stop expanding a
node if the conjuction of all thread regions and the global region
is unsatisfiable.

We say that an ARF is complete if it is closed under the
expansion rules described above and there is no node that can
be expanded. An ARF is safe if it is complete and, for every
node (〈q1, s1, ϕ1〉, . . . , 〈qn, sn, ϕn〉, ϕ, S) in the ARF such that
ϕ ∧

∧
i=1,...,n ϕi is satisfiable, none of the locations q1, . . . , qn

are error locations.

B. ARF construction

The construction of an ARF starts with a single ART repre-
senting reachable states of the main function. In the root node
of that ART all regions are initialized with True, all thread
locations are set to the entries of the corresponding threads,
all call stacks are empty, and the only running thread in the
scheduler’s state is the main function. The main function then
suspends itself by calling a primitive function that starts the
simulation.

We expand the ARF using the rules E1 and E2 until either
the ARF is complete or we reach a node where one of the
thread’s location is an error location. In the latter case we build a
counterexample consisting of paths in the trees of the ARF and
check if the counterexample is feasible. If it is feasible, then we
have found a real counterexample witnessing that the program

Thread 1

0 1 2 3 4
op1 wait_event(e) scheduler op2−

2,310 4
op1 nop op2

Thread 2

Fig. 2. An example error path.

is unsafe. Otherwise, we use the spurious counterexample to
discover predicates to refine the ARF.

C. Counterexample analysis and predicate discovery

The counterexample in our proposed technique is built in a
similar way to that of in the classical lazy abstraction for se-
quential programs. In our case each call to a primitive function
is replaced with a nop (no operation). The connections between
trees induced by SCHED is removed and the two connected
nodes are collapsed into one.

Let us consider the path represented in Fig. 2. There are two
threads in this example. First, thread 1 moves from node 0 to
node 1 with operation op1, and then moves from node 1 to
node 2 with wait_event(e) that makes thread 1 sleep and
wait for the event e to be notified. The scheduler SCHED is
then executed, and this execution creates a connection from
node 2 to node 3, and also makes thread 2 as the running
thread. Finally, thread 2 moves from node 3 to error node 4
with operation op2. The counterexample is built by replacing
the call to wait_event(e) labeling the transition from node
2 to 3 with nop and by collapsing nodes 2 and 3 into a new
node 2,3. We thus obtain the path depicted in the lower part
of Fig. 2. This final path corresponds to a “standard” path in
the pure sequential software model checker, and is the path we
consider for the counterexample analysis.

When the formula corresponding to the error path built above
is unsatisfiable, then the proof of unsatisfiability is analyzed
in order to extract new predicates. These predicates are then
used to refine the abstraction in order to rule out this unfeasible
error path in the expansion of ARF. For this purpose we
re-use the same techniques used in the sequential case, e.g.
Craig interpolants and unsatisfiable core. The newly discovered
predicates are then used to update the precision. Depending on
the nature of the predicates, they can be associated to all threads
globally, which is the precision of the global region, or to a
specific thread, which is the precision of the thread region. Due
to lack of space, we refer the reader to [19] for a more thorough
discussion of the refinement process.

D. Parametric Summarization of Control Flow Automata

CFA summarization based on the large block encoding
(LBE) has been introduced in [12]. The encoding can also be
applied to summarize the CFA representing a thread.

We define a parameterized version of the LBE w.r.t. a set Γ ⊆
Ops of operations that is used to prevent the creation of a large
block. The algorithm to compute parametric LBE is a variant of
the algorithm described in [12]. First, a CFA is a tuple (L,G)
where L is a set of control locations and G ⊆ L×Ops×L is a
set of edges. Without loss of generality, we assume that the CFA
has at most one error location denoted by lE . The LBE of Γ-
CFA Summarization consists of the application of the rules we
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describe below: we first apply the rule R1, and then repeatedly
apply the rule R2 and R3 until none of them are applicable.
R1. We remove all edges (lE , ∗, ∗) from G. This rule trans-

forms the error location into a sink location.
R2. If (l1, op, l2) ∈ G such that l1 6= l2, op 6∈ Γ, l2 has

no other incoming edges, and for all (l2, opi, li) ∈ G
we have opi 6∈ Γ, then L = L \ {l2} and G = (G \
{(l1, op, l2)}) ∪ {(l1, op; opi, li)|for all i}. If the current
operation op, or one of the outgoing operations is in Γ,
then we stop summarizing the current block.

R3. If (l1, op1, l2) ∈ G, (l1, op2, l2) ∈ G, and none of op1, op2

are in Γ then G = (G \ {(l1, op1, l2), (l1, op2, l2)}) ∪
{(l1, op1‖op2, l2)}. Intuitively, if there is a choice and
none of the two outgoing operations are in Γ, then we join
the operations.

Since the parameter of summarization only prevents the cre-
ation of large blocks, the correctness of summarization as stated
in [12] still holds for the above rules.

V. RELATED WORK

There have been some works on the verification of SystemC
designs. Scoot [20] is a tool that extracts from a SystemC design
a flat C++ model that can be analyzed by SATABS [17]. The
SystemC scheduler itself is included in the flat model. Scoot,
to the best of our knowledge, has only been used for race
analysis [21], and for synthesizing a static scheduler to speed
up simulation [22]. Our work on embedding the scheduler into
the model-checking algorithm can benefit from the techniques
described in [21] for reducing the number of schedules to
explore.

CheckSyC [4] is a tool used for property and equivalence
checking, and for simulation of SystemC designs. It relies on
SAT based bounded model checking (BMC) and thus does
not support unbounded loops. Moreover CheckSyC does not
support SystemC constructs that have no correspondence in
RTL, like channels.

Lussy [3] is a toolbox for the verification of SystemC designs
at TLM. The tool extracts from a SystemC design a set of
parallel automata that captures the semantics of the design,
including the SystemC scheduler. These automata are then
translated into Lustre or SMV model for the verification. The
results reported in [23] show that the approach does not scale.
An extension for the use of Spin is discussed in [6]. However,
this translation is manual. Moreover, it is bound to not scale-up
when the SystemC design requires to model nondeterministic
signals with a large domain like e.g. an integer. For us, this is
not a problem since we model them symbolically.

In [7] the SystemC design is encoded as a network of timed
automata where the synchronization mechanism is modeled
through channels. The execution semantics is specified through
a pre-determined model of the scheduler, and by means of
templates for events and threads. The resulting network of
automata is verified using the UPPAAL model checker. This
approach only supports bounded integer variables.

Formal verification of SystemC designs by abstracting away
the scheduler, that is encoded in each of the threads, has been

reported in [5]. This work does not handle channel updates and
time delays. Our translation from SystemC to C can adopt the
technique in the paper to simplify the resulting C program.

Works on the verification of multi-threaded C programs
are related to our work. Software model checkers for multi-
threaded programs such as Verisoft [24] and Zing [25] explore
states and transitions using explicit enumeration. Although
several state space reduction techniques (e.g. partial order re-
duction [26] and transaction based methods [27]) have been
proposed, they do not scale well because of the state explosion
caused by the thread interleaving. Extensions of the above
techniques by using symbolic encodings [28] combined with
bounded context switches [29] and abstraction [30] have been
proposed. In [31] an asynchronous modeling is used to reduce
the size of BMC problems. All of these techniques can be
applied to the verification of SystemC designs by properly
encoding the semantics of the SystemC scheduler. Our ap-
proach can benefit from these optimizations. In particular we
expect that partial-order reduction that can reduce the number
of schedules to explore will lead to dramatic improvements, but
we leave it as future work.

VI. EXPERIMENTAL EVALUATION

We have implemented a tool chain that supports the SystemC
verification approaches presented in this paper. The front-end
for handling SystemC is an extended version of PINAPA [13]
modified to generate the flattened pure sequential C program
described in Section III, and the output suitable for the new
algorithm described in Section IV.

To deal with the sequential C program, we have implemented
a new software model checker for C that we call SYCMC.
Inspired by BLAST [8], SYCMC implements lazy predicate
abstraction. Furthermore, SYCMC also provides LBE and the
Γ-CFA summarization described before. SYCMC is built on
top of an extended version of NUSMV [14] that integrates the
MathSAT [32] SMT solver and provides advanced algorithms
for performing predicate abstraction by combining BDDs and
SMT formulas [15], [16]. The new ESST model-checking
algorithm is implemented within SYCMC. In SYCMC as well
as in ESST each time we expand an ART (ARF) node we
perform the check to verify whether the newly generated node
is covered by another ART (ARF) node. Thus, it is fundamental
to perform this check as efficiently as possible. Similarly to
CPACHECKER, in SYCMC as well as in ESST we use BDDs
to represent the regions, and we exploit them for efficiently
checking whether a node is covered by another node.

A. Results

We used benchmarks taken and adapted from the SystemC
distribution [1], from [23], and from [33] to experiment with
our approaches. To the best of our knowledge, none of the tools
used in [3], [4], [7] is available for comparison. We first experi-
mented with the translation of SystemC models to C programs,
by running the benchmarks on the following model checkers:
SATABS [17], BLAST [8], CPACHECKER presented in [12],
and SYCMC. We then experimented the ESST algorithm of
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SYCMC on the same set of benchmarks. As the model checkers
feature a number of verification options, we only consider what
turned out to be the best options for the benchmarks. For BLAST
we used the -foci option, while for CPACHECKER and for
SYCMC we applied LBE, depth first node expansion with
global handling of predicates, and restarting ART from scratch
when new predicates are discovered. We have experimented the
tools on an Intel-Xeon DC 3GHz running Linux, equipped with
4GB of RAM. We fixed the time limit to 1000 seconds, and the
memory limit to 2GB.

The results of experiments are shown on Table I. In the
second column we report S, U, or - to indicate that the veri-
fication status of the benchmark is safe, unsafe, or unavailable
respectively. The unavailability of the status is due to time or
memory out. In the remaining columns we report the running
time in seconds. We use T.O. for time out, M.O. for memory
out, and N.A. for not available.

The results show that the translation approach is feasible, but
the model checkers often reached timeout. This is because the
presence of the scheduler in the C program enlarges the search
space that has to be explored by the model checkers. Moreover,
we noticed that several iterations of refinement are needed to
discover predicates describing the status of the scheduler in
order to rule out spurious counterexamples. We notice that, as
far as these benchmarks are concerned, CPACHECKER outper-
forms BLAST, while we have cases where SYCMC performs
better than CPACHECKER, and others where it performs worse.
This is explained by the fact that the search in the two model
checkers, although similar may end-up exploring paths in a
different order and thus discovering different sets of predicates.

The table clearly shows that the ESST algorithm outper-
forms the other four approaches in most cases. In the case
of pipeline design CPACHECKER and SYCMC outperform
the ESST algorithm. It turns out that for the verification of
this design precise details of the scheduler are not needed.
CPACHECKER and SYCMC are able to exploit this character-
istic and thus they end up exploring less abstract states than
ESST. Indeed, for this design the ESST algorithm needs to
explore many possible schedules that can be reduced by using
techniques like partial-order reduction. For the mem-slave de-
sign SATABS outperforms other model checkers. SYCMC and
ESST employ a precise Boolean abstraction in the expansion
of the ART. Such an abstraction is expensive when there are a
large number of predicates involved. For this design, SYCMC
and ESST already discovered about 70 predicates in the early
refinement steps. SATABS also discovered a quite large number
of predicates (51 predicates). However, it performs a cheap
approximated abstraction that turns out to be sufficient for the
verification of this design.

All the benchmarks and the executable to reproduce the
results reported in this paper are available at http://es.fbk.eu/
people/roveri/tests/fmcad2010.

B. Limitations

The approaches presented in this paper assume that the Sys-
temC design does not contain any dynamic creation of threads,

Sequentialized ESST
Name V SATABS BLAST CPAC. SYCMC SYCMC
toy1 S 22.790 T.O. 282.230 57.300 1.990
toy2 U 28.050 T.O. 621.120 35.300 0.690
toy3 U 20.290 T.O. 141.780 22.390 0.190
token-ring1 S 16.520 97.2000 14.590 36.990 0.010
token-ring2 S 62.240 888.2900 30.330 540.160 0.090
token-ring3 S 152.360 T.O. 141.860 T.O 0.190
token-ring4 S 602.300 T.O. 911.300 T.O 0.400
token-ring5 S T.O. T.O. T.O. T.O 1.000
token-ring6 S T.O. T.O. T.O. T.O 2.500
token-ring7 S T.O. T.O. T.O. T.O 6.390
token-ring8 S T.O. T.O. T.O. T.O 18.400
token-ring9 S T.O. T.O. T.O. T.O 54.290
token-ring10 S T.O. T.O. T.O. T.O 201.980
token-ring11 - T.O. T.O. T.O. T.O M.O
transmitter1 U 2.230 1.2700 11.850 6.200 0.010
transmitter2 U 26.920 29.4000 18.210 640.750 0.010
transmitter3 U 61.460 501.3500 44.320 176.290 0.010
transmitter4 U 190.620 T.O. 113.490 T.O 0.090
transmitter5 U 472.180 T.O. 296.580 T.O 0.190
transmitter6 U T.O. T.O. 969.530 T.O 0.500
transmitter7 U T.O. T.O. T.O. T.O 1.390
transmitter8 U T.O. N.A. T.O. T.O 3.690
transmitter9 U T.O. N.A. T.O. T.O 11.690
transmitter10 U T.O. T.O. T.O. T.O 40.590
transmitter11 U T.O. T.O. T.O. T.O 150.480
transmitter12 - T.O. T.O. T.O. T.O M.O
pipeline S T.O. T.O. 130.610 178.490 T.O
kundu1 S 139.440 T.O. 232.310 T.O 2.900
kundu2 U 41.500 245.8500 57.160 T.O 0.900
kundu3 U 110.550 T.O. 129.370 T.O 2.900
bistcell S 36.600 T.O. 10.560 38.000 1.090
pc-sfifo1 S 4.260 46.6500 13.110 7.690 0.300
pc-sfifo2 S 5.210 300.3800 28.490 34.790 0.300
mem-slave S 77.210 T.O. T.O. T.O 677.010

TABLE I: RESULTS FOR EXPERIMENTAL EVALUATION.

channels, and module instances. In particular, in the sequential-
ization approach the encoding of the scheduler requires those
components to be known a priori. For example, to encode the
evaluation and the channel update phases (the functions eval
and update_channels, respectively) one needs to know all
threads and channels that are involved in the simulation. In
the threaded C approach we assume the values of t and e in
wait(t) and wait_event(e) can be determined statically.
Similarly for the translation to threaded C and in the ESST
algorithm, at the moment we do not support dynamic creation
of threads, channels, and module instances. It turns out that
also the SystemC front-end we use for our translator suffers of
these limitations. Indeed, PINAPA parses the SystemC design
and executes it until the point just before the simulation begins.
At that point PINAPA gives access to the abstract syntax tree
(AST) of the design and to all the ground SystemC objects
(i.e. module instances, channels, and threads) of the design. We
remark that, these limitations do not affect the applicability of
the proposed techniques since, to the best of our knowledge,
most real SystemC design satisfy this assumption.

The PINAPA SystemC front-end at the current stage of de-
velopment suffers of many other limitations. For example, as
far as we know, it does not recognize all SystemC transaction-
level modeling (TLM) constructs and does not fully support
function pointers. Because of these limitations, our translator
from SystemC to sequential C (and also to threaded C) does not
handle such constructs either. For the experiments presented
in this paper we extended PINAPA to handle simple TLM
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constructs like sc_export. Support for additional SystemC
constructs can be added to PINAPA with a reasonable effort.

As far as the limitations of our translator are concerned, we
do not yet support rich C++ features like standard template
library (STL) data structures and respective constructs, and we
do not yet support pointers, arrays, and dynamic creation of
objects. To this end, we remark that most of the software model
checkers currently available are not able to fully support all of
them. We remark that, our translator can be extended to support
such constructs wit a reasonable effort.

Finally, the new SYCMC and ESST model checkers are not
yet able to handle designs that use complex data types (like
e.g. records), pointers, arrays, dynamic creation of objects, and
recursive function. However, support for all these constructs is
currently argument of future extensions of the tools.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented two novel approaches aiming
at lifting software model checking techniques to the verification
of SystemC designs. We first presented a conversion of a
SystemC design into an C program that can be verified by
any off the shelf software model checker for C. Second, we
presented a novel model checking algorithm that combines
an explicit model checking technique to model the states of
SystemC scheduler with lazy abstraction. Both approaches have
been implemented in a tool set and an experimental evaluation
was carried out showing the potential of the approach and the
fact that the new algorithm outperforms the first approach.

As future work, we will investigate the applicability of static
and dynamic partial order techniques to reduce the number of
paths to explore. We will extend the set of primitives to interact
with the scheduler to better handle TLM constructs. Moreover,
we will investigate the possibility to handle the scheduler semi-
symbolically by enumerating possible next states exploiting
SMT techniques as to eliminate the current limitations of the
ESST approach. Finally, we will also extend our back-end to
support richer data like e.g. arrays [34], [35].
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Abstract—State-of-the-art hardware model checkers and
equivalence checkers rely upon a diversity of synergistic algo-
rithms to achieve adequate scalability and automation. While
higher-level decision procedures have enhanced capacity for
problems of amenable syntax, little prior work has addressed (1)
the generalization of many critical synergistic algorithms beyond
bit-blasted representations, nor (2) the issue of bridging higher-
level techniques to problems of complex circuit-accurate syntax.
In this paper, we extend a variety of bit-level algorithms to designs
with memory arrays, and introduce techniques to rewrite arrays
from circuit-accurate to verification-amenable behavioral syntax.
These extensions have numerous motivations, from scaling formal
methods to verify ever-growing design components, to enabling
hardware model checkers to reason about software-like systems,
to allowing state-of-the-art model checkers to support temporally-
consistent function- and predicate-abstraction.

I. INTRODUCTION

Contemporary hardware designs are often of substantial
complexity, comprising a diversity of bit-level control logic,
datapaths, and performance-related artifacts including pipelin-
ing, multi-threading, out-of-order execution, and power-saving
techniques. While reference models expressing the correctness
of such designs may be specified at a higher abstraction
level, it is often necessary to directly reason about the circuit-
accurate implementation. For example, equivalence checkers
must reason about the circuit-accurate implementation. If the
designer-specified implementation closely matches the circuit,
combinational equivalence checking (CEC) may scalably solve
the equivalence-checking problem – leaving a formidable
correctness check of the circuit-accurate implementation vs.
the reference model. If in contrast the implementation more
closely matches the higher-level specification, functional ver-
ification becomes simpler, leaving a formidable sequential
equivalence check between the implementation vs. the circuit.

Numerous automated transformations have been developed
to alleviate the challenges of verifying contemporary hardware
designs. For example, phase abstraction eliminates verification
complexities of designs with intricate clocking and latch-
ing schemes [1]. Retiming reduces the verification overhead
associated with pipelined designs [2]. Redundancy removal
and rewriting eliminate numerous design artifacts which may
dramatically hurt verification scalability [3], [4], [5]. Such
techniques have become key components of state-of-the-art
model checkers and equivalence checkers [6], [1], [7], without
which such solvers often fail to yield a conclusive result on
industrial designs. However, these techniques have hitherto
largely been developed assuming a bit-blasted representation.

Substantial recent research has focused upon enhanced
reasoning scalability for designs expressed at a higher-level
of abstraction. For example, numerous techniques have been
established to enhance the verification scalability of designs
containing arrays: storage devices arranged as a set of ad-
dressable rows of a specific width, accessed through atomic
write and read operations. Example techniques include the
efficient memory model which preserves data consistency
within temporally-bounded reasoning using a modeling whose
complexity grows sub-linearly with respect to array size [8],
[9], and the abstraction-refinement technique of [10] which
reduces an array to a small number of consistently-modeled
rows. Additionally, a large number of dedicated decision
procedures have been developed around theories of arrays [11].

While extremely powerful for amenable problems, such
techniques have not yet delivered their full impact in industrial
hardware verification for several reasons. First, such tech-
niques are often applicable only to designs with behavioral
syntax, not to designs of intricate circuit-accurate syntax. Man-
ual creation of behavioral models may alleviate this concern
for property checking – though at an often-prohibitive expense
to the overall design flow. Furthermore, these behavioral
models must be equivalence-checked to the circuit-accurate
implementation to ensure the soundness of such an approach;
while property checking may become simpler, the equivalence
check may be intractable. Second, techniques which are in-
compatible with bit-level transformations are of limited utility
on industrial designs, given capacity limitations in reasoning
about the logic adjacent to the arrays. In our experience, the
logic around the dataflow often contains the most subtle flaws;
the dataflow itself poses a bottleneck to verification algorithms
which often necessitates manual guidance to expose these
flaws and ultimately establish correctness.

In this paper, we address the issue of efficient formal
reasoning about industrial hardware designs which include
arrays. Our contributions include: (1) algorithmic extensions
to a variety of traditionally bit-level transformation algorithms
to support designs with arrays, including redundancy removal
(Section III), phase abstraction (Section IV), temporal decom-
position and retiming (Section V); (2) techniques to simplify
array syntax, enabling efficient array reasoning upon designs
which may otherwise lack a suitable behavioral representation
(Section III-C); (3) enhancements to the robustness and scal-
ability of known array abstraction techniques (Section VI).
Experiments are provided in Section VII to confirm the
profound verification benefits enabled by these techniques.
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There are numerous motivations for this work.
• As per Moore’s Law, increasing array size (caches, main
memory, lookup tables, . . . ) is one prevalent way in which
growing transistor capacity is used to increase design per-
formance [12]. While bit-blasted analysis suffers substantial
overhead with doubled array size, native reasoning techniques
often entail sub-linear complexity growth – e.g., merely re-
quiring an additional address-comparison bit.
• There are numerous problem domains which are practically
infeasible for bit-blasted techniques without manual abstrac-
tion, such as formally verifying logic that interacts with main
memory or large caches. Large arrays already constitute a
substantial scalability differential between formal and informal
industrial verification efforts, as most hardware simulators and
accelerators represent arrays without bit-blasting.
• Increasing the scalability of automated solutions mandates
enabling the applicability of as large a set of algorithms
as possible, to leverage algorithmic synergies to eliminate
implementation characteristics which otherwise may pose a
bottleneck to, if not outright inapplicability of, otherwise well-
suited algorithms. This is particularly true for satisfiability
modulo theories solvers, which tend to be highly sensitive to
the type of logic which may be efficiently handled by a given
combination of theories (e.g., [13]).
• Randomly-initialized read-only arrays may be used to
abstract complex combinational functions in a temporally-
consistent manner. In particular, the data output of such
an array, addressed by the arguments to the function be-
ing abstracted, may be used to replace the logic associated
with that function. This uninterpreted modeling may simulate
the original function, hence is sound for verification – and
maintains the necessary invariant for arbitrary model checking
algorithms that applying identical arguments to the abstracted
function at different points in time yields identical results [14].
Our techniques thus constitute a method to utilize uninter-
preted functions in a state-of-the-art model checker.

II. PRELIMINARIES

We represent the design under verification as a netlist.
Definition 1: A netlist comprises a directed graph with

vertices representing gates, and edges representing intercon-
nections between gates. Gates have associated functions, such
as constants, primary inputs (termed RANDOM gates), combi-
national logic of various functionality, and single-bit sequential
elements termed registers. Registers have associated initial
values defining their time-0 or reset behavior, and next-state
functions defining their time-(i+1) behavior.

The And / Inverter Graph (AIG) is a commonly-used netlist
representation where the only combinational primitives are
single-bit inverters and two-input AND gates [3], [4]. This
implies a bit-blasting of all higher-level constructs. Our netlist
format is an AIG which also includes array primitives.

Definition 2: An array is a gate representing a two-
dimensional grid of registers (referred to as cells), arranged as
rows vs. columns. Cells are accessed via read and write ports.

reg [COLS-1 : 0] ram[ROWS - 1 : 0]; // array declaration
always @(posedge clk) begin

// write port:
if (wr_en) // enable is "(posedge clk AND wr_en)"
ram[wr_addr] <= // address is "wr_addr"
wr_data; // data is "wr_data"

end
// read port:

assign rd_data = // data is "rd_data"
rd_en ? // enable is "rd_en"
ram[rd_addr] : // address is "rd_addr"
{(COLS){1’bX}};

Fig. 1: Verilog array example

Ports have three types of pins: an enable, an address vector,
and a data vector: refer to Figure 1. The enable indicates
whether the given port is actively accessing the array cells.
The address indicates which row is being accessed. The data
represents the values to be stored to (read from) the given row
for a write (read) port. A column refers to a one-dimensional
vector: the ith cell of each row. All pins are inputs of the array
gate, aside from read data pins which are outputs.

Arrays have a defined number of r rows, q columns, and
p address pins per port; a default initial value (in case an
unwritten row is read); and an indication of read-before-write
vs write-before-read behavior. The latter is relevant in case of
a concurrent read and write to the same address: write-before-
read will return the concurrent write data, whereas read-before-
write will not. Read data is conservatively randomized when
the read enable is de-asserted, or when the read is “out-of-
bounds” – i.e., its address exceeds the number of array rows.
Write ports have a specified precedence (e.g., reflecting the
order of if, else if statements in Verilog), defining which will
persist in case of concurrent stores to the same address.

We refer to the read ports as R1, . . . , Rm, and the write ports
in order of increasing precedence as W1, . . . ,Wn. For a given
port Pi, let Pi.e represent its enable pin, Pi.a(0 . . . , p− 1) its
address pins, and Pi.d(0, . . . , q − 1) its data pins.

Definition 3: A merge is a reduction technique which effec-
tively eliminates a gate from a netlist by replacing its fanout
references with references to a semantically-equivalent gate.

It is highly desirable to be able to merge array outputs if
it can be determined that the referenced array cells exhibit
redundancy. However, the nondeterminism exhibited at an
array output when its read port is disabled or out-of-bounds
often precludes a direct merge from being a semantically-
consistent transformation.

Definition 4: An array output merge is a specialized merge
to achieve the desired netlist reduction while preserving neces-
sary nondeterminism. This operation consists of replacing the
array output to be merged by a multiplexor which selects the
merged-onto gate when the corresponding read port is enabled
and in-bounds, else selects a unique RANDOM gate.

A. Temporal Unfolding and the Efficient Memory Model

Many algorithms reason about netlist behavior over a spe-
cific number of timesteps. Unfolding is commonly used for
this purpose, replicating the netlist for the desired number
of timesteps to allow valuations to propagate through next-
state functions. Depending upon the application for which
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unfolding is performed, the time-0 unfolding of the sequential
elements will differ. For Bounded Model Checking (denoted
as unfoldb), the time-0 value will be the initial value of the
array or register [15]. For induction, the time-0 value will be a
RANDOM gate [16]. For a sequential transformation such as
phase abstraction (denoted as unfoldp), the time-0 value will
be a reference to an existing array or register in the netlist [1].

The efficient memory model (EMM) represents data consis-
tency for arrays within unfoldings using sub-linear modeling
size vs. the number of array cells [9]: the data at an array
output at time i for an enabled, in-bound read must be
the highest-priority, most-recently-written data for the corre-
sponding address. This may be modeled in unfolding using
a sequence of if-then-else constructs, one per write port and
timestep, selected by the corresponding write being enabled
and address-matching the read being synthesized [9]. Because
each read must be compared to each write, the size of each
synthesized read for time t is O(t · |W |), resulting in overall
quadratic unfolding size with respect to depth as a multiple of
the number of write ports |W | and read ports |R|.

A technique to further reduce array unfolding size is
proposed in [17], re-encoding array references given upper-
bounds on the number of distinct referenced addresses. Rewrit-
ing rules are used to minimize the number of memory refer-
ences, e.g., synthesizing if-then-else constructs for reads as
with EMM. While highly effective for suitable problems, we
have not yet found a method to advantageously leverage this
technique in a model checking framework: these rewriting
rules shadow the complexity of an EMM unfolding, and since
arrays are generally interconnected by arbitrary bit-level logic
it is challenging to improve upon the effectiveness of standard
logic optimization techniques upon such unfoldings, or to a
priori meaningfully upper-bound a desired unfolding depth.

B. Symbolic Row Abstraction

While EMM is highly effective to boost the efficiency of
temporally-bounded reasoning, many alternate algorithms are
critical to a robust model checker. For example, BDD-based
reachability analysis is often necessary to prove properties
of extremely temporally deep netlists. For such temporally-
unbounded algorithms, EMM is not directly applicable.

A related technique has been proposed in [10] as a sequen-
tial netlist abstraction that is applicable for arbitrary model
checking algorithms. This abstraction bit-blasts an array into
a small set of symbolic rows. This set begins empty and
rows are added during refinement in response to spurious
counterexamples. In addition to modeling data contents for
represented rows, the address correlating to each modeled row
is represented using nondeterministically-initialized registers;
reads and writes to modeled rows are performed precisely,
whereas writes to unmodeled rows are ignored and reads of
unmodeled rows are randomized. To prevent trivial failures
merely due to reading unmodeled rows, antecedent condition-
ing of properties is performed: given a spurious counterexam-
ple caused by a read from port Ri which occurred k timesteps
prior to the property failure, resulting in a new row being

modeled with symbolic address rk
i , property always(p) is

replaced by always
(
prevk(Ri.a ≡ rk

i )→ p
)
. This abstraction

is sound because the abstract netlist may simulate the original,
and the antecedent conditioning forms a complete temporal
case-split. While very effective for certain types of problems,
the abstraction risks exceeding the size of a bit-blasted netlist
due to the need to represent modeled addresses, and due to a
potentially large number of temporal read dependencies.

III. LOGIC OPTIMIZATION TECHNIQUES

A vast collection of logic optimization techniques have
been developed over the past decades, which reduce netlist
size while preserving the behavior of sequential elements.
Examples include redundancy removal [3], [5] as well as
extensions under observability don’t cares [18], and syntactic
combinational rewriting [4]. Many of these techniques operate
on local logic windows treating sequential elements as uncon-
strained cutpoints, hence are directly applicable to netlists with
arrays. Some require bounded / inductive reasoning, possibly
to derive invariants with which to constrain local analysis, for
which the efficient memory model provides a suitable extension
to netlists with arrays. There are however several optimization
techniques which have required substantial customization to
achieve an adequate level of scalability and optimality, which
we detail in this section.
A. Ternary-Simulation Based Analysis and Reduction

Ternary simulation-based reduction is a method to identify
and eliminate a subset of semantically-equivalent gates. Ini-
tially, the registers are assigned their initial values and the
inputs are assigned an unknown ternary X value. Next-state
functions are then simulated, overapproximating an image
computation. These next-states values are propagated through
the registers, and another overapproximate image is computed.
This iteration continues until a repeated ternary state is de-
tected, indicating that an overapproximation of the reachable
states have been explored. Pairs of gates which always evaluate
to the same deterministic values in these states may be merged
to reduce netlist size [1]. This technique is highly overapprox-
imate and able to identify a relatively small subset of truly
redundant gates, though is remarkably scalable and often able
to yield substantial reductions on industrial netlists [1]. This
analysis may also be used to detect oscillating clocks for phase
abstraction (Section IV), and transient behavior for temporal
decomposition (Section V). Ternary simulation has thus found
a role in many state-of-the-art model checkers.

Unlike with Boolean simulation, each three-valued address
may resolve to multiple existing simulated array value entries.
Numerous commercial simulators support multi-valued rea-
soning, though to avoid the computational overhead entailed
by multiple-entry address resolution they take shortcuts such
as mapping X values on enables or addresses to Boolean con-
stants, or X’ing array contents in such cases, as also was noted
in [8]. Such shortcuts render unacceptable suboptimalities and
even unsoundness in model checking applications.

Building upon the work of [8], which uses three-valued
write lists for precise read resolution in symbolic trajectory
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Algorithm 1 Ternary simulation write function
1: function write(enable, addr, data)
2: if (enable ≡ 0) then return
3: nodesToWrite = deepest nodes whose address intersects addr
4: for all node in nodesToWrite do
5: subAddr = intersection of addr and node.address
6: if (subAddr ≡ node.address) then
7: node.data = (enable ≡ 1) ? data : resolve(node.data, data)
8: else add child to node with address subAddr and data data
9: end for

10: for all ( address cube subAddr in addr not written above ) do
11: add new child to tree root with address subAddr and data data
12: end for
13: subsume children with data equal to parent
14: end function

evaluation, we have developed the following algorithm for
precise and efficient three-valued array simulation. Our frame-
work uses a tree structure, where each node represents an
〈address, data〉 tuple and edges satisfy the following relation-
ships, maintained during writes to enable efficient reads:
• A child’s address cube is contained in its parent’s address.
• Child addresses are exceptions to parent addresses. E.g.,
given parent 〈XX1, D0〉 with child 〈X 11, D1〉, addresses
{XX1 \X 11} have data D0 and {X 11} has data D1.
• For any parent, the addresses of all children are disjoint.

Read operations traverse the tree to identify nodes with ad-
dresses intersecting the referenced address. A resolve function
is used to compute the tightest cube that contains all associated
three-valued data, similar to resolution across list entries
in [8]. Accordingly, X-saturated data may be returned without
traversing all relevant nodes. Write operations, detailed in Al-
gorithm 1, similarly traverse nodes with intersecting addresses.
These nodes are updated if the write address covers their
address, else a new child node is created. We employ a more
efficient data structure with more aggressive subsumption rules
than used in [8], since simulation applications may entail
1000s of timesteps of analysis. The need to continually re-
traverse lists often degrades to quadratic runtime over simu-
lation depth, whereas the use of a tree enables analysis to be
limited to the subset of nodes relevant to a given operation.

Figure 1 illustrates the tree resulting from an array initial-
ized to 000, after a write of 〈1XX, 1XX〉, then 〈XX0, XX0〉,
then 〈X1X, 01X〉.

B. Sequential Redundancy Identification and Removal

Arrays are composed of columns comprising one cell per
row. It is possible for two array columns (within the same or
across different arrays) to evaluate identically in all reachable
states. This is particularly common when equivalence checking
netlists with arrays; the arrays themselves may be unaltered
(merely the logic adjacent to the arrays may be altered), or
they may reflect a column-equivalence-preserving transfor-
mation such as partitioning. The overall equivalence check
nonetheless often requires reasoning about array contents, if
e.g. the logic adjacent to the arrays was optimized using don’t
care conditions inherent in the array data, precluding their
elimination via black-boxing [19]. Solving the equivalence
checking problem requires efficient methods to identify and

Addr XXX, Data 000

defaul t  value  000

Addr 1XX, Data XXX

defaul t  value  000
Wri te  <1XX, 1XX>

Addr 0X0, Data XX0

defaul t  value  000
Wri te  <XX0,  XX0>

Addr 011,  Data 0XX

defaul t  value  000
Wri te  <X1X,  01X>

Addr 010, Data XXX

defaul t  value  000
Wri te  <XX0,  XX0>
Wri te  <X1X,  01X>

Fig. 1: Three-valued array simulation example

eliminate such column redundancy. More generally, column
equivalence is a form of netlist redundancy whose removal
significantly benefits the scalability of all types of verification.

Induction is a scalable technique which may be used to
identify sequential redundancy [5]. An inductive unfolding
instantiates a distinct RANDOM gate for each sequential
element to represent an arbitrary state. If it is desired to prove
equivalences among sequential elements, the corresponding
induction hypotheses constrain the values of these RANDOM
gates and thereby often enable inductive redundancy identi-
fication. With arrays, however, it is desirable to not require
explicit correlation of individual cells or even rows, as their
cardinality may render such reasoning intractable – basically
degrading to the overhead of redundancy identification on
a bit-blasted netlist. Directly attempting to establish array
output or column equivalence without cell correlation is a
highly-noninductive problem, since each unfolding timestep
may reference a distinct row, hence induction hypotheses over
earlier timesteps do not meaningfully constrain later timesteps.

One approach that we have found useful to enable inductive
redundant column identification is to move the proof obligation
from array outputs to inputs: two columns are equivalent if
they have the same number of rows, they initialize equiva-
lently and any value written to one column is concurrently
written to the other column. This proof obligation may be
decomposed into a bidirectional check that each enabled, in-
bound irredundant write to one column has an equivalent write
to the other column. This check may be formalized as follows,
where it is suspected that columns i and j of arrays Ai and
Aj , respectively, are equivalent. Predicate oob(Wi.a) indicates
that Wi has an out-of-bounds address. Predicate rdt(Wi)
indicates that Wi is superseded by a higher-precedence write
to the same address, and may be strengthened to check that
Wi.d(i) differs from the current value of the addressed cell.1

∀ports Wi of Ai : Wi.e ∧ ¬oob(Wi.a) ∧ ¬rdt(Wi).

∃port Wj of Aj : Wj .e ∧ (Wi.a ≡Wj .a) ∧ ¬rdt(Wj)

∧
`
Wi.d(i) ≡Wj .d(j)

´
Speculative reduction is a technique to enable the benefit of

a merge even before the corresponding suspected redundancy
has been proven, yielding orders of magnitude speedup to
redundancy identification [5]. This technique simplifies the
netlist while retaining a proof obligation to identify whether
the postulated redundancy is accurate. Speculative reduction

1This irredundant write-data condition is often necessary in practice, to
enable column equivalence detection despite don’t care optimizations used to
minimize the redundant writing of values already present in the array.
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may be extended for column equivalences by modifying each
read port that references a potentially-redundant column. If
it is suspected that columns i and j of arrays Ai and Aj ,
respectively, are equivalent, each read port Ri referencing
column i may be modified to derive values from column j.
This is accomplished by synthesizing a new read port R∗ij of
array Aj with R∗ij .e = Ri.e and R∗ij .a = Ri.a, and replacing
references to the redundant column of Ri by references to the
representative column of R∗ij . Note that speculative reduction
of array outputs reduces the number of RANDOM gates in the
inductive unfolding, which is essential to overall inductivity.

Column equivalence conditions may be verified directly
on the speculatively-reduced netlist. Any identified column
equivalences may be eliminated from the netlist, replacing
Ri by the corresponding R∗ij as in the speculatively-reduced
netlist. The array representation may then be simplified using
the techniques introduced in the following section.

C. Array Simplification Techniques

In addition to simplifying logic around the arrays, it is
advantageous to simplify the arrays themselves: the number of
columns, rows, ports, and even the number of distinct arrays.
All simplifications tend to enhance algorithmic scalability, and
these particular simplifications are often practically necessary
to enable the efficient use of array reasoning techniques. For
example, “content-addressable memories” often have one read
port per row, using downstream logic to select which reads are
actually relevant. Additionally, industrial arrays often entail
circuit-oriented characteristics which may entail fragmenting
wide arrays into numerous narrow arrays, implementing one
write port per row with orthogonal address-related enables, or
intertwining test- or initialization-logic with the array.

Such circuit-accurate arrays pose numerous challenges to
verification, which often render them substantially less effi-
cient to verify in their native vs. bit-blasted form.
• The efficient memory model entails large unfoldings for
netlists containing many arrays with many read and write port
(refer to Section II-A).
• As will be discussed in Section VI, the abstraction approach
of [10] may run into suboptimalities or even inapplicability
given such circuit-accurate syntax.
• Logic simulators are significantly burdened by such rep-
resentations, and accelerators may be unable to model such
arrays without bit-blasting – motivating manual creation of
behavioral representations for enhanced validation, and using
equivalence checking to establish their correctness.

We have found the following transformations essential to
automatically convert circuit-accurate array representations to
behavioral representations for enhanced property checking
and equivalence checking. These techniques also are useful
to simplify ports created through other transformations such
as phase abstraction, and generally to simplify arrays to as
efficient of representations as possible.
1. If a given data pin is disconnected from every read port,
the corresponding column may be eliminated from the array.

2. Read ports with no connected data pins may be eliminated.
3. Arrays with no read ports may be eliminated.
4. If the enable pin of a given port is semantically equivalent
to 0, that port may be eliminated. If that port is a read, its
outputs may be replaced by RANDOM gates.
5. If a given address pin is an identical constant across every
read port, some rows are un-readable hence the array’s address
space may be reduced. Each write port may conjunct its enable
with the condition that its corresponding address pin evaluates
to this constant value, then the number of rows and address
pins may be reduced accordingly.
6. If a pair of ports Pi, Pj for i < j have identical addresses,
and these ports are compatible,2 then these ports may be
coalesced to eliminate Pi. Coalescing of write ports consists
of multiplexing data: if Pj .e then Pj .d else Pi.d. Read data
may be directly merged as per Definition 4. The enable pin of
Pj is finally replaced by (Pi.e ∨ Pj .e).
7. Similar to item 6, if compatible ports Pi, Pj for i < j
have orthogonal enables, then these ports may be coalesced to
eliminate Pi. Data and address pins on Pj are multiplexed by
enables, then Pj’s enable is disjuncted with that of Pi.
8. If every data pin of read port Ri has the same observability
don’t care condition Oi, then Ri.e may be optimized using
Oi as a don’t care – e.g. conjuncting Ri.e with Oi. This often
enables the orthogonal-enable port coalescing of item 7.
9. For a write-before-read array, if read port Ri and write
port Wj have semantically-equivalent addresses, Wj .e implies
Ri.e, and no higher-precedence write port may address-match
Ri, then Ri.d may be merged onto Wj .d as per Definition 4.
10. If each write port has a semantically-equivalent data pin
for two different columns m and n, array outputs for columns
m and n may be merged.
11. If arrays Ai and Aj have an identical number of rows
and read-before-write vs. write-before-read type, and they have
an identical number of ports of each type with semantically-
equivalent enable and address pins, the columns of Aj may
be concatenated onto Ai, eliminating Aj .
12. If arrays Ai and Aj have identical size and type, identical
deterministic initial values, and an identical number of write
ports with semantically-equivalent enable, address, and data
pins, the read ports of Ai may be migrated to Aj .
13. A write-before-read array may be converted to a read-
before-write array, by creating a multiplexor for each read
port which selects the highest-precedence concurrent write
port data, else the array output itself if no such write exists.
This may enable array elimination as per item 11 or 12.

These simplifications are synergistic in that one reduction
may enable the applicability of another, and we have found
it useful to iterate the above transformations until no further
reduction is achieved. It is also useful to iterate these reduc-
tions with other logic optimization and abstraction techniques
because simplifying the logic around the arrays may greatly
enhance the applicability of these reductions and vice-versa.

2All read ports are compatible. Write ports are compatible if no port Pk

for i < k < j may concurrently write to the same address.
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IV. PHASE ABSTRACTION

Phase abstraction is a temporal abstraction which unfolds
next-state functions for a specific number of timesteps c.
The resulting netlist represents a c-accelerated variant of the
original netlist, such that each state transition of the abstracted
netlist correlates to c consecutive transitions of the original
netlist. This unfolding results in c copies of every combi-
national gate in the original netlist, correlating to different
modulo-c timesteps. Safety property checking is preserved by
disjuncting over each copy of the property gate [1].

Phase abstraction has been demonstrated to yield dramatic
speedups to the verification of clocked netlists where most
registers toggle at most once every c consecutive timesteps.
This transformation eliminates the need to model an oscillating
clock in the netlist, and often eliminates many registers from
the cone of influence as their values become irrelevant to the
unfolded next-state functions. Additionally, phase abstraction
greatly enhances the reduction capability of techniques such
as retiming and redundancy removal [1] and enhances a
variety of verification algorithms such as reachability analysis,
interpolation [20], and induction [16]. This technique has thus
become an essential component of many industrial-strength
hardware model checkers [6], [1], [7]. In this section, we
extend phase abstraction to netlists with arrays.

Phase abstracted arrays intuitively must have the following
characteristics: (1) Abstracted write ports must be replicated
to reflect all updates that may occur during the c consecutive
unfolded timesteps. (2) Abstracted read ports must be repli-
cated to support all data fetches which may occur during the
c consecutive unfolded timesteps. It is nonetheless essential to
ensure that data consistency is maintained during this trans-
formation: read ports for “older” unfolded timesteps cannot be
allowed to return write data from “newer” unfolded timesteps.
Algorithm 2 yields the necessary semantics-preserving trans-
formation through creation of new array ports.

To ensure data consistency, function unfoldReadPortp syn-
thesizes data-forwarding paths for read ports unfolded within
unfoldp, to capture the most-recent applicable unfolded write
data. This data may be concurrent for a write-before-read
array, else must be strictly earlier. If no such write occurs
(the if-the-else returns line 24), or if the read enable is de-
asserted or its address is out-of-bounds (line 31), the read is
satisfied by a reference to the newly-created read port from
line 8. Note also that the type of the array is converted to
read-before-write to ensure that unfoldings for “newer” write
ports will not satisfy “older” reads.

V. TEMPORAL DECOMPOSITION AND RETIMING

Transient simplification is a technique to reduce a netlist
with respect to transient signals which behave arbitrarily for
a fixed number of timesteps after reset, and thereafter settle to
a reducible behavior. The prefix timesteps, before the transient
signals settle to their reducible behavior, may be verified with
Bounded Model Checking. The netlist may then be time-
shifted to represent its post-prefix behavior, decomposing the
verification task such that unbounded analysis may focus only

Algorithm 2 Array-compatible phase abstraction algorithm
1: function phaseAbstract(netlist, unfoldDegree)
2: for all array in netlist do
3: writePorts = set of write ports in original array
4: readPorts = set of read ports in original array
5: for all time in 0 to unfoldDegree-1 do
6: for all R in readPorts do
7: // port syntax: 〈enable, address, data〉
8: create shell read port 〈∅, ∅, Rtime〉
9: end for

10: end for
11: for all time in 0 to unfoldDegree-1 do
12: for all R in readPorts do
13: fill in 〈unfoldp(R.e, time), unfoldp(R.a, time), Rtime〉 for R
14: end for
15: for all W in writePorts via increasing precedence do
16: append 〈unfoldp(W.e, time), unfoldp(W.a, time), unfoldp(W.d,

time)〉 as highest-precedence write port
17: end for
18: end for
19: end for
20: perform traditional phase abstraction over non-array gates [1]
21: convert all arrays to type read-before-write
22: end function

23: function unfoldReadPortp(port, time)
24: readData = Rtime

25: time′ = (port’s array is write-before-read) ? time : time-1
26: for all time′′ in 0 to time′ do
27: for all W in writePorts via increasing precedence do
28: readData = if

`
unfoldp(W.e, time′′) ∧ (unfoldp(W.a, time′′) ≡

unfoldp(R.a, time))
´

then unfoldp(W.d, time′′) else readData
29: end for
30: end for
31: readData = if

`
¬unfoldp(R.e, time) ∨ (unfoldp(R.a, time) is out-of-

bounds)
´

then Rtime else readData
32: return readData
33: end function

upon timesteps after which the transient signals have settled
and hence may be eliminated [21]. Such decomposition may
reduce the overhead associated with initialization logic in a
verification testbench. A subset of transients may be efficiently
detected using ternary simulation. Given efficient techniques
for ternary simulation and Bounded Model Checking, the
extension necessary to support temporal decomposition for
netlists with arrays is that of time-shifting the arrays.

Time shifting replaces initial values by the set of states
reachable in a specific number of timesteps. For registers, a
temporal unfolding of their values may be used as their new
initial values [21]. Like registers, arrays have initial values that
must be modified to reflect writes that occur within the time-
shifted prefix. Algorithm 3 illustrates the overall time-shifting
transformation. To ensure data consistency, this algorithm
places the unfolded prefix write ports lower in precedence
than the existing ports, which are used to reflect post-transient
writes. These prefix ports are prioritized in order of increasing
unfolding time, following the precedence order of the original
write ports within each timestep.

Retiming is a technique which moves registers across other
types of gates in a netlist, reducing their cardinality while
preserving overall netlist behavior. Each retiming step moves
one register from each input of a gate to each of its outputs, or
vice-versa. The number of registers moved fanin-wise across
a gate is referred to as its lag, representing the number
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Algorithm 3 Array-compatible time-shifting algorithm
1: function timeShift(netlist, timeSteps)
2: for all register in netlist do
3: initialValue[register] = unfoldb(register, timeSteps)
4: end for
5: init = new register with initial value 1, next-state function 0
6: for all time in 0 to timeSteps-1 do
7: for all array in netlist do
8: newPorts = ∅
9: for all writePort of array via increasing precedence do

10: append newPorts with 〈
`
init ∧ unfoldb(writePort.e, time)

´
,

unfoldb(writePort.a, time), unfoldb(writePort.d, time)〉
11: end for
12: inject newPorts in appended precedence order as lowest-priority

write ports for array
13: end for
14: end for
15: end function

of timesteps its behavior has been delayed. Coupled with
peripheral retiming, in which registers may be borrowed or
discarded across RANDOM gates or properties, retiming has
been demonstrated to enable orders of magnitude speedup to
numerous verification algorithms [2], [6]. Normalized retim-
ing, in which all lags are negative, is often used in verification
to ensure that retimed initial values may be consistently
computed through unfolding. Computing of retimed initial
values is analogous to that for time-shifting, aside from the
distinction that the lag of each gate may differ hence unfolding
is performed at a finer level of granularity.

The following customizations enable the retiming of arrays.
1. All pins associated with a given port must have an identical
lag to ensure that each port may be evaluated atomically.
2. No write port may be lagged to a more-negative degree than
any read port for a given array. This is to ensure that a read
cannot return data from a later write, similar in justification
to the need to convert write-before-read to read-before-write
arrays for phase abstraction in Algorithm 2.
3. For every array with a lagged write port, we use a mech-
anism similar to Algorithm 3 to reflect its prefix writes. For
each array, we iterate from 0 to the maximum negative lag
of any write port. For each write port, if its lag is more-
negative than the current time iteration, we enqueue a port
reflecting the time-iteration unfolding of that port, conjuncting
the corresponding enable with an init register. We finally inject
this queue as the lowest priority write ports.
4. For every read port Ri, a bypass path is constructed to
capture data consistency constraints, similar to lines 24-31 of
Algorithm 2. Specifically, for any write port lagged to a less-
negative degree than a given read port, we build a multiplexor
chain that selects the appropriate unfolded write which is
more-recent than what is reflected by the array representation,
fetching the array contents only if there is no such more-recent
write or if the read was not enabled or was out-of-bounds.

VI. SYMBOLIC ROW ABSTRACTION

The array abstraction technique described in Section II-B
is capable of substantially reducing verification complexity
for certain classes of properties [10], though faces several
limitations which we have found extensions to ameliorate.

First, in content-addressable memory style arrays, all rows
are read every timestep, using logic downstream of the ar-
ray to select which reads are actually relevant. Antecedent-
conditioning properties with respect to a particular read port
address-matching a modeled address is thus basically mean-
ingless. In [10] it is instead proposed to search for a vector
of registers of the width of the address, which evaluates
to the address appearing at the read port referenced in the
counterexample trace being refined. If found, the equality of
that vector of registers (vs. the address of the read port) to the
modeled address is used to antecedent-condition the properties.

This approach tends to be fragile in practice. For exam-
ple, some arrays use arbitrary signals, not only registers, in
their read-selection logic. Additionally, given arbitrary design
styles, it may not be the case that a dedicated vector exists
representing the address of relevance. We have found our array
simplification techniques from Section III-C able of eliminate
this concern, in reducing the number of read ports in content-
addressable memory arrays and thus obviating the need for
heuristics to identify useful antecedent addresses.

Second, it is often suboptimal to model a distinct ad-
dress per refinement step, as doing so fails to explicitly
reflect address correlation in the abstract netlist. Consider
the equivalence checking of two netlists, each containing
an array to abstract. The testbench itself may ensure that
equivalent addresses are presented to these arrays, even if
design optimizations such as retiming are used to change the
timing with which relevant reads occur across these arrays.
Additionally, for arrays which are fragmented to reflect circuit
characteristics, many arrays may have correlated addresses.

A correlated-address optimization may be implemented as
follows. Instead of immediately modeling a fresh address upon
refinement, we first attempt to assess a relationship between
the address to be refined and a previously-refined address.
If a correlation is found, the newly modeled row will have
its address defined as the postulated correspondence with
respect to the previously-modeled address, and no antecedent-
conditioning is performed for this refinement step – else this
optimization would not be sound. Only if this modeling fails to
block the spurious counterexample is a fresh address modeled.

Regarding postulated equivalences: often identity between
the address of a current refinement and that of a previously-
modeled row is an adequate relation. Alternatively, we have
encountered equivalence checking problems where an array
with a large number of rows in one netlist is replaced with
multiple arrays of a smaller number of rows in another. In
such cases, postulating a correspondence between an address
of the larger array to an address identical modulo the number
of rows in the smaller array is often effective.

Failure to directly model address correlation in the abstract
netlist poses several verification suboptimalities. First, the
abstract netlist is larger, requiring more logic to represent more
modeled addresses. Second, because distinct addresses are
being modeled, this lack of address correlation entails a loss
of any data correlation which holds in the original netlist. For
example, in equivalence checking, array data may be identical
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Fig. 2: Cumulative verification runtime experiments

on a per-address basis across two arrays, and hence logic
optimization techniques may be able to merge those arrays
as being redundant. However, if a distinct address is used to
abstract each array, the modeled data will differ in states for
which modeled addresses differ, precluding such reductions.
While such states may be irrelevant due to antecedent con-
ditioning, it is computationally expensive to need to identify
such irrelevance through the sequential observability don’t care
condition of the antecedent vs. being able to identify such
redundancy natively using arbitrary logic optimizations.

Furthermore, this lack of modeled address correlation tends
to inherently limit the subsequent effectiveness of localization
abstraction [22], which eliminates irrelevant gates through
replacing them with RANDOMs. E.g., the localized netlist
must include enough logic in the fanin of the array addresses
to establish the correlation conditions that otherwise would be
natively reflected in the correlated-address abstraction.

VII. EXPERIMENTAL RESULTS

In this section we experimentally demonstrate the utility
of our techniques to reduce verification resources. All experi-
ments were run on a 1.9 GHz POWER5 Processor, using the
IBM internal verification toolset SixthSense [6].

Cumulative Impact: Given the numerous techniques pre-
sented in this paper, and their ability to synergistically enable
solutions to complex problems for which standalone or bit-
blasted techniques would fail, our first set of experiments
in Figure 2 demonstrates their cumulative impact across a
large set of complex non-falsifiable industrial property check-
ing and sequential equivalence checking problems. We used
a set of often-effective algorithm sequences including the
simplification and abstraction techniques presented in this
paper, followed by either interpolation or inductive redundancy
removal, assessing their effectiveness on bit-blasted netlists vs.
ones with arrays within a 10000 second timeout.

Most runtimes become significantly faster without bit-
blasting, and many (108 of 810) complete that otherwise
timeout. Only a small percentage witness significant slowdown
with arrays; almost all of these may be turned to an advantage
by fine-tuning algorithm parameters. While these experiments
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illustrate the profound cumulative benefit of our techniques
in enhancing the capacity of state-of-the-art verification so-
lutions, this high-level overview offers little insight into the
merit of particular techniques, which we focus on below.

Array Simplification: Figure 3 shows Bounded Model
Checking (BMC) performance for several runs: efficient mem-
ory model (EMM) with and without our array simplification
techniques, vs. a bit-blasted representation, each run until
memout. This netlist has 430373 AND gates and 21429
registers, in addition to 444 1-column, 128-row arrays, each
with 128 read and write ports: a content-addressable memory.
Our array simplification techniques from Section III-C reduce
these to three 148-column 128-row arrays with one read and
one write port each, using 1.3 seconds of runtime. The bit-
blasted netlist has 599381 AND gates and 78209 registers.

EMM run without array simplification quickly completes 15
timesteps of BMC, after which a formidable resource spike
is encountered due to the large number of arrays and ports –
ultimately resulting in memout. The bit-blasted approach fares
considerably better, completing 74 timesteps before memout.
Array simplification enables EMM to yield substantially bet-
ter results, completing 133 timesteps before memout. These
results clearly illustrate the utility of automated techniques to
convert circuit-accurate arrays to behavioral representations,
without which bit-blasting may be a superior solution.

Phase Abstraction: Recall from Section IV that phase
abstraction multiplies the number of read and write ports
by its unfolding depth. However, for every netlist we have
encountered for which phase abstraction reduced clocking
complexity, array simplifications eliminate these duplicated
ports as irrelevant (e.g., enables being conjuncted with a
clock signal) or redundant (e.g., identical reads / writes occur
across consecutive clock phases). Phase abstraction plus array
simplification may thus quarter (or better) the size of EMM
modelings through halving (or better) the number of read ports
and write ports compared across a specific unfolding depth.
This benefit is illustrated in Figure 3, where modulo-2 phase
abstraction enabled the completion of 268 BMC timesteps
before memout, requiring only 0.5 seconds of reduction time.
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Correlated Row Abstraction: This netlist also illustrates
the value of the correlated-address abstraction techniques
discussed in Section VI. We focused on a single parity-style
property. If applying the technique directly from [10], each of
the 444 1-column arrays requires the modeling of a single
row. This yields a substantial reduction; seven registers to
represent each modeled address, and one for the modeled
data, per array – vs. 128 registers for a precise bit-blasting.
However, the large number of arrays entails a large collective
abstraction size. Furthermore, the failure to model address cor-
relation hampered subsequent verification: localization could
not reduce the resulting netlist below 3241 registers, which we
could not verify within an eight hour timeout.

In contrast, using our address-correlation optimization, only
three abstract addresses need to be modeled across all 444
arrays. Localization and logic optimizations were able to
reduce this address-correlated abstraction to only 32 registers,
which interpolation solved within one second of runtime.

Localization: We have noted numerous additional benefits
of applying localization without bit-blasting: (1) BMC tends
to be much more efficient; (2) far fewer refinements need to
be performed given fewer gates in the netlist; and (3) fewer
necessary refinements entails fewer inevitable mistakes which
unnecessary bloat the abstract netlist.

Sequential Redundancy Identification: To illustrate the
benefit of identifying redundancies without operating on a bit-
blasted netlist, we detail a sequential equivalence checking
(SEC) problem involving a DRAM. This DRAM implementa-
tion and its redundancy scheme (used for fault-tolerance) was
altered, yet in a way that preserved input-to-output behavior.
One netlist has sixty-four 9-column, 128-row arrays; the
other has four 144-column, 128-row arrays. The overall SEC
problem additionally has 95786 AND gates and 5286 registers
surrounding these arrays. Our redundancy identification frame-
work from Section III-B is able to automatically identify 572
column equivalences and 1238 register equivalences induc-
tively in 851 seconds. However, given changes in the fault-
tolerance scheme, four columns and 2810 registers did not
correspond hence the SEC problem remained unsolved; a com-
bination of localization and interpolation on the redundancy-
eliminated netlist was necessary to complete the overall SEC
problem with a total runtime of 34 minutes. The bit-blasted
variant has 770215 AND gates and 152710 registers, for which
we were unable to even prove the equivalent sequential ele-
ments (without tedious manual correlation of array cells [19],
[23]) given 48 hours of runtime.

Overall, redundancy identification substantially benefits
without bit-blasting due to (1) speedups to BMC and sim-
ulation used to filter invalid candidate equivalences, and to
induction used in proofs, and (2) requiring far fewer compu-
tations at the granularity of columns vs. cells.

VIII. CONCLUSION

Arrays are ubiquitous in industrial hardware designs, along
with many control- and performance-related artifacts which
practically mandate the availability of a large set of synergistic

algorithms to enable automated verification. In this paper, we
extend numerous traditionally bit-level state-of-the-art model
checking and equivalence checking algorithms to support de-
signs with arrays, and introduce automated techniques to trans-
form arrays of circuit-accurate to behavioral syntax, enabling
the use of higher-level reasoning techniques on problems of
otherwise-unsuitable syntax. Nearly all algorithms used in a
state-of-the-art model checker (simulators, logic optimization
and abstraction techniques, isomorphism detection, . . . ) tend
to significantly benefit from operating on the smaller non-bit-
blasted netlist, in addition to the even more profound benefits
that dedicated array reasoning techniques may offer. These
techniques have collectively enabled dramatic scalability en-
hancements to our model checking and equivalence checking
solutions, enabling automation for verification tasks that oth-
erwise would have required significant manual guidance.

Acknowledgments: The authors wish to thank Per Bjesse
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Abstract—Certain formal verification tasks require reasoning
about Boolean combinations of non-linear arithmetic constraints
over the real numbers. In this paper, we present a new technique
for satisfiability solving of Boolean combinations of non-linear
constraints that are convex. Our approach applies fundamental
results from the theory of convex programming to realize a
satisfiability modulo theory (SMT) solver. Our solver, CalCS,
uses a lazy combination of SAT and a theory solver. A key
step in our algorithm is the use of complementary slackness
and duality theory to generate succinct infeasibility proofs that
support conflict-driven learning. Moreover, whenever non-convex
constraints are produced from Boolean reasoning, we provide
a procedure that generates conservative approximations of the
original set of constraints by using geometric properties of convex
sets and supporting hyperplanes. We validate CalCS on several
benchmarks including formulas generated from bounded model
checking of hybrid automata and static analysis of floating-point
software.

I. I NTRODUCTION

The design and verification of certain systems requires
reasoning about nonlinear equalities and inequalities, both
algebraic and differential. Examples range from mixed-signal
integrated circuits (e.g., [1]) that should operate correctly
over process-voltage-temperature variations, to control design
for biological or avionics systems, for which safety must be
enforced (e.g., [2]). In order to extend the reach of formal
verification methods such as bounded model checking (BMC)
for such systems [3], [4], it is necessary to develop efficient
satisfiability modulo theories (SMT) solvers [5] for Boolean
combinations of non-linear arithmetic constraints. However,
SMT solving for arbitrary non-linear arithmetic over the reals,
involving, e.g., quantifiers and transcendental functions, is
undecidable [6]. There is therefore a need to develop efficient
solvers for special cases that are also useful in practice.

In this paper, we addressthe satisfiability problem for
Boolean combinations of convex non-linear constraints. We
follow the lazy SMT solving paradigm [7], where a classic
David-Putnam-Logemann-Loveland (DPLL)-style SAT solv-
ing algorithm interacts with a theory solver based on funda-
mental results from convex programming. The theory solver
needs only to check the feasibility of conjunctions of theory
predicates passed onto it from the SAT solver. However, when
all constraints are convex, a satisfying valuation can be found
using interior point methods [8], running in polynomial time.

A central problem in a lazy SMT approach is for the theory
solver to generate a compact explanation when the conjunction
of theory predicates is unsatisfiable. We demonstrate how this
can be achieved for convex constraints using duality theory for
convex programming. Specifically, we formulate the convex
programming problem in a manner that allows us to easily
obtain the subset of constraints responsible for unsatisfiability.

Additionally, even when constraints are restricted to be
convex, it is possible that, during Boolean reasoning, some
of these constraints become negated, and thus the theory
solver must handle some non-convex constraints. We show
how to handle such constraints by set-theoretic reasoning and
approximation with affine constraints.

The main novel contributions of our work can be summa-
rized as follows:

• We present the first SMT solver for a Boolean combina-
tion of convex non-linear constraints. Our solver exploits
information from the solution of convex optimization
problems to establish satisfiability of conjunctions of
convex constraints;

• We give a novel formulation that allows us to generate
certificates of unsatisfiability in case the conjunction of
theory predicates is infeasible, thus enabling the SMT
solver to perform conflict-directed learning;

• Whenever non-convex constraints originate from convex
constraints due to Boolean negation, we provide a proce-
dure that can still use geometric properties of convex sets
and supporting hyperplanes to generate approximations of
the original set of constraints;

• We present a proof-of-concept implementation, CalCS,
that can deal with a much broader category than linear
arithmetic constraints, also including conic constraints, as
the ones in quadratic and semidefinite programs, or any
convex relaxations of other non-linear constraints [8]. We
validate our approach on several benchmarks including
formulas generated from BMC for hybrid systems and
static analysis of floating-point programs, showing that
our approach can be more accurate than current leading
non-linear SMT solvers such as iSAT [9].

The rest of the paper is organized as follows. In Section II, we
briefly review some related work in both areas on which this
work is based, i.e. SMT solving for non-linear arithmetic con-
straints and convex optimization. In Section III, we describe
background material including the syntax and semantics of the
SMT problems our algorithm handles. Section IV introduces
to the convex optimization concepts that our development
builds on and provides a detailed explanation of our algorithm.
In Section V we report implementation details on integrating
convex and SAT solving. After presenting some benchmark
results in Section VI, we conclude with a summary of our
work and its planned extensions.

II. RELATED WORK

An SMT instance is a formula in first-order logic, where
some function and predicate symbols have additional inter-
pretations related to specific theories, and SMT is the problem
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of determining whether such a formula is satisfiable. Modern
SAT and SMT solvers can efficiently find satisfying valuations
of very large propositional formulae, including combinations
of atoms from various decidable theories, such as lists, arrays,
bit vectors [5]. However, extensions of the SMT problem to
the theory of non-linear arithmetic constraints over the reals
have only recently started to appear. Since our work combines
both SAT/SMT solving techniques with convex programming,
we briefly survey related works in both of these areas.

A. SMT solving for non-linear arithmetic constraints

Current SMT solvers for non-linear arithmetic adopt the
lazy combination of a SAT solver with a theory solver for
non-linear arithmetic. The ABsolver tool [10] adopts this
approach to solve Boolean combinations of polynomial non-
linear arithmetic constraints. The current implementation uses
the numerical optimization tool IPOPT [11] for solving the
non-linear constraints. However, without any other additional
property for the constraints, such as convexity, the numerical
optimization tool will necessarily produce incomplete results,
and possibly incorrect, due to the local nature of the solver
(all variables need upper and lower bounds). Moreover, in case
of infeasibility, no rigorous procedure is specified to produce
infeasibility proofs.

A completely different approach is adopted by the iSAT
algorithm that builds on a unification of DPLL SAT-solving
and interval constraint propagation [9] to solve arithmetic
constraints. iSAT directly controls arithmetic constraint prop-
agation from the SAT solver rather than delegating arithmetic
decisions to a subordinate solver, and has shown superior effi-
ciency. Moreover, it can address a larger class of formulae than
polynomial constraints, admitting arbitrary smooth, possibly
transcendental, functions. However, since interval consistency
is a necessary, but not sufficient condition for real-valued
satisfiability, spurious solutions can still be generated.

To reason about round-off errors in floating point arithmetic
an efficient decision procedure (CORD) based on precise arith-
metic and CORDIC algorithms has been recently proposed
by Ganai and Ivancic [12]. In their approach, the non-linear
part of the decision problem needs first to be translated into a
linear arithmetic (LA) formula, and then an off-the-shelf SMT-
LA solver and DPLL-style interval search are used to solve
the linearized formula. For a given precision requirement, the
approximation of the original problem is guaranteed to account
for all inaccuracies.

B. Convex Programming

An SMT solver for the non-linear convex sub-theory is
motivated by both theoretical and practical reasons. On the one
hand, convex problems can be solved very efficiently today,
and rely on a fairly complete and mature theory. On the other
hand, convex problems arise in a broad variety of applications,
ranging from automatic control systems, to communications,
electronic circuit design, data analysis and modeling [8]. The
solution methods have proved to be reliable enough to be
embedded in computer-aided design or analysis tool, or even
in real-time reactive or automatic control systems. Moreover,
whenever the original problem is not convex, convex problems
can still provide the starting point for other local optimization
methods, or a cheaply computable lower bounds via constraint
or Lagrangian relaxations. A thorough reference on convex
programming and its applications can be found in [8].

As an example, convex optimization has been used in
electronic circuit design to solve the sizing problem [13]–[15].
Robust design approaches based on convex models of mixed-
signal integrated circuits have also been presented in [16],
[17]. While, in these cases, there was no Boolean structure,
Boolean combinations of convex constraints arise when the
circuit topology is not fixed, or for cyber-physical systems
where continuous time dynamics need to be co-designed with
discrete switching behaviors between modes. It is therefore
necessary to have solvers that can reason about both Boolean
and convex constraints.

In the context of optimal control design for hybrid systems,
the work in [18], [19] proposes a combined approach of
mixed-integer-programming (MIP) and constraint satisfaction
problems (CSP), and specifically, convex programming and
SAT solvers, as in our work. The approach in [18], [19] is,
in some respects, complementary to ours. A SAT problem is
first used to perform an initial logic inference and branching
step on the Boolean constraints. Convex relaxations of the
original MIP (including Boolean variables) are then solved by
the optimization routine, which iteratively calls the SAT solver
to ensure that the integer solution obtained for the relaxed
problem is feasible and infer an assignment for the logic
variables that were assigned to fractional values from the MIP.
However, the emphasis in [18], [19] is more on speeding up
the optimization over a set of mixed convex and integer con-
straints, rather than elaborating a decision procedure to verify
feasibility of Boolean combinations of convex constraints, or
generate infeasibility proofs. Additionally, unlike [18], [19],
by leveraging conservative approximations, our work can also
handle disjunctions of convex constraints.

III. B ACKGROUND AND TERMINOLOGY

We cover here some background material on convexity and
define the syntax of the class of SMT formulae of our interest.

Convex Functions. A function f : R
n → R is termed

convex if its domain domf is a convex set and if for all
x, y ∈ domf , andθ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (1)

Geometrically, this inequality means that thechord from x to
y lies above the graph off . As a special case, when (1) always
holds as an equality, thenf is affine. All linear functions
are also affine, hence convex. It is possible to recognize
whether a function is convex based on certain properties. For
instance, iff is differentiable, thenf is convex if and only
if domf is convex andf(y) ≥ f(x) + ∇f(x)T (y − x)
holds for all x, y ∈ domf , and ∇f(x) is the gradient of
f . The above inequality states that iff is convex, its first-
order Taylor approximation is always a global underestimator.
The converse result can be also shown to be true. Iff is twice
differentiable, thenf is convex if and only ifdomf is convex
and its Hessian∇2f(x) is positive semidefinite matrix for all
x ∈ domf . In addition to linear, affine, and positive semi-
definite quadratic forms, examples of convex functions may
include exponentials (e.g.eax), powers (e.g.xa whena ≥ 1),
logarithms (e.g.− log(x)), the max function, and all norms.

Convex Constraint. A convex constraint is of the form
f(x) {<,≤, >,≥} 0 or h(x) = 0, wheref(x) andh(x) are
convex and affine (linear) functions, respectively, of their real
variablesx ∈ D ⊆ R

n, with D being a convex set. In the
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following, we also denote a constraint in the formf(x) ≤ 0
(f(x) < 0) as aconvex(strictly convex) constraint (CC), where
f(x) is a convex function on its convex domain. A convex
constraint is associated with a setC = {x ∈ R

n : f(x) ≤ 0},
i.e. the set of points in the space that satisfy the constraint.
SinceC is the 0-sublevel set of the convex functionf(x), C
is also convex. We further denote the negation of a (strictly)
convex constraint, expressed in the formf(x) > 0 (f(x) ≥ 0),
asreversed convex(reversed strictly convex) constraint (RCC).
An RCC is, in general, non-convex as well as its satisfying
setN = {x ∈ R

n : f(x) > 0}. The complement̄N of N is,
however, convex.

Syntax of Convex SMT Formulae. We represent SMT
formulae over convex constraints to be quantifier-free formulae
in conjunctive normal form, with atomic propositions ranging
over propositional variables and arithmetic constraints. The
formula syntax is therefore as follows:

formula ::= {clause∧}∗clause
clause ::= ({literal∨}∗literal)
literal ::= atom| ¬atom
atom ::= conv constraint | bool var

conv constraint ::= equation | inequality
equation ::= affine function = 0

inequality ::= convex function relation 0
relation ::= < | ≤

In the grammar above,bool var denotes a Boolean variable,
and affine function and convexfunction denote affine and
convex functions respectively. The termsatomand literal are
used as is standard in the SMT literature. Note that the only
theory atoms are convex or affine constraints. Even though we
allow negations on convex constraints (hence allowing non-
convex constraints), we will term the resulting SMT formula
as aconvex SMT formula.

Our constraint formulae are interpreted over valuations
µ ∈ (BV → B) × (RV → R), where BV is the set of
Boolean andRV the set of real-valued variables. The definition
of satisfaction is also standard: a formulaφ is satisfied by a
valuationµ (µ |= φ) iff all its clauses are satisfied, that is,
iff at least one atom is satisfied in any clause. A literall is
satisfied if µB(l) =true. Satisfaction of real constraints is
with respect to the standard interpretation of the arithmetic
operators and the ordering relations over the reals.

Based on the above definitions, here is an example of a
convex SMT formula:

(x + y − 3 = 0 ∨ a ∨ − log(ex + ey) + 10 ≥ 0)

∧ (¬b ∨ ||(x − 2, z − 3)||2 ≤ y − 5) ∧ (x2 + y2 − 4x ≤ 0)

∧
(
¬a ∨ y < 4.5 ∨ max{2x + z, 3x2 + 4y4 − 4.8} < 0

)
,
(2)

wherea, b ∈ BV , x, y, z ∈ RV , and || · ||2 is the Euclidean
norm onR

2.
If the SMT formula does not contain any negated convex

constraint, the formula is termed amonotone convex SMT
formula.

IV. T HEORY SOLVER FORCONVEX CONSTRAINTS

In optimization theory, the problem of determining whether
a set (conjunction) of constraints are consistent, and if so,
finding a point that satisfies them, is afeasibility problem. The

feasibility problem for convex constraints can be expressed in
the form

find x

subject to fi(x) ≤ 0, i = 1, . . . , m

hj(x) = 0, j = 1, . . . , p

(3)

where the single (vector) variablex ∈ R
n represents then-

tuple of all the real variables(x1, . . . , xn)T , the fi functions
are convex, and thehj functions are affine. As in any opti-
mization problem, ifx is a feasible point andfi(x) = 0, we
say that thei-th inequality constraintfi(x) ≤ 0 is active at
x. If fi(x) < 0, we say the constraintfi(x) ≤ 0 is inactive.
The equality constraints are active at all feasible points. For
succinctness of presentation, we make the assumption that
inequalities are non-strict (as listed in (3)), but our approach
extends to systems with strict inequalities as well.

In this section, we describe how we construct a theory solver
for a convex SMT formula that generates explanations when
a system of constraints is infeasible. In general, the system
of constraints can have both convex constraints and negated
convex constraints (which can be non-convex). We will first
consider the simpler case where all constraints in the system
are convex, and show how explanations for infeasibility can
be constructed by a suitable formulation that leverages duality
theory (Section IV-A). We later give an alternative formulation
(Section IV-B) and describe how to deal with the presence of
negated convex constraints (Section IV-C).

Although it is possible to directly solve feasibility problems
by turning them into optimization problems in which the
objective function is identically zero [8], no information about
the reasons for inconsistency would be propagated with this
formulation, in case of infeasibility. Therefore, we cast the
feasibility problem (3) as a combination of optimization prob-
lems with the addition of slack variables. Each of these newly
generated problems is an equivalent formulation of the original
problem (and it is therefore in itself a feasibility problem),
while at the same time being richer in informative content.
In particular, given a conjunction of convex constraints, our
framework builds upon the following equivalent formulations
of (3), namely thesum-of-slacksfeasibility problem (SSF), and
the single-slackfeasibility (SF) problem, both detailed below.

A. Sum-of-Slacks Feasibility Problem

In the SSFproblem, a slack variablesi is introduced for
every single constraint, so that (3) turns into the following

minimize
∑m+2p

k=1
sk

subject to f̃k(x) − sk ≤ 0, k = 1, . . . , m + 2p

sk ≥ 0

(4)

where f̃k(x) = fk(x) for k = 1, . . . , m, f̃m+j(x) = hj(x),
and f̃m+p+j(x) = −hj(x) for j = 1, . . . , p. In other
words, every equality constrainthj(x) = 0 is turned into a
conjunction of two inequalities,hj(x) ≤ 0 and−hj(x) ≤ 0
before applying the reduction in (4). TheSSF problem can
be interpreted as trying to minimize the infeasibilities of the
constraints, by pushing each slack variable to be as much as
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possible close to zero. The optimum is zero and is achieved
if and only if the original set of constraints (3) is feasible.

Based onduality theory[8], a dual problemis associated
with (4), which maximizes theLagrange dual functionas-
sociated with (4), under constraints on thedual variablesor
Lagrange multipliers. While the dual optimal value always
provides a lower bound to the original (primal) optimum, an
important case obtains when this bound is tight and the two
primal and dual optima coincide (strong duality). As a simple
sufficient condition, Slater’s theorem states that strong duality
holds if the problem is convex, and there exists a strictly
feasible point, such that the non-linear inequality constraints
hold with strict inequalities. As a consequence of duality
theory, the following result holds for (4) at optimum:

Proposition IV.1. Let (x∗, s∗) ∈ R
n+m+2p be a primal

optimal andz∗ ∈ R
m+2p be a dual optimal point for(4).

Then: (i) if (3) is feasible,x∗ provides a satisfying assignment;
(ii) moreover, we obtain:

z∗k(f̃k(x∗) − s∗k) = 0 k = 1, . . . , m + 2p. (5)

Proof sketch:The first statement trivially follows from the
solution of problem (4). Sincex∗ is the optimal point, it
also satisfies all the constraints in (4) withsk = s∗k = 0,
therefore it is a satisfying assignment for (3). The second state-
ment follows fromcomplementary slackness. In fact, under
the assumptions in Section III, (4) is a convex optimization
problem. Moreover, it is always possible to find a feasible
point which strictly satisfies all the nonlinear inequalities since,
for a any givenx, the slack variablessk can be freely chosen,
hence Slater’s conditions hold. As a result, strong duality
holds as well, i.e. both the primal and dual optimal values are
attained and equal, which implies complementary slackness,
as in (5).

We use complementary slackness to generate infeasibility
certificates for (3). In fact, if a constraintk is strictly satisfied
(i.e. s∗k = 0 and f̃k(x∗) < 0) then the relative dual variable
is zero, meaning that the constraintf̃k(x∗) ≤ 0 is actually
non-active. Conversely, a non-zero dual variable will necessary
correspond to either an unfeasible constraint (s∗k > 0) or to a
constraint that is non strictly satisfied (s∗k = 0). In both cases,
the constraintf̃k(x∗) ≤ sk is active at optimum and it is one
of the reasons for the conflict. We can therefore conclude with
the following result:

Proposition IV.2. The subset of constraints in(4) that are
related to positive dual variables at optimum represents the
active subset, and therefore provides a succinct reason of
infeasibility (certificate).

Numerical issues must be considered while implementing
this approach. When (3) is feasible, the optimization algorithm
in practice will terminate with|

∑m+2p

k=1
sk| ≤ ǫt, thus pro-

ducing anǫt-suboptimal point for arbitrary small, positiveǫt.
Accordingly, to enforce strict inequalities such asf̃k(x) < 0,
we modify the original expression with an additional user-
defined positive slack constantǫs as f̃k(x) + ǫs ≤ 0, thus
requiring that the constraint be satisfied with a desired margin
ǫs. All the above conclusions valid for (3) can then be
smoothly extended to the modified problem.

B. Single-Slack Feasibility Problem

While the SSFproblem is the workhorse of our decision
procedure, we also present an alternative formulation of the
feasibility problem, which will be useful in the approximation
of RCCs.

The SF problem minimizes the maximum infeasibilitys of
a set of convex constraints as follows

minimize s

subject to f̃k(x) − s ≤ 0, k = 1, . . . , m + 2p
(6)

where inequalities are pre-processed as in Section IV-A. The
goal is clearly to drive the maximum infeasibility below
zero. At optimum the sign of the optimal values∗ provides
feasibility information. If s∗ < 0, (6) has a strictly feasible
solution; if s∗ > 0 then (6) is infeasible; finally, ifs∗ = 0 (in
practice|s∗| ≤ ǫt for some smallǫt > 0) and the minimum
is attained, then the set of inequalities is feasible, but not
strictly feasible. As in (4), complementary slackness will hold
at optimum, i.e.

z∗k(f̃k(x∗) − s∗) = 0 k = 1, . . . , m + 2p.

Therefore, even when the problem is feasible, whenever a
constraintk is not active, then(f̃k(x∗) − s∗) 6= 0 will be
strictly satisfied, and implyzk = 0. Conversely, ifzk 6= 0,
then the constraint(f̃k(x∗)− s∗) is certainly active and̃fk(x)
contributes to determine the maximum infeasibility for the
given problem, in the sense that ifs∗ was further pushed to
be more negative,̃fk(x) would be no longer satisfied.

C. Dealing with Reversed Convex Constraint

A negated (reversed) convex constraint (an RCC) is non-
convex and defines a non-convex setN . Any conjunction of
these non-convex constraints with other convex constraints
results in general in a non-convex set. To deal with such
non-convex sets, we propose heuristics to compute convex
over- and under-approximations, which can then be solved
efficiently. This section describes these techniques.

Our approximation schemes are based on noting that the
complementary set̄N is convex. Therefore geometric prop-
erties of convex sets, such as strict or weak separation [8],
can still be used to approximate or boundN via a supporting
hyperplane. Once a non-convex constraint is replaced with a
bounding hyperplane, the resultingapproximate problem(AP)
will again be convex, and all the results in Section IV-A will
be valid for this approximate problem.

For simplicity, we assume in this section that we have
exactly one non-convex constraint (RCC), and the rest of the
constraints are convex. We will describe the general case in
Sec. IV-D. Letg(x) be the convex function associated with
the RCC. Our approach proceeds as follows:

1) Solve the sum-of-slacks (SSF) problem for just the
convex constraints. Denote the resulting convex region
by B.
If the resulting problem isUNSAT, report this answer
along with the certificate computed as described in
Sec. IV-A.
Otherwise, if the answer returned isSAT, denote the
optimal point asx∗

b (satisfying assignment) and proceed
to the next step.
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2) Add the negation of the RCC (a convex constraint) and
solve the SSF problem again, which we now denote as
reversed problem(RP). There are two cases:
(a) If the answer isUNSAT, then the RCC regionN̄

does not intersect the convex regionB. This implies
that B ⊂ N , and hence the RCC is a redundant
constraint. This situation is illustrated in Fig. 1(a).
Thus, the solver can simply returnSAT (as returned
in the previous step).

(b) On the other hand, if the answer isSAT, we denote
asx∗

c the optimal point of the RP and check whether
the negated RCC is now redundant, based on the
shift induced in the optimal pointx∗

b . In particular,
if both x∗

c andx∗

b are insideN̄ , we solve two single-
slack feasibility (SF) problems, and we denote as
x̃∗

b and x̃∗

c the two optimal points, for the problem
having just the convex constraints and for the the RP,
respectively. Similarly, we denote the two optimal
values as̃s∗b and s̃∗c .
As also observed in Section IV-B, for a set of
satisfiable constraints,̃x∗

b , x̃∗

c , s̃∗b ands̃∗c may contain
more information than the optimal pointsx∗

b andx∗

c

(and their slack variables) for theSSFproblem. In
fact, sinces̃∗b and s̃∗c are also allowed to assume
negative (hence different) values at optimum, they
can provide useful indications on how the RCC
has changed the geometry of the feasible set, and
which constraints are actually part of its boundary,
thus better driving our approximation scheme. In
particular, if we verify that̃s∗b = s̃∗c , x̃∗

b = x̃∗

c , and
B ⊂ N̄ , then we implyB ∩ N = ∅. Hence, the
solver can returnUNSAT. Techniques to detect if a
conjunction of convex constraints generates sets that
are (exactly or approximately) contained in a convex
set are reported in [20], [21]. For instance, when
both B and N̄ are spheres, the conditionB ⊂ N̄
is equivalent to checking that the slack constraint
related to the RCC is not active at optimum in the
SF problem. This case is illustrated in Fig. 1(b) for
the following conjunction of constraints:

(x2
1 + x2

2 − 1 ≤ 0) ∧ (x2
1 + x2

2 − 4 > 0)

where(x2
1+x2

2−4 > 0) is the non-convex constraint
defining regionN . If set containment cannot be
exactly determined the procedure returnsUNKNOWN.

If none of the above cases hold, we proceed to the next
step. For example, this is the case wheneverx∗

b is outside
N̄ , or on its boundary (i.e.g(x∗

b) ≥ 0). This implies that
the negated RCC is not redundant, and we can move to
the next step without solving the twoSF problems.

3) In this step, we generate a convex under-approximation
of the original formula including the convex constraints
and the single non-convex RCC. If the resulting problem
is found satisfiable, the procedure returnsSAT. Other-
wise, it returnsUNKNOWN.

We now detail the under-approximation procedure in Step 3.
As an illustrative example, we use a2-dimensional region
defined by the following SMT formula:

(x2
1+x2

2−1 ≤ 0)∧(x2
1 +x2

2−4x1 ≤ 0)∧(x2
1 +x2

2−2x2 > 0).
(7)

Fig. 1. Two special cases for handling non-convex constraints: (a) by adding
a negated RCC a new set is generated that is strictly separated from the
previous convex set; (b) the negated RCC generates a set that totally includes
the previous convex set.

As apparent from the geometrical representation of the sets in
Fig. 2 a), the problem is clearly satisfiable and a satisfying
valuation could be any point in the grey regionA.

First, we note for this example the results obtained before
the under-approximation is performed. We solve theSSFprob-
lem for the convex setB = {(x1, x2) ∈ R

2 : (x2
1 + x2

2 − 1 ≤
0) ∧ (x2

1 + x2
2 − 4x1 ≤ 0)}, obtained fromA after dropping

the RCCN . The problem is feasible, as shown in Fig. 2 (b),
and the optimal pointx∗

b = (0.537, 0) is returned.
Next, the RCC is negated to become convex and theSSF

problem is now solved on the newly generated formula

(x2
1 +x2

2−1 ≤ 0)∧(x2
1 +x2

2−4x1 ≤ 0)∧(x2
1 +x2

2−2x2 ≤ 0)

which represents the previously defined (RP). The RP will
provide useful information for the approximation, thus acting
as a “geometric probe” for the optimization and search space.
Since the RCC is reversed, the RP is convex and generates the
setC, shown in Fig. 2 (c).

Let us assume, at this point, that the RP is feasible, as
in this example. ThenC 6= ∅, and an optimal pointx∗

c =
(0.403, 0.429) ∈ C is provided. Moreover,A can be expressed
asB \C, andx∗

b is clearly outside the convex set̄N generated
by the negated RCC, meaning that we can go to the under-
approximation step without solving the SF problems since the
negated RCC is certainly non-redundant.

The key idea for under-approximation is to compute a
hyperplane that we can use to separate the RCC regionN
from the remaining convex region. This “cut” in the feasible
region is performed by exploiting the perturbation of the
optimal point fromx∗

b to x∗

c induced by the negated RCC
N̄ : (x2

1 + x2
2 − 2x2) ≤ 0. At this point, we examine a few

possible cases:
Case (i):Suppose thatx∗

b 6= x∗

c , andx∗

b is outsideN̄ (as in
our example). In this case, we find the orthogonal projection
p = P(x∗

b) onto N̄ , which can be performed by solving a
convex,L2-norm minimization problem [8]. Intuitively, this
corresponds to projectingx∗

b onto a pointp on the boundary of
the regionN̄ . Finally, we compute the supporting hyperplane
to N̄ in p. The half-space defined by this hyperplane that
excludesN̄ provides our convex (affine) approximatioñN
for N .

For our example,N̄ = {x ∈ R
n : x2

1 + x2
2 − 2x2 ≤ 0}.

The affine constraint resulting from the above procedure is
Ñ : −0.06x1 +0.12x2 +0.016 < 0. On replacing the RCCN
with Ñ , we obtain a new setD, as shown Fig. 2(d), which is
now our approximation forA.
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Fig. 2. Geometrical representation of the sets used in Section IV-C to illustrate the approximation scheme in CalCS: (a)A is the search space (in grey)
for the original non-convex problem including one RCC constraint; (b)B is search space when the RCC is dropped (over-approximation ofA); (c) C is the
search space for thereversed problem, i.e. the problem obtained from the original one in (a) when the RCC is negated; the RP is therefore convex; (d)D is
the under-approximation ofD in (a) using a supporting hyperplane.

An SSF problem can now be formulated forD thus pro-
viding the satisfying assignmentx∗

d = (0.6,−0.33). The
approximation procedure will stop here and returnSAT.

Notice that, wheneverx∗

b is on the boundary of̄N , a similar
approximation as described above can be performed. In this
case,x∗

b is the point through which the supporting hyperplane
needs to be computed, and no orthogonal projection is neces-
sary. The normal direction to the plane needs, however, to be
numerically computed by approximating the gradient ofg(x)
in x∗

b .
Case (ii): A second case occurs whenx∗

b 6= x∗

c , but both
x∗

b and x∗

c are inside N̄ . In this case, starting fromx∗

c

we search the closest boundary point along the(x∗

b − x∗

c)
direction, and then compute the supporting hyperplane through
this point as in the previous case. In fact, to find an under-
approximation for the feasible regionA, we are looking for
an over-approximationof the setN̄ in the form of a tangent
hyperplane. Since the optimal pointx∗

b moves tox∗

c after
the addition of the negated RCC,̄N will be more “centered”
aroundx∗

c than aroundx∗

b . Therefore, a reasonable heuristic
could be to pick the direction starting fromx∗

c and looking
outwards, namely(x∗

b − x∗

c).
Case (iii):Assume now thatx∗

b = x∗

c (with bothx∗

b andx∗

c

inside N̄ ), but we havex̃∗

b 6= x̃∗

c , where x̃∗

b and x̃∗

c are the
two optimal points, respectively, for theSF problem having
just the convex constraints and for the the RP in theSF form,
as computed in Step 2 (b) above. In this case, to operate the
“cut”, we cannot use the perturbation onx∗

b and x∗

c , as in
Case (ii), but we can still exploit the information contained
in the SF problems. This time, starting from̃x∗

c , we search
the closest boundary point along the(x̃∗

b − x̃∗

c) direction, and
then compute the supporting hyperplane through this boundary
point.

Case (iv):Finally, both x∗

b = x∗

c and x̃∗

b = x̃∗

c can also
occur, as for the following formula:

(x2
1 + x2

2 − 1 ≥ 0) ∧ (x2
1 + x2

2 − 4 ≤ 0),

for which A would coincide with the white ring region in
Fig. 1 b) (including the dashed boundary). In this case, no
useful information can be extracted from perturbations in the
optimal points. The feasible set appears “isotropic” to bothx∗

b

andx̃∗

b , meaning that any direction could potentially be chosen
for the approximations. In our example, we infer from theSF
problems that the inner circle is the active constraint and we
need to replace the non-convex constraint corresponding to its

exterior with a supporting hyperplane, e.g.−x1 + 1 ≤ 0, by
simply picking it to be orthogonal to one of the symmetry
axes of the feasible set. The resulting under-approximation is
found SAT and we obtain a satisfying assignment consistent
with this approximation.

This completes the description of the under-approximation
procedure of Step 3. We note that we still have the possibility
for the solver to returnUNKNOWN. Depending on the target
application, the user can interpret this asSAT (possibly leading
to spurious counterexamples in BMC) orUNSAT (possibly
missing counterexamples). For higher accuracies, the approx-
imation scheme can also be iterated over a set of boundary
points of the original constraintf(x), to build a finer polytope
bounding the non-convex set.

D. Overall Algorithm

Our theory solver is summarized in Fig. 3. This procedure
generalizes that described in the preceding section by handling
multiple reversed convex constraints (RCCs). In essence, if the
conjunction of all convex constraints and any single RCC is
foundUNSAT, then we reportUNSAT. In order to reportSAT,
on the other hand, we must consider all convex constraints and
all affine under-approximations of non-convex constraints.

The details are as follows. For a given conjunction of
CCs and RCCs, we first solve theSSF problem generated
by the CCs alone (Section IV-A). If the problem isUNSAT,
the algorithm returns the subset of constraints that provide the
reason for inconsistency (infeasibility certificate) and stops.
Otherwise, each RCC is processed sequentially. For each
RCC, the initial convex problem is augmented and the RP
is formulated and solved. If the RP is unfeasible then, as
discussed in Section IV-C, the constraint is ignored since
it is non-active for the current feasibility problem. On the
contrary, if the RP is feasible we proceed by computing an
approximation.

The Approximate method implements the under-
approximation strategies outlined in Section IV-C and deter-
mines whether the constraint is non-active or can be dropped
by solving additionalSF problems (Section IV-B). If the
negated RCC is fully included in the set generated by the
CCs alone, (e.g. the megated RCC and the set generated
by the CCs are both circles and the negated RCC is non-
active for the RP) the problem isUNSAT, meaning that the
RCC is incompatible with the whole set of CC (step 2(b) of
Section IV-C). The full set, including both the CC and the
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function [status, out] = Decision Manager(CC, RCC)
% receive a set of convex (CC) and non-convex constraints (RCC)
% return SAT/UNSAT/UNKNOWN and MODEL/CERTIFICATE
%
% solve sum-of-slacks feasibility problems with CCs
[status, out] = SoS solve(CC);
% OUT contains CERTIFICATE
if (status== UNSAT) return ; end
AC = CC;% AC stores all constraints
for (k = 1, k <= length(RCC), k++)

RP = reverse(CC, RCC(k));
[status, out] = SoS solve(RP);
% strict separation: ignore RCC
if (RP == UNSAT) continue; end
% both CC and RP problems are SAT: approximation
[approxCC, active, drop] = Approximate(RCC(k));
% RCC incompatible (inclusion)
if (˜active)

status= UNSAT;
% certificate
out = [CC, RCC(k)]; return ;
% over-approximation: ignore constraint

elseif (drop) continue;
else AC = AC ∪ approxCC;

[status, out] = SoS solve(AC);
if (status== SAT)

Check SAT assignment on original constraints;
if (original constraints satisfied) status= SAT; return ;
end

end
end

end
status= UNKNOWN;

Fig. 3. Pseudo-code for the CalCS decision procedure.

current RCC is returned as an explanation for the conflict.
If an over-approximation is required, then the constraint is
ignored. If the constraint is compatible and cannot be dropped,
the supporting hyperplane is computed and the new under-
approximated problem is solved. The algorithm proceeds
with visiting the other RCCs. Finally, when all non-convex
constraints have been processed without returningUNSAT
the algorithm is re-invoked on the set of convex constraints
CC and the set of affine under-approximations of non-convex
constraints RCC. If this invocation returnsSAT, so does the
overall algorithm; otherwise, it returnsUNKNOWN. A SAT
answer is accompanied by a satisfying valuation to variables.

V. I NTEGRATING CONVEX SOLVING AND SAT SOLVING

Using the theory solver described in Section IV, we have
implemented a proof-of-concept SMT solver, CalCS, that
supports the convex sub-theory. As in [10], CalCS receives as
input an SMT formula in a DIMACS-like CNF format, where
atomic predicates can be both Boolean or convex constraints,
according to the definitions in Section III. Following the
lazy theorem proving paradigm, the SMT problem is first
transformed into a SAT problem, by mapping the nonlinear
constraints into auxiliary Boolean variables. This Boolean
abstraction of the original formula is then passed to the
SAT solver. If the outcome isUNSAT, the theory manager
terminates and returnsUNSAT. Conversely, the assigned aux-
iliary variables are mapped back to a conjunction of CC and
RCC and are sent to the theory for consistency checking.
If the theory solver returnsSAT, a combined Boolean and

realmodel(satisfying assignment) is also returned. Otherwise,
whenever inconsistencies are found (UNSAT), the reason for
the conflict (certificate) is encoded into thelearned clause
(¬l1 ∨ . . . ∨ ¬lk), l1, . . . , lk being the auxiliary literals as-
sociated with the infeasible constraints. The SAT problem is
then augmented and new SAT queries are performed until
either the SAT solver terminates withUNSAT or the theory
solver withSAT. To benefit from the most recent advances in
SAT solving, MiniSAT2 [22] is adapted to our requirements
by adding decision heuristics to prune our search space. To
reduce the number of theory calls, we first assign values to
the Boolean variables so as to satisfy as many clauses as
possible. Subsequently, we start assigning values to some of
the auxiliary variables, until all clauses are satisfied. Whenever
we need to decide an assignment for an auxiliary variable,
we affirm any CC and negate any RCC as a first choice, to
maximize the number of CCs for each theory call, hence the
chances of deciding without approximations. The following
theorems state the properties of CalCS.

Theorem V.1. Letφ be a convex SMT formula. Then, if CalCS
reports SAT on φ, φ is satisfiable. Alternatively, if CalCS
reportsUNSAT, φ is unsatisfiable.

Note that the converse does not hold in general. If CalCS
reportsUNKNOWN, it is possible that the formulaφ is either
satisfiable or unsatisfiable. In the case of a monotone convex
SMT formula, we have stronger guarantees.

Theorem V.2. Let φ+ be a monotone convex SMT formula.
Then, CalCS reportsSAT on φ+ iff φ+ is satisfiable and
CalCS reportsUNSAT iff φ+ is unsatisfiable.

The above result follows straightforwardly from the fact that
for monotone convex SMT formulas, all convex constraints
are assigned true, so the theory solver never sees non-convex
constraints.

VI. EXPERIMENTAL RESULTS

In our prototype implementation, we use the Matlab-based
convex programming packageCVX [23] to solve the optimiza-
tion problems, while theory solver and SAT solver interact
via an external file I/O interface. We therefore allow for
all functions and operations supported by disciplined convex
programming [24]. We first validated our approach on a set
of benchmarks [25], including geometric decision problems
dealing with the intersection ofn-dimensional geometric ob-
jects, and randomly generated formulae obtained from3-SAT
classical Boolean benchmarks [26], after replacing some of
the Boolean variables with convex or RC constraints. Table I
shows a summary of an experimental evaluation of our tool,
also in comparison with iSAT. To evaluate the impact of gen-
erating a compact explanation of unsatisfiability (a certificate)
we run CalCS in two modes: in the first mode (C in Table I),
a subset of conflicting constraints is provided, as detailed in
Section IV, while in the second mode (NC in Table I), the full
set of constraints is returned as simply being inconsistent. All
benchmarks were performed on a3 GHz Intel Xeon machine
with 2 GByte physical memory running Linux.

Results show that whenever problems are purely convex,
they are solved without approximation and with full control of
rounding errors and can provide results that are more accurate
than the ones of iSAT, in comparable time, in spite of our
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Fig. 4. Simple hybrid automata with convex guards and invariants (left) and
representation of the error traces from CalCS (solid) and iSAT (dashed) in
the (x, y) plane (right). The safety interval forx is [−4, 4].

prototype implementation. In particular, the interval-based rea-
soning scheme can incur inaccuracies and large computation
times when the satisfying sets are lower dimensional sets with
respect to the full search space including all the real variables
in the problems. As a simple example, for the formula:

(x2
1 + x2

2 − 1 ≤ 0) ∧ (x2
1 + x2

2 − 6x1 + 5 < 0), (8)

iSAT returns an interval that contains a spurious solution,
while our convex sub-theory can rigorously deal with tight
inequalities and correctly returnsUNSAT (see (8) and Conj3
in Tab. I). Similarly, CalCS can provide the correct answer for
the following formulae ((9) and (10) in Tab. I), mentioned as
prone to unsound or spurious results in [12]:

(x+y < a)∧(x−y < b)∧(2x > a+b)∧(a = 1)∧(b = 0.1),
(9)

(x ≤ 109) ∧ (x + p > 109) ∧ (p = 10−8). (10)

While for small problem instances (Bool1-2-3, Conj1) both
the C and NC schemes show similar performances, the
advantages of providing succinct certificates becomes evident
for larger instances (Bool4-5-6-7, Conj2), where we rapidly
reached a time-over (TO) limit (set to200 queries to the theory
solver) without certificates. A faster implementation would
be possible by using commercial, or more optimized, convex
optimization engines.

We have also tested CalCS on BMC problems, consisting
in proving a property of a hybrid discrete-continuous dynamic
system for a fixed unwinding depthk. We generated a set
of hybrid automata (HA) including convex constraints in both
their guards and invariants. For the simple HA in Fig. 4 we also
report a pictorial view of the safety region for thex variable,
and the error traces produced by CalCS (solid line) and iSAT
(dashed line). The circle in Fig. 4 represents the HA invariant
set, while the portion of the parabola underlying thex axis
determines the set of pointsx satisfying the property we want
to verify, i.e. {x ∈ R : x2 − 16 ≤ 0}. Our safety region
is therefore the closed interval[−4, 4]. The dynamics of the
HA are represented by the solid and dash lines. As far as the
invariant is satisfied, the continuous dynamics hold and the
HA moves along the arrows on the(x, y) plane, starting from
the point (2, 3). When the trajectories intersect the circle’s
boundary, a jump occurs (e.g. from(3, 4) to (3, 2) and from
(4, 3) to (4, 1)) and the system is reset. Initially, both the solid
and dashed trajectories are overlapped (they are drawn slightly
apart for clarity). However, more accurately, we return unsafe

TABLE I
CAL CS EXPERIMENTS: IN MODE C THE UNSAT CORE IS PROVIDED

WHILE IN MODE NC THE FULL SET OF CONSTRAINTS IS RETURNED AS
CONFLICTING; APPROX DENOTES THE NUMBER OFRCCS

APPROXIMATED AS HYPERPLANES; S STANDS FORSAT,U FOR UNSAT.

File Res. CalCS Approx Queries iSAT
C/NC [s] C/NC C/NC [s]

(8) U 0.5 (U) 0 1 0.05 (S)
(9) U 0.2 (U) 0 1 0 (S)

Conj3 U 22/23 (U) 5 3 0.05 (S)
(10) S 0.2 (S) 0 1 0 (U)

Bool1 S 3.5 (S) 1 1 8 (S)
Bool2 S 16 (S) 3 1 0.91 (S)
Bool3 S 27/23 (S) 5/4 2 0.76 (S)
Conj1 U 8.7/9.5 (U) 3 2 0.3 (U)
Bool4 S 17.9/17.7 (S) 3 1 0.75 (S)
Conj2 U 17/23.3 (U) 4/5 4/7 0.4 (U)
Bool5 U 23.5/321.7 (U) 4/36 5/94 0.02 (U)
Bool6 U 29.8/TO (U) 5/− 6/− 0.4 (U)
Bool7 S 257.7/TO (S) 24/− 6/− 1.31 (S)

TABLE II
TCAS BMC CASE STUDY

Maneuver type Crash state #queries run time [s]
UNSAFE CRUISE 2 10.9
UNSAFE LEFT 4 28
UNSAFE STRAIGHT 6 50

SAFE NONE 10 110

after3 BMC steps (k = 3), while iSAT stops at the second step
producing an error trace that is still in the safety region, albeit
on the edge. As an additional case study, we considered aircraft
conflict resolution [27] based on the Air Traffic Alert and
Collision Avoidance System (TCAS) specifications (Tab. II).
The hybrid automata in Fig. 5 models a standardized maneuver
that two airplanes need to follow when they come close to each
other during their flight. When the airplanes are closer than a
distancednear, they both turn left by∆φ degrees (which is
kept fixed to a constant value in our maneuver) and fly for a
distanced along the new direction. Then they turn right and
fly until their distance exceeds a thresholddfar. At this point,
the conflict is solved and the two airplanes can return on their
original route. We verified that the two airplanes stay always
apart, even without coordinating their maneuver with the help
of a central unit.

Finally, we have applied CalCS to formulae generated
in the context of static analysis of floating-point numerical
code, and requiring an SMT solver that can handle non-linear
arithmetic constraints over the reals. Tab. III summarizes the
performance of CalCS on a set of benchmarks provided by Vo
et al., who are developing a static analyzer to detect floating-
point exceptions (e.g., overflow and underflow) [28]. Early
experience with CalCS on this set of benchmarks, mostly
including conjunctions of linear and non-linear constraints,
seems promising. After a fast pre-processing step, CalCS can
deal with the formulae of interest providing an exact answer
in reasonable computation time even when approximations are
needed, which demonstrates that our solver can be general
enough to be suitable for different application domains.

VII. C ONCLUSIONS

We have proposed a procedure for satisfiability solving of a
Boolean combination of non-linear constraints that are convex.
Our prototype SMT solver, CalCS, combines fundamental
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Fig. 5. Air Traffic Alert and Collision Avoidance System

TABLE III
BENCHMARKS FROMSTATIC ANALYSIS OF NUMERICAL CODE: APPROX

DENOTES THE NUMBER OFRCCS APPROXIMATED AS HYPERPLANES.

File Result Time [s] Approx
Num1 SAT 1.08 0
Num2 SAT 4.35 2
Num3 UNSAT 0.55 0
Num4 UNSAT 0.55 0
Num5 SAT 4.27 2
Num6 SAT 0.49 0
Num7 SAT 2.82 1
Num8 UNSAT 2.64 2
Num9 UNSAT 2.10 0
Num10 UNSAT 0.53 0

Num11 − 13 UNSAT 0 0
Num14 UNSAT 1.91 0
Num15 UNSAT 1.94 0
Num16 UNSAT 0.53 0

Num17 − 18 UNSAT 0 0
Num19 UNSAT 0.49 0
Num20 UNSAT 0 0

results from convex programming with the efficiency of SAT
solving. By restricting our domain to a subset of non-linear
constraints, we can solve for conjunctions of constraints glob-
ally and accurately, by formulating a combination of convex
optimization problems and exploiting information from their
primal and dual optimal values. When the conjunction of
theory predicates is infeasible, our formulation can generate
certificates of unsatisfiability, thus enabling conflict-directed
learning. Finally, whenever non-convex constraints originate
from convex constraints due to Boolean negation, our pro-
cedure uses geometric properties of convex sets to generate
conservative approximations of the original set of constraints.
Experiments on several benchmarks, including examples of
BMC for hybrid systems, show that CalCS can be more
accurate than other state-of-the-art non-linear SMT solvers. In
the future, we plan to further refine the proposed algorithms
by devising more sophisticated learning and approximation
schemes as well as more efficient implementations.
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Abstract—We propose a novel integration of interval constraint
propagation (ICP) with SMT solvers for linear real arithmetic
(LRA) to decide nonlinear real arithmetic problems. We use ICP
to search for interval solutions of the nonlinear constraints, and
use the LRA solver to either validate the solutions or provide
constraints to incrementally refine the search space for ICP. This
serves the goal of separating the linear and nonlinear solving
stages, and we show that the proposed methods preserve the
correctness guarantees of ICP. Experimental results show that
such separation is useful for enhancing efficiency.

I. INTRODUCTION

Formal verification of embedded software and hybrid sys-
tems often requires deciding satisfiability of quantifier-free
first-order formulas involving real number arithmetic. While
highly efficient algorithms [10] exist for deciding linear real
arithmetic (QFLRA problems, as named in SMT-LIB [5]),
nonlinear formulas (QFNRA problems [5]) have been a major
obstacle in the scalable verification of realistic systems. Exist-
ing complete algorithms have very high complexity for non-
linear formulas with polynomial functions (double-exponential
lower bound [9]). Formulas containing transcendental func-
tions are in general undecidable. It is thus important to find
alternative practical solving techniques for which the com-
pleteness requirement may be relaxed to some extent ([11],
[12], [20], [8]).

Interval Constraint Propagation (ICP) is an efficient numeri-
cal method for finding interval over-approximations of solution
sets of nonlinear real equality and inequality systems ([15],
[6]). For solving QFNRA formulas in a DPLL(T) framework,
ICP can be used as the theory solver that provides decisions
on conjunctions of theory atoms. What distinguishes ICP from
other numerical solution-finding algorithms (such as Newton-
Raphson or convex optimization) is that it guarantees the
following reliability properties:

• ICP always terminates, returning either “unsatisfiable”,
or “satisfiable” with an interval overapproximation of a
solution (or the solution set).

• When ICP returns an “unsatisfiable” decision, it is always
correct.

• When ICP returns a “satisfiable” decision, the solution
may be spurious; but its error is always within a given
bound that can be set very small.

A detailed discussion of what these correctness guarantees
of ICP imply for decision problems is given in Section
IV. These properties ensure that an ICP solver only relaxes
completeness moderately (see “δ-completeness”, Section IV),

while achieving efficiency. ICP algorithms have been applied
to various nonlinear scientific computing problems involving
thousands of variables and constraints (including transcenden-
tal functions) ([17], [18], [6]).

The HySAT/iSAT solver [11] is a state-of-the-art SMT
solver for QFNRA problems. HySAT uses ICP for handling
nonlinear real constraints. It carefully builds Boolean solving
capacities into ICP by exploiting the similarity between SAT
and interval constraint solving algorithms. HySAT successfully
solved many challenging nonlinear benchmarks that arise from
hybrid system verification problems [3].

However, a problem with HySAT is that it handles both
linear and nonlinear constraints with ICP. It is known that
ICP does not solve linear constraints efficiently enough. In
fact, ICP can suffer from the “slow convergence” problem [7]
on easy linear constraints such as “x ≥ y ∧ x ≤ y”, where it
needs a large number of iteration steps to return an answer.
As there exist highly optimized algorithms for deciding linear
arithmetic problems [10], solving all the constraints in ICP
is suboptimal. Most practical formal verification problems
contain a large number of linear and Boolean constraints, and
only a small number of nonlinear ones. Ideally, we would
like to solve linear and nonlinear constraints differently, and
apply the efficient algorithms for linear constraints as much
as possible.

Such separation of linear and nonlinear solving is not
straightforward to design. In fact, it is suggested as an open
question in the original HySAT paper [11]. There are several
difficulties involved:

• The linear and nonlinear constraints share many variables
in nontrivial problems. For the same variable, the linear
solver returns point solutions while ICP returns interval
solutions. It is not straightforward to check consistency
between the different solutions.

• As both the linear solver and the nonlinear solver return
only one solution (point or interval box) at a time, it is
impossible to enumerate all the solutions in one solver
and validate them in the other solver, since there are
usually infinitely many solutions.

• Linear solvers use rational arithmetic and ICP uses float-
ing point arithmetic. Efficient passing of values between
the two solvers can compromise the guaranteed numerical
error bounds in ICP. (See Example 2).

In this paper, we propose methods that tackle these prob-
lems. The main idea is to design an “abstraction refinement”
loop between the linear and nonlinear solving stages: We use
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the ICP solver to search for interval solutions of the nonlinear
constraints, and use the LRA solver to validate the solutions
and incrementally provide more constraints to the ICP solver
for refining the search space. The difficulty lies in devising
procedures that efficiently communicate solutions between the
linear and nonlinear solving stages without compromising
numerical correctness guarantees. Our main contributions are:

• We devise procedures that separate linear and nonlinear
solving in a DPLL(T) framework to enhance efficiency
in solving QFNRA problems.

• We give precise definitions of correctness guarantees
of ICP procedures, named δ-completeness, as used in
decision problems. We show that the devised separation
between linear and nonlinear solving preserves such
correctness guarantees.

• We describe how to exploit ICP in assertion and learning
procedures in DPLL(T) to further enhance efficiency.

The paper is organized as follows: In Section II we briefly re-
view ICP, DPLL(T), and LRA solvers; in Section III, we show
the detailed design of the checking procedures; in Section IV,
we discuss correctness guarantees of ICP in decision problems;
in Section V, we further describe the design of the assertion
and learning procedures. We show experimental results and
conclusions in Section VI and VII.

II. BACKGROUND

A. Interval Constraint Propagation

The method of ICP ([15], [6]) combines interval analysis
and constraint solving techniques for solving systems of real
equalities and inequalities. Given a set of real constraints and
interval bounds on their variables, ICP successively refines an
interval over-approximation of its solution set by narrowing
down the possible value ranges for each variable. ICP either
detects the unsatisfiability of a constraint set when the interval
assignment on some variable is narrowed to the empty set, or
returns interval assignments for the variables that tightly over-
approximate the solution set, satisfying some preset precision
requirement. (See Fig 1.) We will only be concerned with
elementary real arithmetic in this paper. We first use a simple
example to show how ICP works.

Example 1. Consider the constraint set {x = y, y = x2}.
i) Suppose Ix0 = [1, 4], Iy0 = [1, 5] are the initial intervals

for x and y. ICP approaches the solution to the constraint set
in the following way:

Step 1. Since the initial interval of y is Iy0 = [1, 5], to
satisfy the constraint y = x2, the value of x has to lie within
the range of ±

√
Iy0 , which is [−

√
5,−1] ∪ [1,

√
5]. Taking

the intersection of [−
√
5,−1]∪ [1,

√
5] and the initial interval

[1, 4] on x, we can narrow down the interval of x to Ix1 =
[1,

√
5];

Step 2. Given Ix1 = [1,
√
5] and the constraint x = y, the

interval on y can not be wider than [1,
√
5]. That gives Iy1 =

Iy0 ∩ [1,
√
5] = [1,

√
5];

Step 3. Given Iy1 , we can further narrow down the interval
on x, by maintaining its consistency with x = ±√

y, and obtain
Ix2 = Ix0 ∩

√
Iy1 = [1, 4

√
5].

Iterating this process, we have two sequences of intervals
that approach the exact solution x = 1, y = 1:
Ix : [1, 4] → [1,

√
5] → [1, 4

√
5] → [1, 8

√
5] → · · · → [1, 1]

Iy : [1, 5] → [1,
√
5] → [1, 4

√
5] → [1, 8

√
5] → · · · → [1, 1]

ii) On the other hand, ICP detects unsatisfiability of the
constraint set over intervals Ix0 = [1.5, 4] and Iy0 = [1, 4]
easily:
Ix : [1.5, 4] → [1.5, 4] ∩ [1,

√
4] → [1.5, 2] → [1.5, 2] ∩

[
√
1.5,

√
2] → ∅

Iy : [1, 4] → [1, 4] ∩ [1.5, 2] → [1.5, 2] → [1.5, 2] ∩ ∅ → ∅
Note that ICP implements floating point arithmetic, there-

fore all the irrational boundaries are relaxed by decimal
numbers in practice.

  

Fig. 1: Contraction of initial intervals to solution boxes

During the interval narrowing process, ICP can reach a
fixed-point before the precision requirement is satisfied. In that
case, ICP takes a splitting step, and recursively contracts the
sub-intervals. This framework for solving nonlinear constraints
is called the branch-and-prune approach [15].

We give the following formal definitions that will be referred
to in the following sections. Let n be the number of variables
and I = {[a, b] : a, b ∈ R} the set of all intervals over R.
An n-ary constraint σ is a relation defined by equalities and
inequalities over R, i.e., σ ⊆ Rn.

Definition 1. Let σ ⊆ Rn be a constraint, ~I ∈ In an
interval vector whose i-th projection is written as Ii, i.e.,
~I = 〈I1, ..., In〉. We say ~I over-approximates σ, if for all
(a1, ..., an) ∈ σ, ai ∈ Ii.

Definition 2. An interval contractor ] : In → In is a
function satisfying ]~I ⊆ ~I. The result of multiple applications
of an interval contractor on ~I is written as ]∗~I. A contraction
sequence is a sequence of intervals S = (~I1, ..., ~In) where
~Ii+1 = ]~Ii. A contraction step in S is defined as (~I, ]~I) where
~I = 〈I1, ..., Ii, ..., In〉, ]~I = 〈I1, ..., ]Ii, ..., In〉 and

]Ii = Ii ∩ F (I1, ..., Ii−1, Ii+1, ..., In).

F : In−1 → I is an interval-arithmetic function whose graph
over-approximates the constraint σ.

Definition 3. A consistency condition C ⊆ In ×In satisfies:
for any constraint σ ⊆ Rn, if ~I over-approximates σ and
(~I, ]~I) ∈ C, then ]~I over-approximates σ.
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B. DPLL(T) and the Dutertre-de Moura algorithm

An SMT problem is a quantifier-free first-order formula
ϕ with atomic formulas specified by some theory T . Most
current SMT solvers use the DPLL(T) framework [19]. A
DPLL(T)-based solver first uses a SAT solver on the Boolean
abstraction ϕB of the formula ϕ. If ϕB is satisfiable, a theory
solver (T-solver) is used to check whether the Boolean assign-
ments correspond to a consistent set of asserted theory atoms.
The T-solver should implement the following procedures:

Check() and Assert(): The Check() procedure provides
the main utility of a T-solver. It takes a set of theory atoms
and returns a “satisfiable”/“unsatisfiable” answer, depending
on whether the set is consistent with respect to the theory T .
The Assert() procedure provides a partial check for detecting
early conflicts.

Learn() and Backtrack(): When the Check() or Assert()
procedure detects inconsistency in a set of theory atoms, the
T-solver provides explanations through the Learn() procedure,
so that a clause can be learned for refining the search space.
When inconsistency occurs, the T-solver performs efficient
backtracking on the theory atoms in Backtrack().

LRA Solvers: The standard efficient algorithm for solving
SMT problems with linear real arithmetic is proposed in [10],
which we will refer to as the Dutertre-de Moura Algorithm.
The algorithm optimizes the Simplex method for solving SMT
problems by maintaining a fixed matrix for all the linear
constraints so that all the operations can be conducted on
simple bounds on variables. In what follows we assume that
the LRA solver implements the Dutertre-de Moura algorithm.

C. Formula Preprocessing

We consider quantifier-free formulas over 〈R,≤,+,×〉. The
atomic formulas are of the form pi ∼ ci, where ∼ ∈ {<,≤
, >,≥,=}, ci ∈ R and pi is a polynomial in R[~x].

Adopting similar preprocessing techniques as in [10], we
preprocess input formulas so that a fixed set of constraints can
be maintained such that the DPLL search can be done only
on simple atoms of the form x ∼ c. For any input formula,
we introduce two sets of auxiliary variables: a set of nonlinear
variables and a set of slack variables.

A nonlinear variable vi is introduced when a nonlinear term
ti appears for the first time in the formula. We replace ti by vi
and add an additional atomic formula (ti = vi) to the original
formula as a new clause.

Similarly, a slack variable si is introduced for each atomic
formula pi ∼ ci, where pi is not a single variable. We replace
pi by si, and add (pi = si) to the original formula.

For instance, consider

ϕ ≡df ((x2 + y ≥ 10 ∧ x · z < 5) ∨ y + z > 0).

We introduce nonlinear and slack variables to get:

(x2 = v1 ∧ x · z = v2)︸ ︷︷ ︸
Nϕ

∧ (v1 + y = s1 ∧ y + z = s2)︸ ︷︷ ︸
Lϕ

∧ ((s1 ≥ 10 ∧ v2 < 5) ∨ s2 > 0)︸ ︷︷ ︸
ϕ′

The new formula is equi-satisfiable with the original formula.
In general, after such preprocessing, any input formula ϕ is
put into the following normal form:

ϕ ≡
n∧

i=1

νi︸ ︷︷ ︸
Nϕ

∧
m∧
i=1

µi︸ ︷︷ ︸
Lϕ

∧
p∧

j=1

(

q∨
i=1

lji)︸ ︷︷ ︸
ϕ′

.

The following notations will be used throughout the paper:
1. V = {x1, ..., xk} denotes the set of all the variables ap-

pearing in ϕ. The set of variables appearing in any subformula
ψ of ϕ is written as V (ψ). In particular, write VN =

∪
i V (νi)

and VL =
∪

i V (µi).
2. In Nϕ, each atom νi is of the form xi0 = fi(xi1 , ..., xir )

where xij ∈ V . Note that xi0 is the introduced nonlinear
variable. fi is a nonlinear function that does not contain
addition/subtraction. We call Nϕ the nonlinear table of ϕ.

3. In Lϕ, each atom µi is of the form
∑
aijxij = 0, where

aij ∈ R and xij ∈ V . Lϕ is called the matrix of the formula
following [10].

4. In ϕ′, each literal li is of the form (xj ∼ ci) or ¬(xj ∼
ci), where xj ∈ V , ci ∈ R and ∼ ∈ {>,≥,=}. The original
Boolean structure in ϕ is now contained in ϕ′.

All the νis and µis are called constraints (nonlinear or
linear, respectively), and Nϕ∧Lϕ is called the extended matrix
of the formula.

III. INTERFACING LINEAR AND NONLINEAR SOLVING IN
THE CHECK() PROCEDURE

A. The Main Steps

As introduced in Section II-B, the Check() procedure pro-
vides the main utility of the theory solver in the DPLL(T)
framework. It takes a set of asserted theory atoms and returns
whether their conjunction is satisfiable in the theory T .

An intuitive way of separating linear and nonlinear solving
is to have the following two stages:

1. The linear constraints are first checked for feasibility, so
that linear conflicts can be detected early.

2. If no linear conflict arises, the nonlinear solver is invoked
to check whether the nonlinear constraints are satisfiable
within the feasible region defined by the linear constraints.

However, the difficulty lies in starting the second step. For
checking linear feasibility, the LRA solver maintains only one
point-solution throughout the solving process. That is, it stores
and updates a rational number for each variable. To obtain the
linear feasible region, extra computation is needed. A direct
way is to use the optimization phase of the Simplex algorithm
and collect optimal bounds of linear variables (their min/max
values), which are used as the initial interval assignments for
ICP. However, this is problematic for several reasons:

• Obtaining bounds on each variable requires solving two
optimization problems involving all the linear constraints
for every variable. This leads to heavy overhead.

• More importantly, the bounds on variables only constitute
a box over-approximation of the linear feasible region.
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After obtaining a nonlinear solution within this over-
approximation, we still need to check whether this so-
lution resides in the real feasible region. (See Fig. 2)

• Numerical errors in the optimization procedures are intro-
duced in the decision procedure. They can compromise
the correctness guarantees of ICP.

  

Linear Feasible Region

 Min-Max Approximation

Fig. 2: Box approximations can be too coarse.

Consequently, we need more subtle interaction procedures
between the linear and nonlinear solving stages.

We write the set of asserted theory atoms as Λ, i.e.,

Λ ⊆ {xi ∼ ci : xi ∼ ci is a theory atom in ϕ′},

where ϕ′ is as defined in the preprocessing step. Our Check()
procedure (Fig. 3) consists of the following main steps:

Step 1. Check Linear Feasibility. (Line 2 in Fig. 3)
First, we use the LRA solver to check the satisfiability of

the linear formula Lϕ ∧
∧

Λ. If the formula is unsatisfiable,
there is a conflict in Λ with respect to the matrix Lϕ, and
Check() directly returns “unsatisfiable”.

Step 2. Check Nonlinear Feasibility. (Line 4 in Fig. 3)
If the linear constraints are consistent, we start ICP directly

on the set of nonlinear constraints; i.e., we check the satis-
fiability of the formula Nϕ ∧

∧
Λ. Note that after the linear

solving phase in Step 1, the bounds on linear variables in Λ
are already partially refined by the LRA solver [10] and we
update Λ with the refined bounds. (Line 3 in Fig. 3)

If ICP determines that the nonlinear constraints are inconsis-
tent over the initial intervals specified by Λ, the solver directly
returns “unsatisfiable”.

Step 3. Validate Interval Solutions. (L6 in Fig. 3; Fig. 4)
If ICP determines that the formula in Step 2 is satisfiable,

it returns a vector ~I of interval assignments for all variables
in VN . Since we did not perform nonlinear checking within
the linear feasible region, it is possible that the interval
assignments for VN are inconsistent with the matrix Lϕ. Thus,
we need to validate the interval solutions ~I with respect to the
linear constraints Lϕ. This validation step requires reasoning
about the geometric properties of the interval solutions and
linear feasibility region defined by Lϕ∧

∧
Λ. We give detailed

procedures for the validation step in Section III-B.
Step 4. Add Linear Constraints to ICP. (L7-10 in Fig. 3)
If in the previous step an interval solution ~I is not validated

by the linear constraints, we obtain a set Σ of linear constraints
(specified in Section III-B) that are violated by ~I . Now we

1: Procedure Check(Lϕ, Nϕ,Λ)
2: if Linear Feasible(Lϕ ∧

∧
Λ) then

3: Λ←Linear Refine(Lϕ ∧
∧

Λ)
4: while ICP Feasible(Nϕ ∧

∧
Λ) do

5: ~I ← ICP Solution(Nϕ ∧
∧

Λ)
6: Σ← V alidate(~I, Lϕ,Λ)
7: if Nϕ == Nϕ ∪ Σ then
8: return satisfiable
9: else

10: Nϕ ← Nϕ ∪ Σ
11: end if
12: end while
13: end if
14: return unsatisfiable

Fig. 3: Procedure Check()
1: Procedure Validate(~I = 〈~l, ~u〉, Lϕ,Λ)
2: if Linear Feasible(

∧
(xi =

li+ui
2

) ∧ Lϕ ∧
∧

Λ) then
3: ~y ← ~b /*LRA solver returns ~b as the solution of ~y*/
4: for µ : ~x ≤ ej + ~d

T
j ~y ∈ Lϕ do

5: if ~c
T
j ~aj ≤ ej + ~d

T
j
~b is false then

6: /* See Proposition 1 for the definitions */
7: Σ← Σ ∪ µ
8: end if
9: end for

10: else
11: Σ← Linear Learn(

∧
(xi =

li+ui
2

) ∧ Lϕ ∧
∧

Λ)
12: end if
13: return Σ

Fig. 4: Procedure Validate()

restart ICP and look for another solution that can in fact satisfy
the linear constraints in Σ, by setting Nϕ := Nϕ ∧

∧
Σ and

loop back to Step 2. This is further explained in Section III-C.
In this way, we incrementally add linear constraints into

the set of constraints considered by ICP to refine the search
space. The loop terminates when ICP returns unsatisfiable on
Nϕ because of the newly added linear constraints, or when
the LRA solver successfully validates an interval solution.

Next, we give the detailed procedures for the validation
steps.

B. The Validation Procedures

1) Relations between interval solutions and the linear fea-
sible region: Geometrically, the interval solution returned by
ICP forms a hyper-box whose dimension is the number of
variables considered by ICP. The location of the hyper-box
with respect to the linear feasible region determines whether
the interval solution for the nonlinear constraints satisfies the
linear constraints. There are three possible cases (see Fig. 5
for a two-dimensional illustration):

Case 1: (Box A in Fig. 5) The hyper-box does not intersect
the linear feasible region. In this case, the interval solution
returned by ICP does not satisfy the linear constraints.

Case 2: (Box B in Fig. 5) The hyper-box partially intersects
the linear feasible region. In this case, the real solution of the
nonlinear constraints contained in the solution box could either
reside inside or outside the linear region.
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Distinguishing this case is especially important when we
take into account that the LRA solver uses precise rational
arithmetic. The interval assignments returned by ICP satisfy
certain precision requirements and usually have many decimal
digits, which can only be represented as ratios of large integers
in the LRA solver. Precise large number arithmetic is costly in
the LRA solver. To efficiently validate the interval solutions,
we need to truncate the decimal digits. This corresponds to a
further overapproximation of the intervals. For example:

Example 2. Consider (y = x2) ∧ (y − x = s) ∧
(y ≥ 2 ∧ x ≥ 0 ∧ s ≥ 0.6). In Step 2, ICP solves
the formula (y = x2 ∧ y ≥ 2 ∧ x ≥ 0) and re-
turns a solution x ∈ [1.414213562373, 1.414213567742]
and y ∈ [2, 2.000000015186]. Its rational relaxation x ∈
[14/10, 15/10] and y ∈ [2, 21/10] is validated, since y− x ≥
0.6 is satisfied by x = 1.4, y = 2. But the original formula is
unsatisfiable, which can in fact be detected if we use ICP on
the nonlinear and linear constraints together.
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B
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Fig. 5: Positions of hyper-boxes and the linear feasible region.

Case 3: (Box C in Fig. 5) The hyper-box completely resides
in the linear feasible region. In this case, all the points in the
interval solution returned by ICP satisfy the linear constraints
and hence the formula should be “satisfiable”. To distinguish
this case from Case 2, we propose the following consistency
condition.

2) The Sufficient Consistency Check: We check whether
all the points in ~I satisfy the linear constraints in Lϕ. When
that is the case, we say ~I is consistent with Lϕ and accept
the interval solution. This is a strong check that provides a
sufficient condition for the existence of solutions. By enforcing
it we may lose possible legitimate solutions (e.g., Box B may
contain a solution that indeed resides in the linear region). This
problem is handled in the refinement step (Section III-C).

We write variables contained in the nonlinear constraints as
VN = {x1, ..., xn}, and the variables that only occur in linear
constraints as VL \ VN = {y1, ..., ym}.

Definition 4. Let ~I : 〈[l1, u1], . . . , [ln, un]〉 be an interval so-
lution for variables in VN . We write ~I : [~l, ~u], ~x = (x1, ..., xn),
~y = (y1, ..., ym). We say ~I is consistent with the matrix Lϕ,
if

∃ ~y ∀ ~x
[
(~x ∈ ~I) → (Lϕ ∧

∧
Λ)

]
· · · (?)

is true, where ~x ∈ ~I =df

∧
xi∈VN

(li ≤ xi ∧ xi ≤ ui). Note
that Lϕ ∧

∧
Λ is a formula in both ~x and ~y.

This condition states that, for an interval solution ~I to be
consistent with the linear constraints, there must be a feasible
point solution ~b for the remaining linear variables ~y such that
for all the points ~a ∈ ~I , (~a,~b) satisfies the linear constraints.
This is a direct formulation of Case 3.

3) The Validation Steps: We propose the following pro-
cedures for validating interval solution with the LRA solver
(shown in Fig. 4).

Step 3.1. (Line 2-3, Fig. 4) First, we check whether the
center of the hyper-box ~I resides in the linear feasible region
(in fact it can be an arbitrary point of the box), by checking
whether the linear formula:∧

xi∈VN

(xi =
li + ui

2
) ∧ Lϕ ∧

∧
Λ

is satisfiable. This can be done by the LRA solver.
If this formula is unsatisfiable, we know that Condition (?)

is violated, since the center of ~I lies outside linear feasible
region. We can obtain a set of violated linear constraints
provided by the LRA solver (Line 11, Fig. 4). This is further
explained in Section III-C.

If it is satisfiable, the Dutertre-de Moura Algorithm returns
an exact point solution ~b for ~y. (Line 3, Fig. 4)

Step 3.2. (Line 4-7, Fig. 4) Next we need to ensure that,
after the remaining linear variables ~y are assigned ~b, the
interval box ~I resides “far away” from the boundaries of the
linear feasible region.

Since Lϕ ∧
∧

Λ only contains linear constraints, it can be
written as the intersection of k half spaces:

Lϕ ∧
∧

Λ ≡
k∧

j=1

~c
T
j ~x ≤ ej + ~d

T
j ~y.

where ~cj = (cj1, ..., cjn) and ~dj = (dj1, ..., djm).
First, we make the observation that the maximum of each

~c
T
j ~x is obtained when the x variables take the min or max

values in their intervals depending on their coefficients:

Lemma 1. The solution to the linear program

max ~c
T
j ~x with respect to ~x ∈ ~I : [~l, ~u]

is given by ~x = (a1, ..., an), where ai = li when cji ≤ 0 and
ai = ui otherwise.

Further, we know that the universal statement in the consis-
tency condition is satisfied, if the max value of ~c

T
~x is bounded

by the linear constraints ej + ~d
T
j ~y. That is:

Proposition 1. The assertion

∀ ~x. ((~x ∈ ~I) → ~c
T
j ~x ≤ ej + ~d

T
j ~y)

holds for ~y = ~b iff

~c
T
j ~aj ≤ ej + ~d

T
j
~b,
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wherein ~aj = (aj1, ..., ajn) satisfying: aji = li when cji ≤ 0,
and aji = ui otherwise.

The condition in Proposition 1 can be verified by simple
calculations: we only need to plug the values of ~x = ~aj
and ~y = ~b in each linear constraint, and check whether the
constraint is satisfied.

To summarize, we use the LRA solver to search for a
candidate solution ~b for the linear variables ~y, and verify
if the strong consistency condition (?) holds when ~y = ~b,
using Proposition 1. If Condition (?) is verified, we return
“satisfiable”.

Again, Condition (?) and Proposition 1 provide a sufficient
condition for the consistency of ~I and Lϕ, which may refute
legitimate solution boxes. This is compensated, because we
use the strong condition to learn the violated linear constraints
instead of directly refuting boxes. This is further explained in
the next section.

C. Refinement of ICP Search Using Linear Constraints

In the validation steps, there are two places where we can
detect that an interval solution has violated linear constraints:

• In Step 3.1, the linear formula is detected unsatisfiable
by the LRA solver. In this case, we use the learning
procedure in the LRA solver that returns a set of linear
constraints.

• In Step 3.2, the condition in Proposition 1 can fail for
a set of linear constraints. These are the constraints that
the box solution does not completely satisfy.

In both cases, we have a set of linear constraints which we
write as Σ. We then add Σ to Nϕ and restart the ICP search on
the updated Nϕ. Now, the new interval solution obtained by
the updated Nϕ should not violate Σ modulo numerical errors
in ICP, since it was obtained by ICP under the constraints in
Σ.

Here, a tricky problem is that ICP allows numerical error (up
to its precision bound). It is possible that even after Σ is added
to ICP, the interval solution ~I that ICP returns may still violate
Σ in terms of precise arithmetic. In such cases, the linear solver
and the ICP solver disagree on the same set of constraints:
Namely, ICP decides that ~I satisfies Σ up to its error bound,
whereas the linear solver can decide that ~I is not consistent
with Σ since it is not validated using precise arithmetic. When
this happens, the same set Σ can be repeatedly violated and
the refinement algorithm may loop forever without making
progress. To avoid this problem, we pose the requirement that
the added Σ should not be already contained in Nϕ. Otherwise,
we directly return “satisfiable” (Line 6 and 7 in Fig. 3). We
will show in the next section that this decision preserves the
correctness guarantees of ICP.

IV. CORRECTNESS GUARANTEES

Originally ICP is used in solving systems of nonlinear
equalities/inequalities over real numbers. Thus, the notion of
correctness of ICP is not directly formulated for the use in
decision procedures. A well-known property [15] of ICP is

that when a system S of real equalities and inequalities has
a solution, ICP always returns an interval solution ~I of S. In
deciding QFNRA problems, this property of ICP implies that
when a system is satisfiable, ICP always returns “satisfiable”.
In other words, when ICP returns “unsatisfiable”, the system
must be unsatisfiable.

Conversely, if whenever ICP returns “satisfiable” the system
is also satisfiable, we would have a sound and complete
solver1. This can not be guaranteed by ICP because of its use
of finite-precision arithmetic. In other words, the “satisfiable”
answers from ICP can not always be trusted. In the design
of HySAT [11], posterior validation procedures of the interval
solutions are applied, and the solver can return “unknown”
when a solution is not validated.

Similar validation procedures can be straightforwardly
adopted in our solver. However, in what follows we aim to
make clear the exact meanings of the answers returned by
ICP algorithms in the context of decision problems. In fact,
we will show that ICP does guarantee a moderately relaxed
notion of soundness and completeness that can indeed prove
useful for certain verification tasks.

Informally, when ICP returns “satisfiable” for a set S of
theory atoms, it must be one of the following two cases:

• S is satisfiable.
• S is unsatisfiable, but if some constant terms in S are

changed slightly, S will become satisfiable.
Contrapositively, if a system S remains unsatisfiable under
small perturbations on its constant terms, ICP indeed returns
that S is “unsatisfiable”. This notion (as a special case of the
formulation in [21]) is made precise in the following definition.

Definition 5 (δ-robustness). Let S be a system of equalities∧k
i=1 fi = 0, where fi ∈ R[~x], and xi ∈ Ii where Ii ⊆ R are

intervals. Let δ ∈ R+ be a positive real number.
S is called δ-robustly unsatisfiable if for any choice of ~c =

(c1, ..., ck) where |ci| ≤ δ,
∧k

i=1 fi = ci remains unsatisfiable.
Each ~c is called a perturbation on S.

We write the system perturbed by ~c as S~c. Note that we only
considered systems of equalities, because inequalities can be
turned into equalities by introducing new bounded variables.
The following example illustrates the definition.

Example 3. Consider the system S : y = x2 ∧ y = −0.01.
S is unsatisfiable. If we set δ1 = 0.1, then there exists a
perturbation c = 0.01 < δ1 such that S(0,c) : y = x2 ∧ y = 0
is satisfiable. However, if we set δ2 = 0.001, then there does
not exist ~c that can make S~c satisfiable with |ci| ≤ δ2. Hence,
we say S is δ2-robustly unsatisfiable.

The bound δ of “undetectable perturbations” corresponds to
the error bound of ICP. It can be made very small in practice
(e.g., 10−6). To be precise, we have the following theorem:

1The notion of soundness and completeness have quite different, although
related, definitions in different communities. We will give clear definitions
when a formal notion is needed (such as δ-completeness). Informally, we will
only use “sound and complete” together to avoid mentioning their separate
meanings that may cause confusion.
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Theorem 1. Let S be a system of real equalities and in-
equalities. Let δ be the preset error bound of ICP. If for any
~c satisfying |ci| ≤ δ, S~c is unsatisfiable, then ICP returns
“unsatisfiable” on S.

Proof: First, note that we only need to consider systems
of equalities. This is because by introducing a new variable, an
inequality f(~x) > c can be turned into an equality f(~x) = y
with the interval bound y ∈ (c,+∞).

Now, let S :
∧k

i=1 fi(~x) = 0 be a system of equalities,
where the variables are bounded by the initial interval bounds
~x ∈ ~I0, and fi ∈ R[~x] are polynomials.

Suppose S is decided as satisfiable by ICP. ICP returns an
interval solution I~x for ~x. The δ error bound of ICP ensures
that:

∃~x ∈ I~x [
k∧

i=1

|fi(~x)| ≤ δ].

Let ~a be the witness to the above formula. We then have

(f1(~a) = c1 ∧ c1 ≤ δ) ∧ ... ∧ (fk(~a) = ck ∧ ck ≤ δ).

Consequently, (c1, ..., ck) is indeed a perturbation vector that
makes S(c1,...,ck) :

∧k
i=1 fi(~x) = ci satisfiable with the

solution ~a. As a result, S is not δ-robustly unsatisfiable, which
contradicts the assumption.

This property ensures that ICP is not just a partial heuristic
for nonlinear problems, but satisfies a “numerically relaxed”
notion of completeness, which we call δ-completeness:

• If S is satisfiable, then ICP returns “satisfiable”.
• If S is δ-robustly unsatisfiable, then ICP returns “unsat-

isfiable”.
Consequently, the answer of ICP can only be wrong on

systems that are unsatisfiable but not δ-robustly unsatisfiable,
in which case ICP returns “satisfiable”. We can say such
systems are “fragilely unsatisfiable”.

In practice, it can be advantageous to detect such fragile sys-
tems. In bounded model checking, an “unsatisfiable” answer of
an SMT formula means that the represented system is “safe”
(a target state can not be reached). Thus, fragilely unsatisfiable
systems can become unsafe under small numerical perturba-
tions. In the standard sense, a fragilely unsatisfiable formula
should be decided as “unsatisfiable” by a complete solver, and
such fragility will be left undetected. Instead, ICP categorizes
such fragilely unsatisfiable systems as “satisfiable”. Moreover,
ICP returns a solution. Note that this solution is spurious for
the unperturbed system, but is informative of the possible
problem of the system under small perturbations. On the other
hand, ICP returns “unsatisfiable” on a system if and only if
the system is δ-robustly safe. The error bound δ of ICP can
also be changed to allow different levels of perturbations in
the system.

Our checking and validation procedures are devised to
preserve such correctness guarantees of ICP. Formally, we
have the following theorem.

Theorem 2 (δ-completeness of Check()). Let ϕ be the pre-
processed input formula for Check(), and δ the error bound

of ICP. If ϕ is satisfiable, then the Check() procedure returns
“satisfiable”. If ϕ is δ-robustly unsatisfiable, then the Check()
procedure returns “unsatisfiable”.

A detailed proof of the theorem is contained in our extended
technical report [13].

As a technical detail, we need to mention that the prepro-
cessing procedure may change the actual δ in the robustness
claims. The reason is that when we preprocess a formula ϕ to
ϕ′, new variables are introduced for compound terms, and new
constants are used. Perturbations allowed on the new constants
may accumulate in ϕ′. For instance, x2 = 1∧x = 0 is robustly
unsatisfiable for δ = 1/2. But when it is preprocessed to
x2−h = 0∧h = 1∧x = 0, the perturbations on the first two
atoms can be added, and in effect the formula is no longer
1/2-robustly unsatisfiable (x2 −h = −1/2∧h = 1/2∧x = 0
is satisfiable). Note that the new formula is still 1/3-robustly
unsatisfiable. The change of δ is solely determined by the
number of the new variables introduced in preprocessing. In
practice, when the exact error bound is needed, a new δ′ can
be calculated for the robustness claims that we make for the
original formula. As is usually the case, the error bound is
small enough (e.g. 10−6) such that δ′ and δ are of the same
order of magnitude.

V. ASSERTION AND LEARNING PROCEDURES

In a standard DPLL(T) framework, the theory solver pro-
vides additional methods that facilitate the main checking
procedures to enhance efficiency. First, a partial check named
Assert() is used to prune the search space before the complete
Check() procedure. Second, when conflicts are detected by
the checking procedures, the theory solver uses a Learn()
procedure to provide explanations for the conflicts. Such
explanations consist of theory atoms in the original formula,
which are added to the original formula as “learned clauses”.
Third, when conflicts are detected, the theory solver should
backtrack to a previous consistent set of theory atoms, using
the Backtrack() procedure.

In this section, we briefly describe how these additional
methods can be designed when the interval methods in ICP
are used in the checking procedures. A complete description
of the procedures requires references to more details of ICP,
which can be found in our extended technical report [13].

A. Interval Contraction in Assert()

In the DPLL(T) framework, besides the Check() procedure,
an Assert() procedure is used to provide a partial check of
the asserted theory atoms [10]. We use interval contraction
(Definition 2) to detect early conflicts in Assert() in the
following way:

In each call to Assert(), a new atom x ∼ c is added to the set
Λ of asserted theory atoms. First, the interval assignment on
x is updated by the new atom x ∼ c. Then, Assert() contracts
the interval assignment ~I for all the variables with respect to
the linear and nonlinear constraints. That is, it takes ~I as input,
and outputs a new vector of intervals ~I ′, such that (~I, ~I ′) is a
valid contraction step (Definition 2) preserving the consistency
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conditions (Definition 3). If ~I ′ becomes empty, it represents an
early conflict in Λ. Otherwise, Assert() returns the contracted
intervals as the updated ~I .

B. Generating Explanations and Backtracking

1) Generating Explanations: As described in Section II-
A, ICP returns “unsatisfiable” when the interval assignment
on some variable x is contracted to the empty set. When
this happens, we need to recover the set of atoms that has
contributed to the contraction of intervals on the variable x.
This can be done by keeping track of the contraction steps.

Let x be a variable in ϕ, and l a theory atom of the form
y ∼ c in ϕ. For convenience we can write l as y ∈ Iyc . Suppose
x has a contraction sequence Sx = (Ix1 , ..., I

x
n). We define:

Definition 6. The theory atom l is called a contributing
atom for x, if there exists a contraction step (Ixi , I

x
i+1) in

Sx, satisfying that Ixi+1 = Ixi ∩ F (~I), where Iyc appears in ~I .

The contributing atom list for a variable x is defined as
Lx =

∧
{l : l is a contributing atom of x}. We can prove that

when the interval on x is contracted to the empty set, i.e.,
when Ixn = ∅, it is sufficient to take the negation of Lx as the
learned clause:

Proposition 2. Let x be a variable in formula ϕ with a con-
traction sequence (Ix1 , ..., I

x
n). Let Lx be the contributing atom

list of x. Suppose Ixn = ∅, then Nϕ∧Lϕ∧Lx is unsatisfiable.

A detailed proof is contained in [13].
2) Backtracking: When an inconsistent set Λ of atoms is

detected by either Assert() or Check(), the solver calls the SAT
solver to backtrack to a subset Λ′ of Λ and assert new atoms.
The theory solver assists backtracking by eliminating all the
decisions based on atoms in Λ\Λ′, and restores the solver state
back to the decision level where Λ′ is checked by Assert().
Since the Assert() procedure stores interval assignments during
the contraction process, this is accomplished by restoring the
interval assignment at that level.

VI. EXPERIMENTAL RESULTS

We have implemented a prototype solver using the
realpaver package for ICP [14] and the open-source SMT
solver opensmt [4]. We accept benchmarks in the SMT-
LIB [5] format, and have extended it to accept floating-point
numbers. All experiments are conducted on a workstation with
Intel(R) Xeon 2.4Ghz CPU and 6.0GB RAM running Linux.

A. Bounded Model Checking of Embedded Software

Our main target domain of application is bounded model
checking of embedded software programs that contain nonlin-
ear floating point arithmetic. The benchmarks (available online
at [1]) in Table I are generated from unwinding a program that
reads in an array of unknown values of bounded length, and
tries to reach a target range by performing different arithmetic
operations on the input values [16].

In Table I, We show the running time comparison between
LRA+ICP and the HySAT/iSAT tool [3]. (hysat-0.8.6 and

D #Vars #Lϕ #Nϕ #l Result LRA+ICP HySAT
Benchmark Set: AddArray

6 10 3 0 1 UNSAT 0.06s 0.04s
8 36 10 0 1 UNSAT 0.09s 303.03s

31 1634 735 0 1 UNSAT 0.93s mem-out
Benchmark Set: MultiArray-1

5 10 3 20 1 UNSAT 0.23s 0.02s
7 30 8 28 1 UNSAT 0.04s 7.21s
8 121 40 32 1 UNSAT 0.12s 56.46s

16 817 320 64 1 UNSAT 0.32s mem-out
26 1687 670 104 2 SAT 87.45s mem-out

Benchmark Set: MultiArray-2
9 208 75 36 1 UNSAT 0.73s 244.85s

10 295 110 40 1 UNSAT 0.11s 123.02s
11 382 145 44 1 UNSAT 0.12s 3.96s
20 1165 460 80 1 UNSAT 0.30s mem-out
26 1687 670 104 2 SAT 65.72s mem-out

Benchmark Set: MultiArrayFlags
11 861 337 44 1 UNSAT 0.19s mem-out
21 2131 847 84 1 UNSAT 0.93s mem-out
31 3401 1357 124 1 UNSAT 0.65s mem-out
51 5941 2377 204 1 UNSAT 26.17s mem-out

TABLE I: LRA+ICP and HySAT on BMC Benchmarks

name cvc3(s) LRA+ICP name cvc3(s) LRA+ICP

10u05 2.21 8.87 20revert 6.73 36.12
20u10 5.54 14.25 30u15 13.52 120.21
40f10 117.53 89.01 40f25 123.97 175.28
40f50 228.25 99.26 40f99 240.11 215.12
40m10 120.16 86.29 40m25 120.18 153.01
40m50 213.12 111.87 40m99 237.87 217.92
40s10 41.445 280.06 40s25 40.38 180.15
40s50 37.59 180.12 40s99 35.23 189.43
40u20 28.31 231.21 c40f timeout 270.12
c40m timeout 279.45 c40s 34.12 301.76
l40f 15.02 320.12 l40s 20.32 242.75

m40e 25.72 113.23 m40 226.21 182.12

TABLE II: LRA+ICP and CVC3 on QF UFNRA Benchmarks

its new version isat give roughly the same results on the
benchmarks, we picked the best timings.)

In the table, the first column (“D”) is the unrolling depth
of the original program. The number of variables (#Vars),
linear constraints (#Lϕ), and nonlinear constraints (#Nϕ)
are the ones that actually effective in the theory solver, after
preprocessing is done. They can be much lower than the
raw numbers appearing in the benchmark. The “#l” column
is the number of iterations of the linear-nonlinear checking
loop (Step 2-4 in Section III-A) that are used in obtaining
the answer. “mem-out” indicates that HySAT aborted for the
reason that no more memory can be allocated.

For the “UNSAT” instances, the linear solver detects con-
flicts in the linear constraints early on, and avoids solving
the nonlinear constraints directly as in HySAT. For the “SAT”
instances, the two iterations of the linear-nonlinear checking
loop proceed as follows: Initially, no linear conflicts were
detected, and ICP is invoked to solve the nonlinear constraints
and return an interval solution. The linear solver then detects
that the interval solutions violate a set of linear constraints,
which are added to the constraints considered by ICP (Line
6 in Fig. 3). This concludes the first iteration. In the second
iteration, ICP solves the expanded set of constraints and return
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Fig. 6: LRA+ICP and CVC3 on QF UFNRA Benchmarks

a new interval solution. Then the linear solver detects no
further conflict and return “SAT” as the final answer. This
concludes the second iteration.

We see that by separating the linear and nonlinear solving
stages, we can exploit the highly efficient linear solver for
solving the linear constraints and invoke the nonlinear solving
capacity of ICP only when needed. The proposed refinement
loop ensures that the correctness guarantees of ICP are pre-
served under such separation of linear and nonlinear solving.

B. QFNRA Problems from SMT-LIB

We have obtained results on QF UFNRA benchmarks on
SMT-LIB [5]. So far the only solver that solves the same set
of benchmarks is CVC3 [2]. (The HySAT solver uses a special
format. CVC3 does not accept floating point numbers in the
previous set of benchmarks.)

In Table II we compare the LRA+ICP solver with CVC3.
The data are plotted in Fig 6. (The timeout limit is 1000s.)
The timing result is mixed. Note that our solver ensures
δ-completeness and does not have specific heuristics. Con-
sequently, our solver performs rather uniformly on all the
benchmarks, whereas CVC3 can be much faster or slower on
some of them. (We are not aware of the solving strategy in
CVC3.) To evaluate the influence of the error bound δ on
the speed of the solver, we have set it to different values
δ1 = 10−1 and δ2 = 10−6. However, the difference is not
significant on this set of benchmarks. The reason for this may
be that the nonlinear constraints in the benchmarks are all of
the simple form “x = yz” with few shared variables.

VII. CONCLUSION

We have proposed a novel integration of interval constraint
propagation with SMT solvers for linear real arithmetic to
decide nonlinear real arithmetic problems. It separates linear
and nonlinear solving stages, and we showed that the pro-
posed methods preserve the correctness guarantees of ICP.
Experimental results show that such separation is useful for
enhancing efficiency. We envision that the use of numerical
methods with correctness guarantees such as ICP can lead to
more practical ways of handling nonlinear decision problems.
Further directions involve developing heuristics for different

systems with specific types of nonlinear constraints and extend
the current results to transcendental functions.
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Abstract—Complementary synthesis automatically synthesizes
the decoder circuit E−1 of an encoder E. It determines the
existence of E−1 by checking the parameterized complementary
condition (PC). However, this algorithm will not halt if E−1

does not exist. To solve this problem, we propose a novel halting
algorithm to check PC in two steps.

First, we over-approximate PC with the linear path unique
condition (LP ), and then falsify LP by searching for a loop-like
path. If such a loop is found, then E−1 does not exist; otherwise,
LP can eventually be proved within E’s recurrence diameter.

Second, with LP proved above, we construct a list of approx-
imations that forms an onion-ring between PC and LP . The
existence of E−1 can be proved by showing that E belongs to
all these rings.

To illustrate its usefulness, we have run our algorithm on
several complex encoder circuits, including PCIE and 10G
Ethernet. Experimental results show that our new algorithm
always distinguishes correct Es from incorrect ones and halts
properly.

Index Terms—Halting Algorithm, Complementary Synthesis

I. INTRODUCTION

Complementary synthesis has been proposed by us [1] to
automatically synthesize an encoder circuit E’s decoder E−1

in two steps. First, it determines the existence of E−1 by
checking the parameterized complementary condition(PC),
i.e., whether E’s input can be uniquely determined by its
output on a bounded unfolding of E’s transition function.
Second, it builds E−1 by characterizing its Boolean function
with an all-solution SAT solver.

However, the bounded nature of the first step makes it an
incomplete algorithm that will not halt if E−1 does not exist.

To solve this problem, as shown in Figure 1, we propose a
novel halting algorithm to check PC in two steps:

1) First, we over-approximate PC with the linear path
unique condition (LP ), i.e., every linear path of E
longer than a particular parameter p always reaches
the unique state set SU , in which the input letter
can be uniquely determined by the output letter, the
current state and the next state. We then define the
negative condition of LP ,i.e., the loop-like non-unique
condition(LL). We can falsify LP and prove LL by
searching for a loop-like path that does not reach SU

within E’s recurrence diameter rd. If we find such a
loop-like path, then LL is proved and E−1 does not
exist; otherwise, a parameter p can eventually be found

to prove LP . In this case, we need the second step below
to further check PC.

2) Second, with p found in the first step that proves LP , we
construct a list of approximations that forms an onion-
ring between PC and its over-approximation LP . If E
is found in a certain ring but not in the next inner ring,
then PC is falsified and E−1 does not exist; otherwise,
the existence of E−1 is proved.

We have implemented our algorithm with the OCaml lan-
guage, and solved the generated SAT instances with Zchaff
SAT solver [2]. The benchmark set includes several complex
encoders from industrial projects (e.g., PCIE and Ethernet),
and their slightly modified variants without corresponding
decoders. Experimental results show that our new algorithm
always distinguishes correct encoders from their incorrect vari-
ants and halts properly. All experimental results and programs
can be downloaded from http://www.ssypub.org.

This paper’s contribution is: We propose the first halting
algorithm to determines the existence of an encoder’s decoder.

The remainder of this paper is organized as follows. Sec-
tion II presents background materials. Section IV introduces
how to over-approximate PC with LP , and how to falsify
LP by searching for loop-like paths. Section V discusses how
to construct the onion-ring, and how to determine whether E
belongs to a certain ring. Section VI describes how to remove
redundant output letters to minimize circuit area, while Section
VII and VIII present experimental results and related works.
Finally, Section IX concludes with a note on future work.

II. PRELIMINARIES

A. Basic Notation of Propositional Satisfiability Problem

For a Boolean formula F over a variable set V , the
Propositional Satisfiability Problem(abbreviated as SAT) is
to find a satisfying assignment A : V → {0, 1}, so that F can

Fig. 1. Relationship between PC,LP and LL
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be evaluated to 1. If such a satisfying assignment exists, then
F is satisfiable; otherwise, it is unsatisfiable.

A computer program that decides the existence of such a
satisfying assignment is called a SAT solver, such as Zchaff
[2], Grasp [3], Berkmin [4], and MiniSAT [5]. A formula to
be solved by a SAT solver is also called a SAT instance.

B. Recurrence Diameter

A circuit can be modeled by Kripke structure M = (S, I
, T, A, L), with a finite state set S, the initial state set I ⊆ S,
the transition relation T ⊆ S×S, and the labeling of the states
L : S → 2A with atomic proposition set A.

Kroening et al. [6] defined the state variables recurrence
diameter with respect to M , denoted by rrd(M), as the
longest loop-free path in M starting from an initial state.

rrd(M)
def
= max{i|∃s0 . . . si :

I(s0) ∧
i−1∧
j=0

T (sj, sj+1) ∧
i−1∧
j=0

i∧
k=j+1

sj �= sk}
(1)

In this paper, we define a similar concept: the uninitialized
state variables recurrence diameter with respect to M ,
denoted by uirrd(M), is the longest loop-free path in M .

uirrd(M)
def
= max{i|∃s0 . . . si :

i−1∧
j=0

T (sj, sj+1) ∧
i−1∧
j=0

i∧
k=j+1

sj �= sk}
(2)

The only difference between these two definitions is that
our uirrd does not consider the initial state.

These definitions are only used in proving our theorems be-
low. Our algorithm does not need to compute these diameters.

C. The Original Algorithm to Determine the Existence of
Decoder

The complementary synthesis algorithm [1] includes two
steps: determining the existence of decoder and characterizing
its Boolean function. We will only introduce the first step here.

The encoder E can be modeled by a Mealy finite state
machine [7].

Definition 1: Mealy finite state machine is a 5-tuple M =
(S, s0, I, O, T ), consisting of a finite state set S, an initial

state s0 ∈ S, a finite set of input letters I , a finite set of
output letters O, a transition function T : S × I → S × O
that computes the next state and output letter from the current
state and input letter.

As shown in Figure 2, as well as in the remainder of this
paper, the state is represented as a gray round corner box, and
the transition function T is represented by a white rectangle.

We denote the state, input letter and output letter at the n-
th cycle respectively as sn, in and on. We further denote the
sequence of state, input letter and output letter from the n-th
to the m-th cycle respectively as sm

n , imn and om
n .

A sufficient condition for the existence of E−1 is the unique
condition, i.e., there exist two parameters d and l, so that in of
E can be uniquely determined by the output sequence on+d−1

n+d−l .
As shown in Figure 3, d is the relative delay between on+d−1

n+d−l

and the input letter in, while l is the length of on+d−1
n+d−l .

However, the unique condition is unnecessarily restrictive,
because it may not hold when sn is not reachable, even if E
is a correct encoder whose input can be uniquely determined
by its output in its reachable state set. So we need to rule out
unreachable states before checking the unique condition.

The continuous running character of communication circuits
provides us an opportunity to rule out unreachable states easily
without paying the expensive cost of computing the reachable
state set. That is to say, we only need to check the unique
condition on the state set RS∞ that can be reached infinitely
often from S.

RSq def
= {sq|

q−1∧
m=0

{(sm+1, om) ≡ T (sm, im)}} (3)

RS>p def
=

⋃
q>p

RSq (4)

RS∞ def
= lim

p→∞ RS>p (5)

Here, RSq is the set of states that can be reached from S
with exact q steps.

According to Equation (5) and Figure 3, RS∞ can be easily
over-approximated by prepending a state transition sequence
of length p to sn, which forces sn to be in the state set
RS>p =

⋃
q>p RSq. Obviously, RS∞ and all RS>p form

a total order shown below, which means a tighter over-
approximation of RS∞ can be obtained by increasing the
length p of prepended state transition sequence.

n+d-l n+d-1

n-p n

n

Fig. 3. The parameterized complementary condition
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RS∞ ⊆ · · · ⊆ RS>p2 ⊆ · · · ⊆ RS>p1 ⊆ . . . where p2 > p1

Thus, as shown in Figure 3, the parameterized complemen-
tary condition(PC) [1] can be defined as:

Definition 2: Parameterized Complementary Condition
(PC) : For encoder E, E � PC(p, d, l) holds if in can
be uniquely determined by on+d−1

n+d−l on sn+d−1
n−p . This equals

the unsatisfiability of FPC(p, d, l) in Equation (6). We further
define E � PC as ∃p, d, l : E � PC(p, d, l).

FPC(p, d, l)
def
=⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∧n+d−1
m=n−p{(sm+1, om) ≡ T (sm, im)}

∧ ∧n+d−1
m=n−p{(s′m+1, o

′
m) ≡ T (s′m, i′m)}

∧ ∧n+d−1
m=n+d−l om ≡ o′m
∧ in �= i′n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)

The 2nd and 3rd lines of Equation (6) correspond respec-
tively to two unfolded instances of E’s transition function. The
only difference between them is that a prime is appended to
every variable in the 3rd line. The 4th line forces the output
sequences of these two unfolded instances to be the same,
while the 5th line forces their input letters to be different.

III. CASE STUDIES

To facilitate the understanding of our idea, we use some
small examples shown in Figure 4,5 and 6.

A. Case study 1

The circuit in Figure 4a) stores its input port in in register
sn+1, and then outputs it to output port on+1. The unfolding
of its transition function is shown in Figure 4b).

Obviously, in is same as, and therefore can be uniquely
determined by sn+1. So in can be uniquely determined by
sn, on and sn+1. So LP is satisfied by this circuit. Here, the
tuple < sn, on, sn+1 > can be seen as a ring that surrounds
in.

Next, we expand the ring < sn, on, sn+1 > to another ring
< sn, on, on+1, sn+2 >, and perform the following 3 checks:

1) Whether in can be uniquely determined by the ring <
sn, on, on+1, sn+2 >? Obviously the answer is yes.

2) Whether in can be uniquely determined by <
on, on+1, sn+2 >, the ring with sn removed? Obviously
the answer is yes.

sn

in

on

sn+1 sn

in

on

sn+1

in+1

on+1

sn+2

Fig. 4. Case study 1

sn

in

on

sn+1 sn

in

on

sn+1

in+1

on+1

sn+21 1 1

Fig. 5. Case study 2

3) Whether in can be uniquely determined by <
on, on+1 >, the ring with sn and sn+2 both removed?
Obviously the answer is yes. In this case, we find that
in can be uniquely determined by the output sequence
< on, on+1 >. Thus, a decoder exists for this circuit.

B. Case study 2

The circuit in Figure 5a) connects a constant 1, instead of
input port i to register s. So in can never be determined by sn,
on and sn+1 in all states. Thus, a loop-like path with length
1 will reach such a state, which satisfies LL and falsifies LP .
So no decoder exists for this circuit.

C. Case study 3

For the circuit in Figure 6a), the unfolding of its transition
function is shown in Figure 6b). It’s output is driven by
constant 1, instead of register s. Obviously, this circuit can
satisfy LP , which means in can be uniquely determined by
sn,on and sn+1.

Next, we expand the ring < sn, on, sn+1 > to another ring
< sn, on, on+1, sn+2 >, and perform the following 3 checks:

1) Whether in can be uniquely determined by the ring
< sn, on, on+1, sn+2 >? The answer is no, because in
never goto on, on+1 and sn+2.

2) Whether in can be uniquely determined by <
on, on+1, sn+2 >, the ring with sn removed? The
answer is still no with the same reason.

3) Whether in can be uniquely determined by <
on, on+1 >, the ring with sn and sn+2 both removed?
The answer is still no with the same reason.

So in this case, no more expansion is needed, no decoder exists
for this circuit.

sn

in

on

sn+1 sn

in

on

sn+1

in+1

on+1

sn+2
1 1 1

Fig. 6. Case study 3
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Fig. 7. Two new uniqueness conditions

IV. OVER-APPROXIMATING PC WITH LP AND
FALSIFYING LP BY SEARCHING FOR LOOP-LIKE PATH

A. Definition of Over-approximation

We first present some related definitions before defining the
over-approximation of PC.

Definition 3: Unique State Set SU and Non-unique State
Set SN : For a circuit E, its unique state set SU is the set of
states sn that makes in to be uniquely determined by sn,on

and sn+1, i.e., makes FU in Equation (7) unsatisfiable. The
non-unique state set SN is the complementary set of SU , i.e.,
SN def

= S − SU .

FU def
=⎧⎪⎪⎨

⎪⎪⎩

(sn+1, on) ≡ T (sn, in)
∧(s′n+1, o

′
n) ≡ T (s′n, i′n)

∧on ≡ o′n ∧ sn ≡ s′n ∧ sn+1 ≡ s′n+1

∧in �= i′n

⎫⎪⎪⎬
⎪⎪⎭

(7)

To obtain a halting algorithm, we need to develop a negative
condition for PC, which can recognize all those E � ¬PC.

Unfortunately, it is very difficult, if not impossible, to de-
velop such a condition. So we choose to first over-approximate
PC with the linear path unique condition(LP ), and then
develop a negative condition for LP , i.e., the loop-like non-
unique condition(LL). The definitions of LP and LL are given
below, and presented intuitively in Figure 7a) and 7b).

Definition 4: Linear Path Unique Condition (LP ) : For
encoder E, E � LP (p) holds if every linear path of length
p always reaches the unique state set SU . This equals the
unsatisfiability of FLP (p) in Equation (8). We further define
E � LP as ∃p : E � LP (p).

FLP (p)
def
= FU ∧

n∧
m=n−p

{(sm+1, om) ≡ T (sm, im)} (8)

Definition 5: Loop-like Non-unique Condition (LL) :
For encoder E, E � LL(p) holds if there exists a loop-like
path of length p that reaches the non-unique state set SN . This
equals the satisfiability of FLL(p) in Equation (9). We further
define E � LL as ∃p : E � LL(p).

FLL(p)
def
= FLP (p) ∧

n∨
m=n−p+1

{sm ≡ sn−p} (9)

Equation (9) is very similar to Equation (8), except that∨n
m=n−p+1{sm ≡ sn−p} is inserted to find a loop-like path.

The intuition behind LP and LL is to check whether in can
be uniquely determined by sn,sn+1 and on with prepended
sn−1

n−p. Here, parameters d and l are removed, which makes it
easier to find the value of p .

B. Relationships between PC, LP and LL

The relationships between PC, LP and LL are :
1. LP over-approximates PC,i.e.,E � PC → E � LP .
2. Between LP and LL, there is always one and only one

that holds,i.e.,E � LP ↔ E � ¬LL.
These relationships are presented intuitively in Figure 1, and

their proofs are presented below. Those impatient readers can
skip the remainder of this subsection.

Before proving these theorems, we need a lemma that
defines a new formula for LP .

Lemma 1: With FLP (p, d, l) defined below:

FLP (p, d, l)
def
=⎧⎪⎪⎨

⎪⎪⎩

∧n+d−1
m=n−p{(sm+1, om) ≡ T (sm, im)}

∧ ∧n+d−1
m=n−p{(s′m+1, o

′
m) ≡ T (s′m, i′m)}

∧on ≡ o′n ∧ sn ≡ s′n ∧ sn+1 ≡ s′n+1

∧in �= i′n

⎫⎪⎪⎬
⎪⎪⎭

(10)

we have: FLP (p, d, l)↔ FLP (p)
Proof: First, for the → direction. It is obvious that the

clause set of FLP (p, d, l) is a supper set of FLP (p), so the
→ direction is proved.

Second, to prove the ← direction, we list below all
additional sub-formulas that have been added into Equation
(8) to obtain (10), and also our methods to satisfy them with
a particular satisfying assignment A of FLP (p).

1.
∧n

m=n−p{(s′m+1, o
′
m) ≡ T (s′m, i′m)}: This formula can

be satisfied by assigning A(sm), A(im) and A(om) to s′m, i′m
and o′m respectively.

2.
∧n+d−1

m=n+1{(sm+1, om) ≡ T (sm, im)}: this formula rep-
resents a state transition sequence starting from sn+1, which
is satisfiable.

3.
∧n+d−1

m=n+1{(s′m+1 , o′m) ≡ T (s′m, i′m)}: this formula rep-
resents a state transition sequence starting from s′n+1, which
is satisfiable with the same assignment defined in 2.

So, every satisfying assignment A of FLP (p) can make
FLP (p, d, l) satisfiable. So the ← direction is proved.

Thus, this theorem is proved.
In the remainder of this paper, we will use FLP (p) and

FLP (p, d, l) interchangeably.
Theorem 1: E � PC(p, d, l)→ E � LP (p)

Proof: Let’s prove it by contradiction. Assume that A :
V → {0, 1} is a satisfying assignment of FLP (p, d, l).

We define a new satisfying assignment A′ as:

A′(v)
def
=

⎧⎪⎪⎨
⎪⎪⎩

A(om) v ≡ o′m m �= n
A(im) v ≡ i′m m �= n
A(sm) v ≡ s′m m �= n and m �= n + 1
A(v) otherwise

(11)
Thus, A′ is also a satisfying assignment of FLP (p, d, l).
By comparing Equation (6) with (10), it is obvious that

A′ is a satisfying assignment of the unsatisfiable formula
FPC(p, d, l).
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This contradiction concludes the proof.
Theorem 2: E � LP ↔ E � ¬LL

Proof: For the → direction, let’s prove it by contradic-
tion. Assume that E � LL. This means there exists a loop-like
path that reaches state sn ∈ SN .

Assume the length of this loop is q, and the parameter of
E � LP is p. Then we can unfold this loop [p/q]+1 times, to
get a path that is longer than p and reaches a state sn ∈ SN .
This will lead to E � ¬LP (p).

This contradiction concludes the proof of the → direction.
For the← direction, assume that E � ¬LP and E � ¬LL,

then for all p, FLP (p) is satisfiable.
Assume the uninitialized state variables recurrence diameter

of E is uirrd, and let p = uirrd + 1. Then FLP (p) is
satisfiable, which means there is a path of length p that reaches
a state sn ∈ SN . Because p is larger than uirrd, this path must
contain a loop in it, which also makes FLL satisfiable.

So E � LL holds, which contradicts with E � ¬LL.
This contradiction concludes the proof of the ← direction.

C. Algorithm to Check E � LP and E � LL

Based on the relationships discussed in Subsection IV-B, we
develop Algorithm 1(as shown below) to check E � LP and
E � LL. This algorithm also discovers the value of parameter
p if E � LP holds.

Algorithm 1 checkLPLL
1: for p = 0→∞ do
2: if FLP (p) is unsatisfiable then
3: print "E � LP (p)"
4: halt;
5: else if FLL(p) is satisfiable then
6: print "no E−1 due to E � LL(p)"
7: halt;
8: end if
9: end for

According to Theorem 2, Algorithm 1 will eventually halt
at line 3 or 6 before p reaches E’s uninitialized state variables
recurrence diameter uirrd. Thus, we have the following
theorem.

Theorem 3: Algorithm 1 is a halting algorithm.
With Algorithm 1, we can determine whether E is an

improperly designed encoder that leads to E � LL. But if
E � LP , how to determine whether E is a correct encoder
that leads to E � PC? We will discuss this problem in the
next section.

V. CHECKING E � PC BY CONSTRUCTING ONION-RING

A. Intuitive Description

To make it easier to follow our presentation, we present our
idea intuitively here with an example.

As shown in Figure 8, we add two new parameters b and
f to replace d and l. The backward parameter b refers to the
distance between state sn−b and sn. The forward parameter

f refers to the distance between state sn+1 and sn+1+f . The
relations between < b, f > and < d, l > are:

d = f

l = b + f + 1
(12)

Because Algorithm 1 already recognizes all Es that lead
to E � LL, we only need to deal with those Es that lead to
E � LP (p) here. This will result in the following proposition:

Proposition 1: in is uniquely determined by sn, on and
sn+1.

As shown in Figure 8, we can further generalize Proposition
1 by:

1) Replacing on with on+f
n−b ,

2) Replacing sn with sn−b,
3) Replacing sn+1 with sn+f+1,

and thus obtain:
Proposition 2: in is uniquely determined by sn−b, on+f

n−b

and sn+f+1.
It is obvious that Proposition 1 is a special case of Propo-

sition 2, with b ≡ 0 and f ≡ 0.
With this generalization, our algorithm will be intuitively

described in the following five steps:
1) First, we ignore both sn−b and sn+f+1, and test whether

in can be uniquely determined by on+f
n−b . If yes, our

algorithm halts with E � PC.
2) Otherwise, we ignore sn−b, and test whether in can be

uniquely determined by on+f
n−b and sn+f+1. If yes, then

in definitely does NOT depend on any ok with k < n−b,
but it may still depend on some ok with k > n + f . So
we need to increase f by 1 and goto step 1.

3) Otherwise, we ignore sn+f+1, and test whether in can
be uniquely determined by sn−b and on+f

n−b . If yes, then
in definitely does NOT depend on any ok with k >
n+f , but it may still depend on some ok with k < n−b.
So we need to increase b by 1 and goto step 1.

4) Otherwise, we test whether in can be uniquely deter-
mined by sn−b, on+f

n−b and sn+f+1. If yes, then in may
depend on some ok with both k < n− b and k > n+f ,
so we need to increase b and f by 1, and goto step 1.

5) If the algorithm reaches here, then in had been uniquely
determined by sn−b′ , on+f ′

n−b′ and sn+f ′+1 previously, but
NOT by sn−b, on+f

n−b and sn+f+1 now, where b′ ≤ b and
f ′ ≤ f . This means that adding more ok into on+f

n−b by

T

on-b

T

on+f

sn-b

in-p

T

in

T

f

p

on

b

sn+f+1

Fig. 8. Forward and backward constraints
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increasing b and f , will never make PC holds. Our
algorithm halts with E � ¬PC.

In this algorithm, every step with a pair of b and f
corresponds to an onion-ring defined in subsection V-B. If
it halts at step 5, then E belongs to the ring corresponding
to b′ and f ′, but does not belong to the next inner ring
corresponding to b and f , which means E−1 does not exist.

Formal presentation and proof will be given in the next two
subsections.

B. Constructing Onion-Ring between PC and LP

According to Figure 8, we define the following formulas:
Funfold defines two unfolded instances of transition func-

tion, and constrains that their output sequence are equivalent,
whereas their input letters are inequivalent:

Funfold(p, b, f)
def
=⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∧n+f
m=n−p{(sm+1, om) ≡ T (sm, im)}

∧ ∧n+f
m=n−p{(s′m+1, o

′
m) ≡ T (s′m, i′m)}∧n+f

m=n−b{om ≡ o′m}
∧ in �= i′n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(13)

Fbackward constrains that sn−b equals s′n−b:

Fbackward(p, b, f)
def
= {sn−b ≡ s′n−b} (14)

Fforward constrains that sn+1+f equals s′n+1+f :

Fforward(p, b, f)
def
= {sn+1+f ≡ s′n+1+f} (15)

With these formulas, we define 4 new unique conditions
between PC and LP .

LP nobf(p, b, f): in can be uniquely determined by
on+f

n−b . This equals the unsatisfiability of FLP nobf in Equation
(16).

FLP nobf (p, b, f)
def
= Funfold (16)

LP f(p, b, f): in can be uniquely determined by on+f
n−b

and sn+1+f . This equals the unsatisfiability FLP f in Equation
(17).

FLP f (p, b, f)
def
= Funfold ∧ Fforward (17)

LP b(p, b, f): in can be uniquely determined by sn−b

and on+f
n−b . This equals the unsatisfiability FLP b in Equation

(18).

FLP b(p, b, f)
def
= Funfold ∧ Fbackward (18)

LP bf(p, b, f): in can be uniquely determined by sn−b,
on+f

n−b and sn+1+f . This equals the unsatisfiability FLP bf in
Equation (19).

FLP bf (p, b, f)
def
= Funfold ∧ Fbackward ∧ Fforward (19)

These new unique conditions, when coupled with param-
eters b and f , will act as onion-rings between PC and its
over-approximation LP .

It is obvious that, LP bf is very similar to LP , while
LP nobf is very similar to PC. Such similarities will be
employed to prove the correctness of our approach.

Some lemmas that will bed used to prove the correctness
of the onion-ring approach are given below:

Lemma 2: E � LP bf(p, b, f)← E � LP bf(p, b, f +1)
Proof: Let’s prove it by contradiction. Assume that E �

¬LP bf(p, b, f) and E � LP bf(p, b, f + 1), which means
that FLP bf (p, b, f) is satisfiable while FLP bf (p, b, f + 1) is
unsatisfiable.

We can append a state transition to FLP bf (p, b, f) after
sn+f+1, and get a new formula F ′

LP bf (p, b, f).

F ′
LP bf (p, b, f)

def
= FLP bf (p, b, f)

∧ (sn+f+2, on+f+1) = T (sn+f+1, in+f+1)
(20)

This newly appended state transition is satisfiable, which
makes F ′

LP bf a satisfiable formula.
Assume A is a satisfying assignment of F ′

LP bf (p, b, f). We
define another satisfying assignment A′ as

A′(v)
def
=

⎧⎪⎪⎨
⎪⎪⎩

A(on+f+1) v ≡ o′n+f+1

A(in+f+1) v ≡ i′n+f+1

A(sn+f+2) v ≡ s′n+f+2

A(v) otherwise

(21)

Obviously, A′ is a satisfying assignment of unsatisfiable
formula FLP bf (p, b, f + 1).

This contradiction concludes the proof.
Lemma 3: E � LP b(p, b, f)← E � LP b(p+1, b+1, f)
Its proof is similar to that of Lemma 2.
Lemma 4: If E � PC(p, d, l), then the following Equation

holds.
E � LP bf (p + d− l + 1, 0, d)

↔ E � LP b (p + d− l + 1, 0, d) (22)

Proof: For the ← direction, according to Equation (18)
and (19), it is obvious that the clause set of FLP bf is a super
set of FLP b, which means the unsatisfiability of the latter
one implies the unsatisfiability of the former one. So the ←
direction is proved.

For the → direction, let’s prove it by contradiction.
Assume that FLP bf (p + d − l + 1, 0, d) is unsatisfiable, and
A is a satisfying assignment of FLP b(p + d− l + 1, 0, d).

We define another assignment A′ as :

A′(v)
def
=

⎧⎪⎪⎨
⎪⎪⎩

A(ok) v ≡ o′k where k < n
A(ik) v ≡ i′k where k < n
A(sk) v ≡ s′k where k < n
A(v) otherwise

(23)

Obviously, A′ is a satisfying assignment of Equation (6),
which means E � PC(p, d, l). This contradiction concludes
the proof of the → direction.

Lemma 5: If E � PC(p, d, l), then the following Equation
holds.

E � LP b (p, l − d− 1, d)
↔ E � LP nobf (p, l − d− 1, d) (24)

Its proof is similar to that of Lemma 4.
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An important theorem that defines the onion-ring is pre-
sented and proved below:

Theorem 4: If E � PC(p, d, l), then there exists a list of
unique conditions with their relationship shown below:

E � LP (p + d− l + 1)
↔ E � LP bf (p + d− l + 1, 0, 0)
← E � LP bf (p + d− l + 1, 0, 1)

. . .
← E � LP bf (p + d− l + 1, 0, d− 1)
← E � LP bf (p + d− l + 1, 0, d)
↔ E � LP b (p + d− l + 1, 0, d)
← E � LP b (p + d− l + 2, 1, d)

. . .
← E � LP b (p, l − d− 1, d)
↔ E � LP nobf (p, l − d− 1, d)
↔ E � PC (p, d, l)

(25)

Proof: According to Equation (10) and (19), the ↔
relation between the 1st and 2nd line of Equation (25) holds.

According to Lemma 2, the ← relations between the 2nd
and 6th line of Equation (25) holds.

According to Lemma 4, the↔ relation between the 6th and
7th line of Equation (25) holds.

According to Lemma 3, the ← relations between the 7th
and 10th line of Equation (25) holds.

According to Lemma 5, the ↔ relation between the 10th
and 11th line of Equation (25) holds.

According to Equation (6) and (16), the ↔ relations be-
tween the last two lines of Equation (25) holds.

In Equation (25), all ← symbols form a total order, which
makes all unique conditions on the right-hand side of �s to
form an onion-ring(as shown in Figure 1).

C. Algorithm Implementation

With those theorems presented in Subsection V-B, we use
the following Algorithm 2 to check E � PC.

Algorithm 2 checkPCLP (p, b, f)
1: if FLP nobf (p, b, f) is unsatisfiable then
2: print "E � PC(p, f, b + f + 1)"
3: halt;
4: else if FLP f (p, b, f) is unsatisfiable then
5: checkPCLP (p, b, f + 1)
6: else if FLP b(p, b, f) is unsatisfiable then
7: checkPCLP (p + 1, b + 1, f)
8: else if FLP bf (p, b, f) is unsatisfiable then
9: checkPCLP (p + 1, b + 1, f + 1)

10: else
11: print "no E−1 due to E � ¬PC"
12: halt;
13: end if

Algorithm 2 is invoked with the form checkPCLP (p, 0, 0),
with p computed by Algorithm 1.

Algorithm 2 just follows the onion-ring defined by Equation
(25), from the first line to the last line. If E � PC holds, it will
eventually reach line 2, and the existence of E−1 is proved;

otherwise, it will eventually reach line 11, which means that
E does not belong to the current ring, and PC is falsified. So
E−1 does not exist.

Thus, with Theorem 4, we have the following theorem.
Theorem 5: Algorithm 2 is a halting algorithm.

VI. REMOVING REDUNDANT OUTPUT LETTERS

Although Algorithm 1 and 2 together are sufficient to
determine the existence of E−1, the parameters found by line
2 of Algorithm 2 contain some redundancy, which will cause
unnecessary large overhead of circuit area.

For example, as shown in Figure 9, assume that l is the
smallest parameter value that leads to E � PC(p, d, l), and
l < d, which means that in is uniquely determined by some
output letters ok with k > n.

We further assume that line 2 of Algorithm 2 find out E �
PC(p, d, l′). It is obvious that l′ > d, which make in to depend
on some redundant ok with k ≤ n.

So on+d−l−1
n+d−l′ is the sequence of redundant output letters,

which should be removed to prevent them from being instan-
tiated as latches in circuit E−1.

Algorithm 3 that removes these redundant output letters is
presented below:

Algorithm 3 RemoveRedundancy(p, d, l′)
1: for l = 0→ l′ do
2: if FPC(p, d, l) is unsatisfiable then
3: print "E � PC(p, d, l)"
4: halt;
5: end if
6: end for

VII. EXPERIMENTAL RESULTS

We have implemented our algorithm in Zchaff [2], and run
it on a PC with a 2.4GHz Intel Core 2 Q6600 processor, 8GB
memory and CentOS 5.2 linux. All experimental results and
programs can be downloaded from http://www.ssypub.org.

A. Benchmarks

Table I shows information of the following benchmarks.
1) A XGXS encoder compliant to clause 48 of IEEE-

802.3ae 2002 standard [8].

n+d-l'

n-p n

n+d-1n+d-l

Fig. 9. Redundant Output Letters

97



TABLE I
INFORMATION OF BENCHMARKS

XGXS XFI scrambler PCIE T2 et-
hernet

Line number
of verilog 214 466 24 1139 1073

source code
#regs 15 135 58 22 48

Data path 8 64 66 10 10
width

2) A XFI encoder compliant to clause 49 of the same IEEE
standard.

3) A 66-bit scrambler used to ensure that a data sequence
has sufficiently many 0-1 transitions , so that it can run
through high-speed noisy serial transmission channel.

4) A PCIE physical coding module.
5) The Ethernet module of Sun’s OpenSparc T2 processor.

B. Experimental Results on Properly Designed Encoders

The 2nd and 6th rows of Table II compares the run time
of checking E � PC between [1] and our approach. The run
time of our approach are much larger than [1]. This is caused
by checking the unique and non-unique conditions defined in
Section IV and V.

The 3rd and 7th rows compare the discovered parameter
values, and some minor differences are found on parameter
p. This is caused by the different orders in checking various
parameter combinations.

According to [9], p is used to constrain the reachable states,
while d and l will affect the run time of building E−1 and
its circuit area. To prove this, we compared the run time of
building E−1 with all-solution SAT solver in the 4th and
8th rows of Table II, and also compared the area of E−1

in the 5th and 9th rows. These E−1s were synthesized with
DesignCompiler and LSI10 target library.

The results indicate that the differences in parameter p do
not cause significant overhead in the run time of all-solution
SAT solver and circuit area.

C. Experimental Results on Improperly Designed Encoders

To further show the usefulness of our algorithm, we need
some improperly designed encoders without corresponding
decoders.

TABLE II
EXPERIMENTAL RESULTS ON PROPERLY DESIGNED ENCODERS

XGXS XFI scra- PCIE T2 et-
mbler hernet

time chk
PC(sec) 0.49 59.19 2.52 1.46 35.17
d, p, l 1,0,1 0,3,2 0,1,2 2,1,1 4,0,1

[1] run time
allsat(sec) 1.16 1047.19 2.00 0.96 29.51

area 765 19443 1455 398 648
time chk
PC(sec) 1.32 88.68 7.23 2.73 84.47
d, p, l 1,1,1 0,3,2 0,2,2 2,1,1 4,1,1

Ours run time
allsat(sec) 1.38 1055.64 3.23 1.18 29.42

area 773 19481 1455 400 535

TABLE III
EXPERIMENTAL RESULTS ON IMPROPERLY DESIGNED ENCODERS

XGXS XFI scra- PCIE T2 et-
mbler hernet

Alg 1 result LP (1) LL(2) LL(2) LP (1) LP (1)
Alg 2 result ¬PC NA NA ¬PC ¬PC

time(sec) 1.23 44.58 3.26 1.67 21.49

We obtained these improperly designed encoders by modi-
fying each benchmark’s output statements, such that they can
explicitly output the same letter for two different input letters.
In this way, input letter in can never be uniquely determined
by E’s output sequence.

The 2nd row of Table III shows the result of Algorithm 1,
while the 3rd row shows the result of Algorithm 2. The total
run time is shown in the 4th row.

For XFI and scrambler, the result of Algorithm 1 is LL,
which falsifies PC directly. So the result of Algorithm 2 is
NA.

The results indicate that our algorithm always terminated,
and recognized these modified incorrect encoders.

VIII. RELATED WORKS

A. Complementary Synthesis

The concept of complementary synthesis was first proposed
by us [1] in ICCAD 2009. Its major shortcomings are that it
is incomplete, and its run-time overhead of building comple-
mentary circuit is too large.

The incomplete problem has been addressed by this paper,
while we [9] addresses the second shortcoming by simplifying
the SAT instance with unsatisfiable core extraction before
building complementary circuits.

B. The Completeness of Bounded Model Checking

Bounded model checking(BMC) is a model checking tech-
nology that considers only those paths of limited length. Many
researchers try to find out complete approaches for BMC.

One line of research [6], [10] tries to find out a bound b,
which can guarantee the correctness of a specification on all
paths, if the specification is correct on all paths shorter than
b.

The other line of research [11] tries to find out a pattern for
induction, such that the correctness of a specification within
any bound b implies the correctness on bound b + 1.

Our approach achieves completeness without following
these two approaches. Instead, we define two complement
uniqueness conditions, LP and LL, and find out proper
algorithms to check them.

C. Temporal Logic Synthesis

The temporal logic synthesis was first addressed by Clarke
et.al [12] and Manna et.al [13]. But Pnueli et.al [14] pointed
out that the complexity of LTL synthesis is double exponent.

One line of research [15]–[17] focuses on the so-called gen-
eralized reactive formulas of the form: (�♦p1∧· · ·�♦pm)→
(�♦q1 ∧ · · ·�♦qn). Complexity of solving synthesis problem
for such formula is O(N3).
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The other line of research focuses on finding efficient
algorithm [18] for expensive safra determination algorithm
[19] on an useful formula subset, or just avoiding it [20].

Based on these research works, some tools [21] that can
handle small temporal formulas have been developed.

All these works assume a hostile environment, which seems
too restrictive for many applications. So Fisman et.al [22],
Chatterjee et.al [23] and Ummels et.al [24] proposed rational
synthesis algorithm, which assumes that each agents act to
achieve their own goals instead of failing each other.

D. Protocol Converter Synthesis

The protocol converter synthesis was first proposed by Avnit
et.al [25] to automatically generate a translator between two
different communication protocols. Avnit et.al [26] improved
it with a more efficient design space exploration algorithm.
The implementation of this tool is introduced in [27].

IX. CONCLUSIONS AND FUTURE WORKS

This paper proposes the first halting algorithm that checks
whether a particular encoder E has corresponding decoder.
Theoretical analysis and experimental results show that our
approach always distinguishes correct encoders from their
incorrect variants and halts properly.

One future work is to develop a debugging method to find
out why E−1 does not exist. For the failure caused by loop-
like path, we plan to develop a debugging mechanism based on
our previous work on loop-like counterexample minimization
[28].
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Synthesis for Regular Specifications over
Unbounded Domains
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Abstract—Synthesis from declarative specifications is an am-
bitious automated method for obtaining systems that are correct
by construction. Previous work includes synthesis of reactive
finite-state systems from linear temporal logic and its fragments.
Further recent work focuses on a different application area by
doing functional synthesis over unbounded domains, using a mod-
ified Presburger arithmetic quantifier elimination algorithm. We
present new algorithms for functional synthesis over unbounded
domains based on automata-theoretic methods, with advantages
in the expressive power and in the efficiency of synthesized code.

Our approach synthesizes functions that meet given regular
specifications defined over unbounded sequences of input and
output bits. Thanks to the translation from weak monadic second-
order logic to automata, this approach supports full Presburger
arithmetic as well as bitwise operations on arbitrary length
integers. The presence of quantifiers enables finding solutions
that optimize a given criterion. Unlike synthesis of reactive
systems, our notion of realizability allows functions that require
examining the entire input to compute the output. Regardless
of the complexity of the specification, our algorithm synthesizes
linear-time functions that read the input and directly produce
the output. We also describe a technique to synthesize functions
with bounded lookahead when possible, which is appropriate
for streaming implementations. We implemented our synthesis
algorithm and show that it synthesizes efficient functions on a
number of examples.

I. I NTRODUCTION

Automated synthesis of systems from specifications is
a promising method to increase development productivity.
Automata-based methods have been the core technique for
reactive synthesis of finite-state systems [1], [2], [3]. In this
paper, we show that automata-based techniques can also be
used to perform functional synthesis over unbounded data
domains. In functional synthesis, we are interested in synthe-
sizing functions that accept a tuple of input values (ranging
over possibly unbounded domains), and generate a tuple of
output values that satisfy a given specification. Our efforts
are inspired in part by advances in software synthesis for
bit-manipulating programs [4]. Our goal is to develop and
analyze complete algorithms that require only a declarative
specification as input. Recently, researchers have proposed
[5] a technique for functional synthesis based on quantifier
elimination of Presburger arithmetic.

In the previous approach, the functions generated by quanti-
fier elimination can be inefficient if the input contains inequal-

This research was facilitated by the COST Action IC0901Rich Model
Toolkit—An Infrastructure for Reliable Computer Systemsand the Dagstuhl
Seminar on Software Synthesis, December 2009. The author list has been
sorted according to the alphabetical order.

ities, possibly performing search over a very large space of
integer tuples. Furthermore, this approach handles disjunctions
by a transformation into disjunctive normal form. Finally,
the specification language accepts integer arithmetic but not
bitwise constructs on integers.

In this paper we present a synthesis procedure that is
guaranteed to produce an efficient function that computes
a solution of a given constraint on unbounded integers in
time linear in the combined length of input and the shortest
output, represented in binary. Moreover, our specification
language supports not only Presburger arithmetic operations,
but also bitwise operations and quantifiers. We achieve this
expressive power by representing integers as sets in weak
monadic second-order logic of one successor (WS1S) which is
known to be more expressive than pure Presburger arithmetic
[6], [7]. We use an off-the-shelf procedure, MONA [8], to
obtain a deterministic automaton that represents a given WS1S
specification.

As our central result, we show how to convert an arbitrary
automaton recognizing the input/output relation into a function
that reads the input sequence and produces an output sequence
that satisfies the input/output relation. Consequently, we obtain
functions that are guaranteed to run in linear-time on arbi-
trarily large integers represented as bit sequences. Assuming
constant-time lookup of automaton transition, the running time
of the synthesized functions is independent of the automaton
size. These properties are a consequence of our algorithm,
and we have also experimentally verified them on a number of
examples. Our result solves the problem of synthesis of general
WS1S specifications that are not necessarily causal. Our basic
algorithm generates implementations that haveO(N) time and
space complexity, whereN is the number of bits of input
and output. We show how to reduce space consumption to
O(logN) if the time is increased toO(N logN).

We also examine synthesis for sub-classes of WS1S speci-
fications that can be implemented using bounded memory. We
introduce a class of implementations based on a finite union
of asynchronous transducers, and show that they can be used
to implementk-causal specifications as well as specifications
in Presburger arithmetic without bitwise operations.

II. EXAMPLES

A. Parity Bit Computation

The goal of our first example is to illustrate the form of
the functions produced by our synthesizer. For a non-negative
integerx, let x[k] denote thek-th least significant bit in the
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Fig. 1. AutomatonA for parity
specification betweenx andy

x: 0 1 1 0 1
y: 1 0 0 0 0

Fig. 2. Input x and outputy
satisfying parity specification

q0
q1

q2

0, 1

0

1

Transition State τ

{q0}
0
→{q1, q2} q1 (q0, 0)

{q0}
0
→{q1, q2} q2 (q0, 1)

{q0}
1
→{q1, q2} q1 (q0, 1)

{q0}
1
→{q1, q2} q2 (q0, 0)

{q1, q2}
0
→{q1, q2} q1 (q1, 0)

{q1, q2}
0
→{q1, q2} q2 (q2, 0)

{q1, q2}
1
→{q1, q2} q1 (q2, 0)

{q1, q2}
1
→{q1, q2} q2 (q1, 0)

Fig. 3. AutomatonA′ for computing parityy of input x
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Fig. 4. Running synthesized function on input shown in Fig. 2

binary representation ofx. (We write the binary digits starting
with the least significant one on the left, so110012 is a binary
representation of 19.) Our first specification states that the first
output bit,y[0] indicates the parity of the number of one-bits
in the input (Figure 2):y[0] = |{k | x[k] = 1}|%2.

Consequently, the synthesized function must examine the
entire input before emitting the first bit of the output.

One way to specify this computation is as follows. Let
nmax have the property∀k > nmax. x[k] = 0. To specify
y, introduce first an auxiliary sequence of bitsz such that

z[n] = |{k ≤ n | x[k] = 1}|%2

for all n ≤ nmax, by definingz[k + 1] as xor of z[k] and
x[k + 1]. Then definey[0] to bez[nmax].

Figure 1 shows the generated automatonA for this specifi-
cation, accepting the words

(
x[0]
y[0]

)(
x[1]
y[1]

)
. . .

(
x[n]
y[n]

)
which satisfy

the given relation betweenx and y. After applying our
construction to compute a function fromx to y, we obtain
the input-determinstic automatonA′ shown on the left of
Figure 3, augmented with two labeling functionsτ and φ.
The automaton is the result of first projecting out the part
of A′ labels corresponding to the output, then applying the
subset construction. Therefore, the labels inA′ correspond to
input bits, and the states are sets of states of the automatonA.
Functionτ tells us how to move backwards within a run ofA′

to construct an accepting run of the underlying automatonA;
it thus recovers information lost in applying the projection
to A. Finally, functionφ tells us for every accepting state in
A′ at which state ofA to start the backward reconstruction.
The table on the right of Figure 3 showsτ for A′: it maps
every transitionS

σi→ S′ of A′ and every stateq′ ∈ S′ into
a predecessor stateq ∈ S, and a matching output valueσo,

Fig. 5. Beam balance with three weights

such that(q, (σi∪σo), q
′) is a transition in the automatonA.

We indicate functionφ in A′ by additional circles around
individual states, e.g.,φ({q1, q2}) = q1. Figure 4 shows
the run ofA′ on the input01101. The synthesized function
first runs the deterministic automatonA′ (the upper part of
Figure 4, ending in state{q1, q2}). The synthesized function
then picks a stateq according toφ (the stateq1 in case of our
example), and runs backwards according toτ while computing
the output bits. The lower part of Figure 4 shows the backward
computation followingτ defined in Figure 3; the backward run
generates the bits10000 of the output.

B. Synthesizing Specialized Constraint Solvers

Our next examples illustrate a range of problems to which
our synthesis technique applies. Consider first the beam bal-
ance (scale) depicted in Figure 5. We are interested in a
function that tells us, for any object on the left-side of the
beam, how to arrange the weights to balance the beam. We are
given three weights, with1, 3, and9kg, respectively. We use
the variablew for the weight of the unknown object. For each
available weighti, we use two variablesli to indicate whether
the weight is placed on the left side andri to indicate it is
placed on the right side of the beam. We obtain the constraint:

w + l1 + 3l3 + 9l9 = r1 + 3r3 + 9r9. (1)

Because each weight can only be use at most once, we require
that the solution also respects the following three constraints

l1 + r1 ≤ 1, l3 + r3 ≤ 1, l9 + r9 ≤ 1. (2)

When we give these four constraints to our tool, it compiles
them into a function. The function accepts arbitrary input
values and returns corresponding output values, performing
computation in time linear in the number of bits in the input.
E.g., if the object weights11kg, then the program tells us that
we should use Weight1 on the left and Weight3 and 9 on
the right side to balance the beam. It is easy to verify that
this response is correct by insertion into Equation 1 leading to
11+1 · 1 = 3 · 1+9 · 1. When asked forw = 15, the program
correctly responds with “There is no output for your input.”

C. Modifying Example to Minimize Output

Next, we consider a modified version of the balance exam-
ple to show that neither inputs nor outputs need to be bounded.
It also shows how to specify a function that minimizes
the output. In the previous example, we could only balance
objects up to13kg because only one copy of each weight
was available. Assume we want to balance arbitrary heavy
objects with the minimal number of balance weights of1, 3,
and9kg. We keep the constraint from Eqn. (1) and replace the
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constraints in Eqn. (2) by a constraint that asks for a minimal
solution:

∀l′1, l
′
3, l

′
9, r

′
1, r

′
3, r

′
9. balance(w, l′1, l

′
3, l

′
9, r

′
1, r

′
3, r

′
9) →

sum(l1, l3, l9, r1, r3, r9) ≤ sum(l′1, l
′
3, l

′
9, r

′
1, r

′
3, r

′
9)

where balance(w, l′1, l
′
3, l

′
9, r

′
1, r

′
3, r

′
9) is the constraint obtained

from Eqn. 1 by replacingli andri by l′i andr′i, respectively,
and sum refers to the sum of the listed variables. This
constraint requires that every other solution that would also
balance the scale for the given object has to use more weights
than the solution returned.

The newly synthesized program gives correct answers for
arbitrary large natural numbers. E.g., let us assume the object
weighs 12345123451234512345123456789kg, then the pro-
gram tells us to take1371680383470501371680384088 times
Weight9 on the right side and once Weight3 on the left side.

D. Finding Approximate Solutions

Consider the constraint6x+9y = z, wherez is the input and
x, y are inputs. The solution exists only whenz is a multiple of
3, so we may wish to findx, y that minimizes|6x+ 9y − z|,
using a similar encoding with quantifiers as in the previous
example. The support for disjunctions allows us to encode the
absolute value operator that is useful for finding approximate
solutions. The tool synthesizes a function that given a value of
z, computesx, y to be as close toz as possible. For example,
given the input 104, the tool outputsx = 13 andy = 3.

E. Folding and Inverting Computations

Consider the Syracuse algorithm function, whose one step
is given byf(x) = if (2 | x) thenx/2 else3x+1. Consider
a relation on integers corresponding to iteratingf six times:
r(x, y) ↔ f6(x) = y. (We could use such function to speed-
up experimental verification of the famous3n+ 1 conjecture
that states∀x > 0.∃n.fn(x) = 1.) When we user(x, y) as
the specification and indicatex as input andy as output, our
synthesizer generates a function that accepts a sequence of bits
of x and outputs in linear time a sequence of bits ofy that
is given by6-fold iteration of f . Note that, if the synthesis
from a specification (e.g.y = fn(x)) succeeds, the runtime
of the computation is independent ofn and is linear in the
number of bits ofx. Therefore, our approach can effectively
fold n iterations of f into one linear-time function on the
binary representations of inputs and outputs.

F. Processing Sequences of Bits

We next illustrate the use of specification of unbounded
numbers in simple signal processing task. Suppose we
have an input signalX with discrete values in the range
{0, 1, 2, . . . , 15} and we wish to compute a smoothed output
signalY by averaging signal values with its neighbors, using
the formulaYi = (Xi−1 +2Xi +Xi+1) div 4. We specify this
function in WS1S as a relation between unbounded integersx

andy, where we reserve 4 bits for value of the signal at each
time point (see Figure 6). For constantsa, b, let x[k+a, k+b]

Fig. 6. Averaging signal values
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Fig. 7. The result of applying the synthesized function that computes a
smoothed version of a signal. The function on an arbitrarily long signal was
specified in WS1S.

denote the number represented by the subrange of digits ofx

betweenk + a andk + b:

x[k+a, k+ b] = x[k+a]+2x[k+a+1]+ . . .+2b−ax[k+ b]

We define the smoothing relation between numbersx andy by:

∀i. (4|i) → y[i+4..i+7] =
(x[i..i+3] + 2x[i+4..i+7] + x[i+8..i+11]) div 4

Our synthesizer generates a function that, given the sequence
of bits x, produces a sequence of bitsy. Figure 7 shows an
input signal (dotted line) and the resulting smoothed signal
(full line) that results after we applied the linear-time function
synthesized by our tool to the input.

III. PRELIMINARIES

A. Words and Automata

Given a finite set of variablesV , we useΣV to denote the
alphabetΣV = 2V . We omitV in ΣV if it is clear from the
context. When used as a letter, we denote∅ ∈ ΣV by 0. Given
a finite wordw ∈ Σ∗

V , we use|w| to denote the length ofw,
andwi to denote the letter on thei-th position ofw. By ε we
denote the empty word, of length zero. Given a partitioning
of V into the setsI andO and a letterσ ∈ ΣV , we useσ|I to
denote the projection ofσ to I, i.e., σ|I = σ ∩ I. We extend
projection in usual sense to words and languages.

A finite automatonA over a finite set of variablesV is
a tuple (Σ, Q, init, F, T ), whereΣ = 2V is the alphabet, Q
is a finite set ofstates, init ∈ Q is the initial state, T ⊆
Q× Σ ×Q is the transition relation, andF ⊆ Q is a set of
final states. AutomatonA is deterministic, if for all transitions
(q1, σ1, q

′
1), (q2, σ2, q

′
2) ∈ T , q1 = q2 and σ1 = σ2 implies

q′1 = q′2 holds.A is complete, if for all statesq ∈ Q and letters
σ ∈ Σ, there exists a stateq′ ∈ Q such that(q, σ, q′) ∈ T .
Note that ifA is deterministic and completeT describes a
total function fromQ andΣ to Q.
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F ::= F ∧ F | F ∨ F | ¬F | tN < tN | tN = tN

| tN [tP ] | tP < tP | tP = tP | (C|tN ) | tN ∼
tP

tN

| ∀posk.F | ∃posk.F | ∀x.F | ∃x.F

tN ::= x | C | tN + tN | C · tN | tN divC | tN %C

| (tN ⊻ tN ) | (tN ⊼ tN) | tN ≪ C | tN ≫ C

| 2tP | tN [tP ..
+C] | tN [0..tP ]

tP ::= k | C | k + C | k -̇C | maxBit(tN )

C ::= non-negative integer constant

Fig. 8. Syntax of WS1S where sets denote natural numbers (TN ) and
elements denote positions (TP ) in binary representations of numbers

Given an automatonA = (Σ, Q, init, F, T ) and a state
q ∈ Q, we useAq to refer to the automaton(Σ, Q, q, F, T )
that has the same structure asA but starts atq.

A run ρ of A on a wordw ∈ Σ∗ is a sequence of states
q1 . . . q|w|+1 such that (i)q1 = init and (ii) for all 1 ≤ i ≤
|w| : (qi, wi, qi+1) ∈ T . A run is acceptingif q|w|+1 ∈ F .
We sayw is accepted byA if there exists a run ofA on w
that is accepting. We denote byL(A) ⊆ Σ∗ the set of words
accepted byA.

Theexhaustive runρ of A on a wordw ∈ Σ∗ is a sequence
of sets of statesS1 . . . S|w|+1 such that (i)S1 = {init} and (ii)
for all 1 ≤ i ≤ |w|, Si+1 = {q′ ∈ Q | ∃ q ∈ Si, (q, wi, q

′) ∈
T }. An exhaustive run isacceptingif S|w|+1 ∩ F 6= ∅. Note
that if A is deterministic, then the run ofA on a wordw is
unique and the elements in the exhaustive run ofA on w are
singletons.

Lemma 1:For an automatonA with a set of statesQ,
computing an exhaustive run ofA for a wordw ∈ Σ∗ can
be done in timeO(|Q| · |w|) for a non-deterministicA, and
can be done in timeO(|w|) for a deterministicA.

Given an automatonA = (ΣV , Q, init, F, T ) over vari-
ables V and a setI ⊂ V , the projection of A to I,
denoted byA|I , is the automaton(ΣI , Q, init, F, TI) with
TI = {(q, σI , q

′) ∈ Q × ΣI × Q | ∃σ ∈ ΣV , (q, σ, q
′) ∈

T ∧ σ|I = σI}. In the remainder, we fixI to be the set of
input andO to be the set of output variables.

B. WS1S as extension of Presburger Arithmetic

Figure 8 shows the syntax of weak monadic second-order
logic of one successor, which we use as our specification lan-
guage for unbounded non-negative integers. The logic contains
all integer linear arithmetic operations and quantifiers, thus
subsuming Presburger arithmetic. Furthermore, it contains the
expressionx[k] to extract thek-th least significant bit of the
numberx. It is also possible to find ac-successor of position
k, with notation k + c, as well as thec-predecessor, with
notationk -̇ c, denoting the positionmax(k − c, 0). Together
with quantification over positions, this allows the specification
of arbitrary uniform bitwise relations on integer variables.
To illustrate the expressive power of WS1S, we introduce
shorthands for some of the constraints that can be defined in
this way: bitwise operations (⊼, ⊻), left and right shifting (≪,

≫), a sub-word of lengthc at positionk of a given integerx
(denotedx[k..+c]), congruence modulo2p (denotedx∼p y),
the initial prefix of an integerx[0..k], the integer2p for a
position p, and the smallestp such thatx < 2p, denoted
maxBit(x).

C. Amortized Cost of Synthesis

We describe the cost of synthesis and synthesized program
in a unified framework, by considering the entire amortized
cost of applying a given specificationa on a series of inputs
b1, . . . , bn. Let f be a function with two arguments, so
that f(a, b) = c if the input-output pair(b, c) satisfies the
specificationa. We implement functionf using a function of
the formg(a, b, s) = (f(a, b), s′) that computesf and updates
its local state froms to s′. We assume a fixed initial states0.
The presence of local state can make the computation more
efficient on a series of inputs. This framework accounts for
simple cases such as memoization and caching, as well as the
more general case of on-the-fly specialization.

Given the specificationa and the inputsb1, . . . , bn we
define si = g(a, bi, si−1) for i ∈ {1, . . . , n}. Let g′(a, b, s)
denote the time to computeg(a, b, s). Let |x| denote the length
of value x. We define the amortized cost ofg on inputs
a; b1, . . . , bn by 1

n

∑n

i=1 g
′(a, bi, si−1). Our main complexity

measure is thenc(sa, sb, n), which we define as the maximum
amortized cost over alla; b1, . . . , bn for which |a| ≤ sa and
|bi| ≤ sb for all i.

Observe thatc(sa, sb, 1) is simply the complexity of running
function f once on inputs of sizesa and sb, respectively.
Another useful measure, of particular interest in synthesis,
is c∞(sa, sb) = limn→∞ c(sa, sb, n), which amortizes any
pre-computation that happens in finitely many steps. We
next present several examples to illustrate the cost function
c∞(sa, sb) for implementations of several problems.

Example 1 (Finding an enclosing interval): Consider
the problem of computing the smallest interval enclosing
a given number. More precisely, the goal is to compute
f([x1, . . . , xm], y) = (L,U) whereL = max{xi | xi ≤ y}
and U = min{xj | y ≤ xj} given an unordered list of
numbersx1, . . . , xm (with the result arbitrary if themax or
min expressions above are not defined). In this example, we
assume that each number takes constant space to represent,
so |[x1, . . . , xm]| = m and |y| = 1. An algorithm for one
invocation can simply make a single pass through the list,
computing the currentmax of lower bounds ofy and the
currentmin of the upper bounds up to a given position in the
list. This gives the worst-case complexitym of the algorithm.
If we use this algorithm as the implementationg (without
making use of state), we obtainc∞(m, 1) of O(m).

Consider next an alternative implementation, given by
g′([x1, . . . , xm], y, s), which behaves as follows: on the first
invocation, g([x1, . . . , xm], y, s0), builds a balanced binary
search tree storing the set of numbersx1, . . . , xm in time
O(m logm), and returns this tree in the resulting states′. On
subsequent invocations,g uses this tree to find the enclosing
interval(L,U), which can be done in timeO(logm) by doing
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a lookup in the tree. Therefore, we obtain thatn invocations
require O(m logm + n logm), which gives c(m, 1, n) ∈
O( 1

n
(m logm)+logm) andc∞(m, 1) = O(logm). Thus, we

have seen that precomputation improves the amortized time
c∞(m, 1) from O(m) to O(logm). �

IV. SYNTHESIS ALGORITHM

A. Constructing Specification Automaton

The input to our algorithm is a WS1S formulaG whose free
variablesz1, . . . , zr denote unbounded integers. We assume
a partitioning of the index set{1, . . . , r} into inputs I and
the outputsO. In the first step, our algorithm constructs a
deterministic specification automatonA accepting words in
the alphabetΣI∪O. We use a standard automaton construction
[9] and obtain an automatonA characterizing the satisfying
assignments ofG, i.e. whose languageL(A) contains pre-
cisely the wordsσ0σ1 . . . σn ∈ Σ∗

I∪O for which G holds in
the variable assignment(z1, . . . , zr) in which thek-th least
significant bit ofzi is one iff 0 ≤ k ≤ n and i ∈ σk. We use
L(G) to denote the language overΣI∪O characterizing the
satisfying assignments ofG. From this correctness property it
follows thatw ∈ L(A) impliesw0

p ∈ L(A) for everyp ≥ 0.

B. Overview

All subsequent steps of our algorithm work with the specifi-
cation automatonA and do not depend on how this automaton
was obtained. GivenA, our goal is to construct a function that
computes, for a given sequence of inputs bits a corresponding
sequence of output bits such that the combined word is
accepted by the deterministic automaton.

Note that we seek an implementation that works uniformly
for arbitrarily long sequences of bits, which means that it is
not possible to pre-compute all possible input/output pairs.

We show our construction in several steps. First, we assume
that we are only interested in outputs whose length does not
exceed the length of inputs. For this case we start by de-
scribing a less time-efficient implementation (Subsection IV-C)
that depends on the size ofA, then describe an efficient
version, showing that we can avoid the dependence on the
size of A (Subsection IV-D). Finally, we show how to lift
the assumption that the outputs are no longer than the inputs
(Subsection IV-E).

C. Input-Bounded Synthesis of Unspecialized Implementations

In the first version of our solution we assume that, given an
input bit sequence, we seek an output sequence of thesame
lengthsuch that the input and output pair are accepted by the
specification automatonA.

Our unspecialized implementationPunspec simulates the
given automatonA = (ΣI∪O, Q, init, F, T ) on the input
word w ∈ Σ∗

I and tries to find an accepting run.Punspec

first constructs the exhaustive runρ = S1 . . . S|w|+1 of the
projected automatonA|I on w (see preliminaries for the
definition of automaton projection and exhaustive run). Ifρ

is not accepting, then there is no matching output word and
Punspec terminates. Otherwise,Punspec picks a stateq|w|+1 in

S|w|+1∩F and constructs an accepting runq1 . . . q|w|+1 of A
and the output wordv by proceeding backwards overi, from
i = |w| to i = 1, as follows: it picksvi ∈ ΣO andqi ∈ Si such
that (qi, wi ∪ vi, qi+1) ∈ T . When it reaches one of the initial
states inS1, the result is an accepting run of the automaton
A; the desired output is the sequencev1 . . . v|w| of the output
components of the labels in the reconstructed run.

ThePunspec implementation repeats the above construction
for each input wordw. From Lemma 1 we obtain the amor-
tized cost ofPunspec.

Lemma 2: If sA denotes the size of the input automaton
A and sw denotes the size of the input word, then the
unspecialized implementationPunspec solves the synthesis for
input-bounded specifications in amortized timec(sA, sw, n) of
O(sA · sw) (consequently,c∞(sA, sw) is alsoO(sA · sw)).

D. Input-Bounded Synthesis of Specialized Implementations

We next present our main construction (illustrated in the
Example II-A), which avoids the dependence of the running
time of computation of on the (potentially large) number of
states of the automatonA. To obtain an implementation with
optimal runtime, we transform the given automatonA into an
input-deterministic automatonA′ using the subset construction
on the projectionA|I . The challenge is to extend the subset
construction with the additional labeling functions that allow
us to efficiently reconstruct an accepting run ofA from an
accepting run ofA′. Given such additional information, our
specialized implementationPspec runsA′ on the inputw and
uses the labeling to construct the outputv.

Our construction introduces two labeling functions,φ and
τ . The functionφ maps each accepting stateS of A′ into one
stateq ∈ S that is accepting inA. The τ function indicates
how to move backwards through the accepting run; it maps
each transition(S, σi, S

′) of A′ and a stateq′ ∈ S′ into a pair
(q, σo) ∈ S×Σo of new a state and an output letter, such that
(q, σi ∪ σo, q

′) is a transition of the original automatonA.

Definition of synthesized data structureA′, φ, τ . Given
an automatonA = (ΣI∪O, Q, init, F, T ), we construct an au-
tomatonA′ = (ΣI , Q

′, init′, F ′, T ′) and two labeling functions
φ : F ′ → Q and τ : (T ′ ×Q) → (Q × ΣO) such that (i)A′

is deterministic, (ii)L(A)|I = L(A′), and (iii) for every word
u ∈ L(A′) with an accepting runS1 . . . Sn+1 of A′, there
exists a wordw ∈ L(A) with w|I = u and an accepting
run q1 . . . qn+1 of A such thatφ(Sn+1) = qn+1 and for all
1 ≤ i ≤ n, (qi, wi|O) ∈ τ((Si, ui, Si+1), qi+1). We defineA′

as follows:

Q′ = 2Q

init′ = {init}
F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
T ′ = {(S, i, S′) ∈ Q′ × ΣI ×Q′ |

S′ = {q′ | ∃q, σ.(q, σ, q′) ∈ T ∧ q ∈ S ∧ σ|I = i}}

We defineφ : F ′ → Q such that ifS ∈ F ′ thenφ(S) ∈ S∩F ;
such value exists by definition ofF ′.

We defineτ : (T ′×Q) → (Q×ΣO) for (S, i, S′) ∈ T ′ and
q′ ∈ S′ as follows. By definition ofT ′, there exists a transition

105



(q, σ, q′) ∈ T of the original automaton such thatσ|I = i. We
pick an arbitrary such transition and defineτ((S, i, S′), q′) =
(q, σ|O).

Computing A′ and τ through automata transformations.
In our implementation, we represent bothA′ and τ in one
automaton, which we compute using the following sequence
of automata transformations. Becauseτ refers to sets of
transitions, we first turn each transition ofA into a state, i.e,
givenA = (ΣI∪O, Q, init, F, T ), we construct an automaton
B = (ΣI∪O, QB, initB, FB, TB) such that

initB = (q, σ, initA) for arbitrarily chosenq, σ
QB = {initB} ∪ T
FB = {(q, σ, q′) ∈ QB | q′ ∈ F}
TB = {(t, σ, t′) ∈ QB × ΣI∪O ×QB |

∃q, q′, q′′ ∈ Q. ∃σ′ ∈ ΣI∪O.

t = (q, σ′, q′) and t′ = (q, σ, q′′)}.

Next, we projectB to I, i.e., we replace every transition
(q, σ, q′) in B by (q, σI , q

′). Finally, we obtain automatonC
by determinizingB|I using the classical subset construction.
Now, every reachable state inC (other than initB) corresponds
to a transition inA′. Assume we are given a stateqc in
C, then qc has the form{(q1, σ1, q

′
1), . . . , (qk, σk, q

′
k)} with

∀i, j, σi|I = σj |I = σI and corresponds to the transition
(t, σI , t

′) in A′, where t = {qi | 1 ≤ i ≤ k} and
t′ = {q′i | 1 ≤ i ≤ k}. So, every stateqc in C defines a
labeling function for the corresponding transition(t, σI , t

′)
that maps every stateq′i ∈ t′ to a set of available pairs
(qi, σi|O). Our final labeling functionτ picks for each state
qi one of the available pairs.

Specialized implementation and its complexity.The special-
ized implementationPspec runsA′ on the input wordw and
constructs a runρ = S1 . . . S|w|+1. If ρ is not accepting, then
there is no matching output word and the function terminates.
Otherwise, it computes an accepting runq1 . . . q|w|+1 of A and
the output wordv as follows:φ(S|w|+1) = q|w|+1 and, for all
1 ≤ i ≤ |w|, (qi, vi) = τ((Si, wi, Si+1), qi+1).

The following theorem states the correctness ofPspec and
follows by construction.

Theorem 1:Consider an automatonA and an input
w1 . . . wn. Then if there exists an outputv1 . . . vn such that
(w1∪v1) . . . (wn∪vn) is accepted byA, thenPspec computes
one such outputv1 . . . vn. If there is no corresponding output
thenPspec indicates that there is no output.

The following theorem states that our construction achieves
the desired linear-time behavior and independence from the
size of the initial automaton. The construction ofA′, φ, τ takes
time singly exponential in the size of the automaton, but is
done only once, so it is amortized for each invocation of the
automaton. Extracting the output for a given input takes time
independent of the number of states inA′ becauseA′ and τ
have deterministic transitions.

Theorem 2:If sA denotes the size of the specification
automatonA andsw denotes the size of the input word, then
Pspec solves the synthesis for input-bounded specifications in

amortized timec(sA, sw, n) of O( 1
n
2sA + sw). Consequently,

the amortized timec∞(sA, sw) as the number of queries
approaches infinity isO(sw).

E. Extending Synthesis to Arbitrary Regular Specifications

In this section we extend the result of the previous section
to allow computing an output that satisfies the specification
even if the output has a larger number of bits than the input.
Consider the simple specificationx < y, wherex is the input
and y is the output. Given the input1112 of length three
(representing the number 7), every value of output satisfying
the specification has the length at least four.

To adapt the solution in the previous section to the full
synthesis problem we generalize the notion of acceptance to
take into account any number of zeros that could be appended
to the input without changing the meaning of the input.
Therefore, if the automatonA′ finishes reading the input word
and none of the states reached in the last step are accepting, it
checks whether one of the states can reach an accepting state
while reading only the input letter0. The closure with the
input 0 can be computed in polynomial time by computing
the states that are backward-reachable from an accepting state
using only edges with input label0.

To be able to emit the appropriate segment of the output,
the backward-reachability computation keeps, for every state,
an output word that leads to an accepting state. We use the
function ψ : Q → Σ∗

O ∪ {⊥} to store these words, where
Q are the states of the specification automatonA. We write
ψ(q) = ⊥ to denote that there is no input wordw ∈ 0

∗ that
is accepted starting fromq. Formally, given the automaton
A = (ΣI∪O, Q, init, F, T ), we setψ = ψ|Q| and defineψi

inductively: for all q ∈ Q :

(i) ψ0(q) =

{
ε if q ∈ F

⊥ otherwise
(ii) let Ri be the set of statesq for which ψi(q) 6= ⊥,

ψi+1(q) =






ψi(q) if q ∈ Ri

σ|Oψi(q′) elsif ∃(q, σ, q′)∈T :σ|I = 0∧q′∈Ri,

⊥ otherwise.
Observe that ifψ(q) 6= ⊥ then ψ(q) is a word of length
bounded by the number of states of the specification
automatonA. Therefore, the maximal amount by which the
output is longer than the input is bounded by the size of the
specification automaton.

To recognize leading zeros, we adapt the final statesF ′ of
A′ (computed as forPspec in the previous section) and extend
the labeling functionφ as follows. Letfin(S) = {q ∈ S |
ψ(q) 6= ⊥} be the states inS that can reach input on zeros.

F ′ = {S ∈ Q′ | fin(S) 6= ∅}
φ(S)= q ∈ fin(S) s.t. |ψ(q)| = min{|ψ(q′) | q′ ∈ fin(S)|}

Note that the functionφ(S) chooses one of the states that lead
to an accepting state with an output word of minimal length.

The implementation and its time complexity. Given an
input wordw1 . . . wn, the implementationPgspec generates, as
Pspec in the previous Subsection (IV-D), a runS1, . . . , Sn+1.
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a lookup in the tree. Therefore, we obtain thatn invocations
require O(m logm + n logm), which gives c(m, 1, n) ∈
O( 1

n
(m logm)+logm) andc∞(m, 1) = O(logm). Thus, we

have seen that precomputation improves the amortized time
c∞(m, 1) from O(m) to O(logm). �

IV. SYNTHESIS ALGORITHM

A. Constructing Specification Automaton

The input to our algorithm is a WS1S formulaG whose free
variablesz1, . . . , zr denote unbounded integers. We assume
a partitioning of the index set{1, . . . , r} into inputs I and
the outputsO. In the first step, our algorithm constructs a
deterministic specification automatonA accepting words in
the alphabetΣI∪O. We use a standard automaton construction
[9] and obtain an automatonA characterizing the satisfying
assignments ofG, i.e. whose languageL(A) contains pre-
cisely the wordsσ0σ1 . . . σn ∈ Σ∗

I∪O for which G holds in
the variable assignment(z1, . . . , zr) in which thek-th least
significant bit ofzi is one iff 0 ≤ k ≤ n and i ∈ σk. We use
L(G) to denote the language overΣI∪O characterizing the
satisfying assignments ofG. From this correctness property it
follows thatw ∈ L(A) impliesw0

p ∈ L(A) for everyp ≥ 0.

B. Overview

All subsequent steps of our algorithm work with the specifi-
cation automatonA and do not depend on how this automaton
was obtained. GivenA, our goal is to construct a function that
computes, for a given sequence of inputs bits a corresponding
sequence of output bits such that the combined word is
accepted by the deterministic automaton.

Note that we seek an implementation that works uniformly
for arbitrarily long sequences of bits, which means that it is
not possible to pre-compute all possible input/output pairs.

We show our construction in several steps. First, we assume
that we are only interested in outputs whose length does not
exceed the length of inputs. For this case we start by de-
scribing a less time-efficient implementation (Subsection IV-C)
that depends on the size ofA, then describe an efficient
version, showing that we can avoid the dependence on the
size of A (Subsection IV-D). Finally, we show how to lift
the assumption that the outputs are no longer than the inputs
(Subsection IV-E).

C. Input-Bounded Synthesis of Unspecialized Implementations

In the first version of our solution we assume that, given an
input bit sequence, we seek an output sequence of thesame
lengthsuch that the input and output pair are accepted by the
specification automatonA.

Our unspecialized implementationPunspec simulates the
given automatonA = (ΣI∪O, Q, init, F, T ) on the input
word w ∈ Σ∗

I and tries to find an accepting run.Punspec

first constructs the exhaustive runρ = S1 . . . S|w|+1 of the
projected automatonA|I on w (see preliminaries for the
definition of automaton projection and exhaustive run). Ifρ

is not accepting, then there is no matching output word and
Punspec terminates. Otherwise,Punspec picks a stateq|w|+1 in

S|w|+1∩F and constructs an accepting runq1 . . . q|w|+1 of A
and the output wordv by proceeding backwards overi, from
i = |w| to i = 1, as follows: it picksvi ∈ ΣO andqi ∈ Si such
that (qi, wi ∪ vi, qi+1) ∈ T . When it reaches one of the initial
states inS1, the result is an accepting run of the automaton
A; the desired output is the sequencev1 . . . v|w| of the output
components of the labels in the reconstructed run.

ThePunspec implementation repeats the above construction
for each input wordw. From Lemma 1 we obtain the amor-
tized cost ofPunspec.

Lemma 2: If sA denotes the size of the input automaton
A and sw denotes the size of the input word, then the
unspecialized implementationPunspec solves the synthesis for
input-bounded specifications in amortized timec(sA, sw, n) of
O(sA · sw) (consequently,c∞(sA, sw) is alsoO(sA · sw)).

D. Input-Bounded Synthesis of Specialized Implementations

We next present our main construction (illustrated in the
Example II-A), which avoids the dependence of the running
time of computation of on the (potentially large) number of
states of the automatonA. To obtain an implementation with
optimal runtime, we transform the given automatonA into an
input-deterministic automatonA′ using the subset construction
on the projectionA|I . The challenge is to extend the subset
construction with the additional labeling functions that allow
us to efficiently reconstruct an accepting run ofA from an
accepting run ofA′. Given such additional information, our
specialized implementationPspec runsA′ on the inputw and
uses the labeling to construct the outputv.

Our construction introduces two labeling functions,φ and
τ . The functionφ maps each accepting stateS of A′ into one
stateq ∈ S that is accepting inA. The τ function indicates
how to move backwards through the accepting run; it maps
each transition(S, σi, S

′) of A′ and a stateq′ ∈ S′ into a pair
(q, σo) ∈ S×Σo of new a state and an output letter, such that
(q, σi ∪ σo, q

′) is a transition of the original automatonA.

Definition of synthesized data structureA′, φ, τ . Given
an automatonA = (ΣI∪O, Q, init, F, T ), we construct an au-
tomatonA′ = (ΣI , Q

′, init′, F ′, T ′) and two labeling functions
φ : F ′ → Q and τ : (T ′ ×Q) → (Q × ΣO) such that (i)A′

is deterministic, (ii)L(A)|I = L(A′), and (iii) for every word
u ∈ L(A′) with an accepting runS1 . . . Sn+1 of A′, there
exists a wordw ∈ L(A) with w|I = u and an accepting
run q1 . . . qn+1 of A such thatφ(Sn+1) = qn+1 and for all
1 ≤ i ≤ n, (qi, wi|O) ∈ τ((Si, ui, Si+1), qi+1). We defineA′

as follows:

Q′ = 2Q

init′ = {init}
F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
T ′ = {(S, i, S′) ∈ Q′ × ΣI ×Q′ |

S′ = {q′ | ∃q, σ.(q, σ, q′) ∈ T ∧ q ∈ S ∧ σ|I = i}}

We defineφ : F ′ → Q such that ifS ∈ F ′ thenφ(S) ∈ S∩F ;
such value exists by definition ofF ′.

We defineτ : (T ′×Q) → (Q×ΣO) for (S, i, S′) ∈ T ′ and
q′ ∈ S′ as follows. By definition ofT ′, there exists a transition
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idea then is to avoid storing all statesq0, . . . , qN of the forward
run, and instead compute them on demand, storing only a
sparse subsequenceqi0 , qi1 , . . . , qim

wherem = ⌈logN⌉. Let
p denote the current position in the backward run of the
synthesized function. The synthesized function maintains the
invariant 0 = i0 ≤ i1 ≤ . . . ≤ im ≤ p. Initially it sets
ik ≈ N(1 − 2−k). To move back fromp to p − 1, it re-runs
the forward automaton from the largestik for which ik < p,
and redistributesik+1, . . . , im, similarly as for the initial
run, maintaining the ordering and the decreasing geometric
progression of distancesik+j+1− ik+j . Because each position
pointer ij requiresO(logN) space and there arelogN of
them, this implementation needsO(log2N) space. A run that
updates pointersik+i for i ≥ 0 re-reads2−k fraction of the
input and is called2k times, so the total time isO(N logN).

Unions of asynchronous transducers. An (asynchronous)
transducerM = (A, λ, ϕ) over input variablesI and output
variablesO consists of (1) a deterministic automatonA =
(ΣI , Q, init, F, T ) and (2) two labeling functionsλ : T →
Σ∗

O and ϕ : F → Σ∗
O. A (more conventional)synchronous

transducer is a special case of an asynchronous transducer
where|λ(t)| = 1 for all t ∈ T and |ϕ(q)| = ε for all q ∈ F .

The outcomeof M = (A, λ, ϕ) on a valid input word
w ∈ L(A), denoted by outM (w), is the concatenation of
output wordsu1, . . . , un produced byM while readingw
concatenated with the final word produced byϕ, i.e., if
ρ = q1q2 . . . qn+1 is the accepting run ofA onw ∈ L(A), then
outM (w) = u1 . . . unun+1, whereui = λ(qi, wi, qi+1) for all
1 ≤ i < n and un+1 = ϕ(qn+1). Note that the outcome of
M is only defined for valid input words. The language ofM ,
denotedL(M) is the is the union of valid input/output pairs
padded with trailing zeros to have equal length:L(M) = {w ∈
Σ∗

I∪O | ∃j, k. w|I ∈ L(A)0j ∧ w|O = outM (w|I)0
k}.

An asynchronous transducer can express even certain speci-
fications that are not WS1S expressible. For example, consider
a transducer that emitsε when reading0 and emits1 when
reading1. Such transducer outputs a contiguous sequence of
output bits whose length is the number of bits in the input.

Given a finite set of transducersM1, . . . ,Mk with Mi =
(Ai, λi) and a languageL over the variablesI∪O, we say that
M1, . . . ,Mk jointly implementL, written M1, . . . ,Mk |= L

iff (1) each transducersMi produces outputs satisfying the
specification, i.e.,L(Mi) ⊆ L(G) and (2) the union of
Mi’s covers the valid inputs, i.e.,L(G)|I ⊆

⋃
i L(Ai). We

say M1, . . . ,Mk implements a WS1S formulaG, denoted
M1, . . . ,Mk |= G, iff M1, . . . ,Mk |= L(G).

Note that ifM1, . . . ,Mk |= G, then there exists a finite-
memory implementation forG that performs only two passes
over the input (regardless ofk). In the first pass, the imple-
mentation generates no output, but simply determines which of
the transducers accept. In the second pass, the implementation
generates the output for one of the transducers that accept.

Transducers for Presburger specifications. The follow-
ing lemma can be shown by analyzing the output of the
quantifier-elimination based synthesis algorithm for Presburger

arithmetic specifications [5]. They key observation is that
functions implementing Presburger specifications have the
form

∨
i(Pi(x) ∧ y = ti(x)) for input x and outputy.

Lemma 3:For every WS1S specificationG that encodes a
formula in Presburger arithmetic, there exists a finite set of
transducersM1, . . . ,Mk such thatM1, . . . ,Mk |= G.
The key observation is that witness termst(x) are computable
using asynchronous transducers.

Note that Presburger specifications are not computable
using only one asynchronous transducer due to presence of
disjunctions in specifications. They are also not computable
using a finite union ofsynchronoustransducers because of the
division by constants.

Limitations of asynchronous transducers.
Lemma 4:There exists WS1S specifications cannot be im-

plemented using a finite union of asynchronous transducers.
The proof is based on consider the following WS1S speci-

ficationG over inputI and outputO. We giveG as regular
expression over the binary presentation overI andO:

G =
I :

O :

((
1

0

)+(
0

0

))∗(
1

1

)+(
0

1

)(
0

0

)∗

.

Observation 1: Every transducerM = (A, λ, ϕ) with
L(M) ⊆ L(G) and less thann states that accepts an input
word (1n0)k must output a non-empty word within everyn
steps while reading this input.

Observation 2: Every transducerM = (A, λ, ϕ) with
L(M) ⊆ L(G) and less thann states that accepts the input
word (1n0)k for somek > 0, rejects all input words(1n0)l

for l > k.
Using the above observations and givenk asynchronous

transducersM1, . . . ,Mk with Mi = (Ai, λi, ϕi) such that
L(Mi) ⊆ L(G) it suffices to consider words(1n0)i for
i = 1, . . . , k + 1 to conclude that it cannot be the case that
L(G)|I =

⋃
i=1,...,k L(Ai).

Note thatG can be implemented by a finite set of trans-
ducers if the input is read from right to left. However, we
can concatenate specifications such asG with their reversed
versions to obtain specifications that cannot be realized by
transducers making both forward and backward passes.

VII. L OOKAHEAD-CAUSAL SPECIFICATIONS

An interesting class of specifications that can be imple-
mented using a single asynchronous transducer are lookahead-
causal specifications discussed in this section.

The algorithms presented so far first read the entire input
and then generate a corresponding output. In some cases (e.g.,
in streaming applications), one might prefer an implementation
that starts outputting before reading the entire input. Specifica-
tions such as the signal processing example require reading a
bounded number of bits ahead (three, in this case) to compute
an output bit.

For notational simplicity we consider specifications
spec(x, y) containing a single input-output pairx and y.
Furthermore, we assume that the specifications are total, that
is, ∀x.∃y.spec(x, y). If a specification is not total, we can
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transform it into a total specificationspec′(x, y, e) given by
(spec(x, y) ∧ e = 0) ∨ ((¬∃y.spec(x, y)) ∧ y = 0 ∧ e = 1).

Definition of k-causality. We next define lookahead-
k-causality, ork-causality for short. We say that an input
output pairx, y is k-causal forspec, written causalk(x, y) iff
∀p. ∀x′ ∼p+k x. ∃y

′ ∼p y. spec(x′, y′). wherez′ ∼p z means
that z′ andz have identical the initialp bits. spec is k-causal
iff it implies causalk(x, y) for all x, y.

Observe that ak-causal specification can be implemented by
an asynchronous transducer, but there are specifications (such
as the sign function) implementable by asynchronous trans-
ducers that are notk-causal. Ifspec is not k-causal but some
inputs have multiple possible outputs, a general strategy to turn
spec it into a causal specification is to simply conjoin it with
causalk(x, y) and check whether the resulting specification is
still total, that is, whether∀x.∃y.spec(x, y) ∧ causalk(x, y).

Synthesized system for ak-causal specifications. Let
spec(x, y) be a k-causal and total specification. We show
how to construct an implementations that emits the input after
readingk steps of the output. Construct first the specifica-
tion automatonA and apply the construction described in
Section IV-E. We obtain the automatonA′ and the labeling
functions τ , φ, and ψ. We extendA′, τ , φ, and ψ so that
they include, for all statesq of A, the determinized version
A′

q of Aq, whereAq is the automaton that differs fromA
only in that its initial state is changed toq. The synthesized
programPcaus for k-causal specification has a fill parameter
µ > 0. It uses a buffer of length at least(1 + µ)k and
alternates operationsRead and Flush. The Read operation
reads one more input bit into the buffer and advances the
stateS of A′ accordingly, as forPgspec. TheFlush operation
is invoked when the input buffer contains at leastj input
bits for j ≥ ⌈(1 + µ)k⌉. It runs backwardsk steps from the
current stateq = φ(S) following τ and reaches stateq′. It
then treatsq′ as a final state of the entire input, emitsj − k

outputs going backwards and reaching stateq′′. It then empties
the corresponding buffer elements and moves forward fromq′

usingAq′ until the current position of the input. This gives
a streaming implementation that traverses the input bits only
1/µ more times compared toPgspec, regardless ofk.

VIII. R ELATED WORK

Like synthesis of combinational circuits from relations
(e.g.,[11]) our work synthesizes a function implementing
the given relation. However, our implementation works for
arbitrarily long input sequences. Techniques [1], [2], [12]
to synthesize reactive systems that implement a given S1S
specification can handle arbitrarily long input sequences. They
assume that the specification can be implemented by a (usually
finite-state) system that produces the output immediately while
reading the input, i.e., the system cannot look ahead. These
techniques usually take specifications in a fragment of tempo-
ral logic [13] and have resulted in tools that can synthesize
useful hardware components [14], [3]. Recent work [15] estab-
lishes theoretical results (without implementation) regarding

the problem of deciding when an S1S specification can be
implemented using a system with lookahead. The (k-bounded)
causality checks in our problem could be performed using
this decision procedure based on infinite game theory. Our
specification language uses finite instead of infinite words,
which allows us to eliminate the non-causal behaviors and
thus simplify the synthesis process. Moreover, our technique
is not restricted tok-bounded specifications.

The work on graph types [16] proposes to synthesize fields
given by definitions in monadic second-order logic and also
uses the MONA tool [8]. However, it focuses on computing
assignments to update fields of linked data structures as
opposed to numerical and bit constraints.

IX. CONCLUSION

We presented an algorithm to synthesize linear-time func-
tions from general WS1S specifications. Our software im-
plementation works on a number of interesting examples.
We have also identified interesting classes of specifications
that can be implemented using finite unions of asynchronous
transducers, and provided examples of specifications for which
such finite-memory implementations do not suffice. Our results
therefore contribute to the understanding and to the algorithm
toolbox of automated synthesis approaches for software and
hardware.
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Abstract—This paper addresses the problem of placing mem-
ory fences in a concurrent program running on a relaxed memory
model. Modern architectures implement relaxed memory models
which may reorder memory operations or execute them non-
atomically. Special instructions called memory fences are provided
to the programmer, allowing control of this behavior. To ensure
correctness of many algorithms, in particular of non-blocking
ones, a programmer is often required to explicitly insert memory
fences into her program. However, she must use as few fences as
possible, or the benefits of the relaxed architecture may be lost.
Placing memory fences is challenging and very error prone, as it
requires subtle reasoning about the underlying memory model.

We present a framework for automatic inference of memory
fences in concurrent programs, assisting the programmer in this
complex task. Given a finite-state program, a safety specification
and a description of the memory model, our framework computes
a set of ordering constraints that guarantee the correctness of
the program under the memory model. The computed constraints
are maximally permissive: removing any constraint from the so-
lution would permit an execution violating the specification. Our
framework then realizes the computed constraints as additional
fences in the input program.

We implemented our approach in a tool called FENDER and
used it to infer correct and efficient placements of fences for
several non-trivial algorithms, including practical concurrent
data structures.

I. INTRODUCTION

On the one hand, memory barriers are expensive
(100s of cycles, maybe more), and should be used
only when necessary. On the other, synchronization
bugs can be very difficult to track down, so memory
barriers should be used liberally, rather than relying
on complex platform-specific guarantees about limits
to memory instruction reordering. – Herlihy and
Shavit, The Art of Multiprocessor Programming [1].

Modern architectures use relaxed memory models in which
memory operations may be reordered and executed non-
atomically [2]. These models enable improved hardware per-
formance with respect to the standard sequentially consistent
model [3]. However, they pose a burden on the programmer,
forcing her to reason about non-sequentially consistent pro-
gram executions. To allow programmer control over those exe-
cutions, processors provide special memory fence instructions.

As multicore processors become increasingly dominant,
highly-concurrent algorithms emerge as critical components
of many systems [4]. Highly-concurrent algorithms are noto-
riously hard to get right [5] and often rely on subtle ordering of
events, an ordering that may be violated under relaxed memory
models (cf. [1, Ch.7]).

Finding a correct and efficient placement of memory fences
for a concurrent program is a challenging task. Using too
many fences (over-fencing) hinders performance, while using
too few fences (under-fencing) permits executions that violate
correctness. Manually balancing between over- and under-
fencing is very difficult, time-consuming and error-prone as
it requires reasoning about non sequentially consistent exe-
cutions (cf. [1], [6], [7]). Furthermore, the process of finding
fences has to be repeated whenever the algorithm changes, and
whenever it is ported to a different architecture.

Our Approach In this paper, we present a tool that auto-
matically infers correct and efficient fence placements. Our
inference algorithm is defined in a way that makes the de-
pendencies on the underlying memory model explicit. This
makes it possible to use our algorithm with various memory
models. To demonstrate the applicability of our approach,
we implement a relaxed memory model that supports key
features of modern relaxed memory models. We use our tool to
automatically infer fences for several state of the art concurrent
algorithms, including popular lock-free data structures.

Main Contributions The main contributions of this paper are:
• A novel algorithm that automatically infers a correct

and efficient placement of memory fences in concurrent
programs.

• A prototype implementation of the algorithm in a tool
capable of inferring fences under several memory models.

• An evaluation of our tool on several highly concur-
rent practical algorithms such as: concurrent sets, work-
stealing queues and lock-free queues.

II. EXISTING APPROACHES

We are aware of two existing tools designed to assist pro-
grammers with the problem of finding a correct and efficient
placement of memory fences. However, both of these suffer
from significant drawbacks.

CheckFence In [7], Burckhardt et al. present “CheckFence”, a
tool that checks whether a specific fence placement is correct
for a given program under a relaxed memory model. In terms
of checking, “CheckFence” can only consider finite executions
of a linear program and therefore requires loop unrolling. Code
that utilizes spin loops requires custom manual reductions.
This makes the tool unsuitable for checking fence placements
in algorithms that have unbounded spinning (e.g. mutual
exclusion and synchronization barriers). To use “CheckFence”
for inference, the programmer uses an iterative process: she
starts with an initial fence placement and if the placement is
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incorrect, she has to examine the (non-trivial) counterexample
from the tool, understand the cause of error and attempt to fix it
by placing a memory fence at some program location. It is also
possible to use the tool by starting with a very conservative
placement and choose fences to remove until a counterexample
is encountered. This process, while simple, may easily lead to
a “local minimum” and an inefficient placement.
mmchecker presented in [8] focuses on model-checking with
relaxed memory models, and also proposes a naive approach
for fence inference. Huynh et. al formulate the fence inference
problem as a minimum cut on the reachability graph. While
the result produced by solving for a minimum cut is sound, it is
often suboptimal. The key problem stems from the lack of one-
to-one correspondence between fences and removed edges.
First, the insertion of a single fence has the potential effect
of removing many edges from the graph. So it is possible that
a cut produced by a single fence will be much larger in terms
of edges than that produced by multiple fences. [8] attempts to
compensate for this by using a weighing scheme, however this
weighing does not provide the desired result. Worse yet, the
algorithm assumes that there exists a single fence that can be
used to remove any given edge. This assumption may cause a
linear number of fences to be generated, when a single fence
is sufficient.

III. OVERVIEW

In this section, we use a practically motivated scenario to
illustrate why manual fence placement is inherently difficult.
Then we informally explain our inference algorithm.

A. Motivating Example

Consider the problem of implementing the Chase-Lev work-
stealing queue [9] on a relaxed memory model. Work stealing
is a popular mechanism for efficient load-balancing used in
runtime libraries for languages such as Java, Cilk and X10.
Fig. 1 shows an implementation of this algorithm in C-like
pseudo-code. For now we ignore the fences shown in the code.

The data structure maintains an expandable array of items
called wsq and two indices top and bottom that can wrap
around the array. The queue has a single owner thread that can
only invoke the operations push() and take() which operate
on one end of the queue, while other threads call steal()
to take items out from the opposite end. For simplicity, we
assume that items in the array are integers and that memory is
collected by a garbage collector (manual memory management
presents orthogonal challenges [10]).

We would like to guarantee that there are no out of bounds
array accesses, no lost items overwritten before being read,
and no phantom items that are read after being removed. All
these properties hold for the data structure under a sequentially
consistent memory model. However, they may be violated
when the algorithm executes on a relaxed model.

Under the SPARC RMO [11] memory model, some oper-
ations may be executed out of order. Tab. I shows possible
reorderings under that model (when no fences are used) that
lead to violation of the specification. The column locations

1 t y p e d e f s t r u c t {
2 long s i z e ;
3 i n t ∗ap ;
4 } i t e m t ;
5
6 long top , bot tom ;
7 i t e m t ∗wsq ;

1 void push ( i n t t a s k ) {
2 long b = bot tom ;
3 long t = t o p ;
4 i t e m t∗ q = wsq ;
5 i f ( b−t ≥ q→ s i z e −1){
6 q = expand ( ) ;
7 }
8 q→ap [ b % q→ s i z e ]= t a s k ;

f e n c e ( ” s t o r e−s t o r e ” ) ;
9 bot tom = b + 1 ;

10 }

1 i n t t a k e ( ) {
2 long b = bot tom − 1 ;
3 i t e m t∗ q = wsq ;
4 bot tom = b ;

f e n c e ( ” s t o r e−l o a d ” ) ;
5 long t = t o p ;
6 i f ( b < t ) {
7 bot tom = t ;
8 re turn EMPTY;
9 }

10 t a s k = q→ap [ b % q→ s i z e ] ;
11 i f ( b > t )
12 re turn t a s k ;
13 i f ( ! CAS(& top , t , t + 1 ) )
14 re turn EMPTY;
15 bot tom = t + 1 ;
16 re turn t a s k ;
17 }

1 i n t s t e a l ( ) {
2 long t = t o p ;

f e n c e ( ” load−l o a d ” ) ;
3 long b = bot tom ;

f e n c e ( ” load−l o a d ” ) ;
4 i t e m t∗ q = wsq ;
5 i f ( t ≥ b )
6 re turn EMPTY;
7 t a s k =q→ap [ t % q→ s i z e ] ;

f e n c e ( ” load−s t o r e ” ) ;
8 i f ( ! CAS(& top , t , t + 1 ) )
9 re turn ABORT;

10 re turn t a s k ;
11 }

1 i t e m t∗ expand ( ) {
2 i n t news ize = wsq→ s i z e ∗ 2 ;
3 i n t∗ newi tems = ( i n t ∗) m a l lo c ( news ize∗ s i z e o f ( i n t ) ) ;
4 i t e m t ∗newq = ( i t e m t ∗) m a l lo c ( s i z e o f ( i t e m t ) ) ;
5 f o r ( long i = t o p ; i < bot tom ; i ++) {
6 newi tems [ i % news ize ] = wsq→ap [ i % wsq→ s i z e ] ;
7 }
8 newq→ s i z e = news ize ;
9 newq→ap = newitems ;

f e n c e ( ” s t o r e−s t o r e ” ) ;
10 wsq = newq ;
11 re turn newq ;
12 }

Fig. 1. Pseudo-code of the Chase-Lev work stealing queue [9].

# Locations Effect of Reorder Needed Fence
1 push:8:9 steal() returns phantom item store-store
2 take:4:5 lost items store-load
3 steal:2:3 lost items load-load
4 steal:3:4 array access out of bounds load-load
5 steal:7:8 lost items load-store
6 expand:9:10 steal() returns phantom item store-store

TABLE I
POTENTIAL REORDERINGS OF OPERATIONS IN THE CHASE-LEV

ALGORITHM OF FIG. 1 RUNNING ON THE RMO MEMORY MODEL.

lists the two lines in a given method which contain memory
operations that might get reordered and lead to a violation.
The next column gives an example of an undesired effect
when the operations at the two labels are reordered. There
could be other possible effects (e.g., program crashes), but we
list only one. The last column shows the type of fence that
can be used to prevent the undesirable reordering. Informally,
the type describes what kinds of operations have to complete
before other type of operations. For example, a store-load
fence executed by a processor forces all stores issued by
that processor to complete before any new loads by the same
processor start.
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Avoiding Failures with Manual Insertion of Fences To
guarantee correctness under the RMO model, the programmer
can try to manually insert fences that avoid undesirable
reorderings. As an alternative to placing fences based on
her intuition, the programmer can use an existing tool such
as CheckFence [7] as described in Section II. Repeatedly
adding fences to avoid each counterexample can easily lead
to over-fencing: a fence used to fix a counterexample may
be made redundant by another fence inferred for a later
counterexample. In practice, localizing a failure to a single
reordering is challenging and time consuming as a failure
trace might include multiple reorderings. Furthermore, a single
reordering can exhibit multiple failures, and it is sometimes
hard to identify the cause underlying an observed failure. Even
under the assumption that each failure has been localized to a
single reordering (as in Tab. I), inserting fences still requires
considering each of these 6 cases.

In a nutshell, the programmer is required to manually
produce Tab. I: summarize and understand all counterexamples
from a checking tool, localize the cause of failure to a single
reordering, and propose a fix that eliminates the counterexam-
ple. Further, this process might have to be repeated manually
every time the algorithm is modified or ported to a new
memory model. For example, the fences shown in Fig. 1
are required for the RMO model, but on the SPARC TSO
model the algorithm only requires the single fence in take().
Keeping all of the fences required for RMO may be inefficient
for a stronger model, but finding which fences can be dropped
might require a complete re-examination.

Automatic Inference of Fences It is easy to see that the
process of manual inference does not scale. In this paper, we
present an algorithm and a tool that automates this process.
The results of applying our tool on a variety of concurrent
algorithms, including the one in this section, are discussed in
detail in Section V.

B. Description of the Inference Algorithm

Our inference algorithm works by taking as input a finite-
state program, a safety specification and a description of
the memory model, and computing a constraint formula that
guarantees the correctness of the program under the memory
model. The computed constraint formula is maximally permis-
sive: removing any constraint from the solution would permit
an execution violating the specification.

Applicability of the Inference Algorithm Our approach is
applicable to any operational memory model on which we
can define the notion of an avoidable transition that can be
prevented by a local (per-processor) fence. Given a state, this
requires the ability to identify: (i) that an event happens out
of order; (ii) what alternative events could have been forced
to happen instead by using a local fence. Requirement (i) is
fairly standard and is available in common operational memory
model semantics. Requirement (ii) states that a fence only
affects the order in which instructions execute for the given
processor but not the execution order of other processors. This

R1 = R2 = X = Y = 0 ;

A:
A1 : STORE 1 , X
A2 : STORE 1 , Y

||
B :

B1 : LOAD Y, R1
B2 : LOAD X, R2

Fig. 2. A simple program illustrating relaxed memory model behavior

holds for most common models, but not for PowerPC, where
the SYNC instruction has a cumulative effect [12].

State Given a memory model and a program, we can build
the transition system of the program, i.e. explore all reachable
states of the program running on that memory model. A state
in such a transition system will typically contain two kinds
of information: (i) assignments of values to local and global
variables; (ii) per-process execution buffer containing events
that will eventually occur (for instance memory events or
instructions waiting to be executed), where the order in which
they will occur has not yet been determined.

Computing Avoid Formulae Given a transition system and
a specification, the goal of the inference algorithm is to infer
fences that prevent execution of all traces leading to states that
violate the specification (error states). One naive approach is
to enumerate all (acyclic) traces leading to error states, and try
to prevent each by adding appropriate fences. However, such
enumeration does not scale to any practical program, as the
number of traces can be exponential in the size of the transition
system which is itself potentially exponential in the program
length. Instead, our algorithm works on individual states and
computes for each state an avoid formula that captures all
the ways to prevent execution from reaching the state. Using
the concept of an avoidable transition mentioned earlier, we
can define the condition under which a state is avoidable. The
avoid formula for a state σ considers all the ways to avoid all
incoming transitions to σ by either: (i) avoiding the transition
itself; or (ii) avoiding the source state of the transition. Since
the transition system may contain cycles, the computation of
avoid formulae for states in the transition system needs to be
iterated to a fixed point.

Consider the simple program of Fig. 2. For this program,
we would like to guarantee that R1 ≥ R2 in its final state.
For illustrative purposes, we consider a simple memory model
where the stores to global memory are atomic and the only
allowed relaxation is reordering data independent instructions.
Fig. 3 shows part of the transition system built for the program
running on this specific memory model. We only show states
that can lead to an error state. In the figure, each state contains:
(i) assignments to local variables of each process (L1 and L2),
and the global variables G; (ii) the execution buffer of each
process (E1 and E2); (iii) an avoid formula which we explain
below.

The initial state (state 1) has R1 = R2 = X = Y = 0.
There is a single error state where R1 = 0 and R2 = 1
(state 9). The avoid formula for each state is computed as
mentioned earlier. For example, the avoid formula for state 2 is
computed by taking the disjunction of avoiding the transition
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Fig. 3. A partial transition system of the program in Fig. 2. Avoidable
transitions are drawn with thicker lines.

A2 and avoiding the source state of the transition (state 1).
To check whether A2 is an avoidable transition from state
1, we check whether A2 is executed out of order, and what
are the alternative instructions that could have been executed
by A instead. We examine the execution buffer E1 of state
1 and find all instructions that precede A2. We find that
A2 is executed out of order, and that A1 could have been
executed to avoid this transition. So, we generate the constraint
[A1 < A2] as a way to avoid the transition A2. The meaning
of the constraint is that this transition can be avoided if A1 is
executed before A2. Since the source state (state 1) cannot be
avoided, the avoid formula for state 2 is just [A1 < A2]. The
constraint [B1 < B2] for state 3 is obtained similarly.

For state 5, there are two incoming transitions: B2 and
A2. Here, B2 is taken out of order from state 2 and hence
we generate the constraint [B1 < B2]. The constraint for
the parent state 2 is [A1 < A2], so the overall constraint
becomes [B1 < B2] ∨ [A1 < A2]. Similarly, we perform the
computation for transition A2 from state 3 which generates an
identical constraint. The final avoid formula for state 5 is thus
the conjunction of [B1 < B2]∨ [A1 < A2] with itself. In other
words, it is this exact formula. The transition from state 2 to
state 4 is taken in order. Therefore, the transition itself cannot
be avoided and the only way to avoid reaching 4 is through the

avoid formula of its predecessor, state 2. For the error state
9, the two incoming transitions do not generate constraints
as they are executed in-order. The overall constraint is thus
generated as conjunction of the constraints of the predecessor
states 7 and 8, and it is [B1 < B2] ∧ [A1 < A2].

Because our example graph is acyclic, a single pass over
the graph is sufficient. It is easy to check the formulas that
appear in Fig. 3 indeed correspond to a fixed point. Since there
is only one error state, the resulting overall constraint is the
avoid constraint of that error state: [A1 < A2] ∧ [B1 < B2].

Finally, this constraint can be implemented by introducing
a store-store fence between A1 and A2 and a load-load fence
between B1 and B2.

C. Memory Models
To demonstrate our fence inference algorithm on realistic

relaxed memory models, we define and implement the model
RLX that contains key features of modern memory models.
According to the categorization of [2], summarized in Fig. 4,
there are five such key features. The leftmost three columns
in the table represent order relaxations. For instance, W → R
means the model may reorder a write with a subsequent read
from a different variable. The rightmost columns represent
store atomicity relaxations - that is, whether a store can
be seen by a process before it is globally performed. Our
memory model supports four of these features, but precludes
“reading other’s writes early” and speculative execution of
load instructions.

The memory model is defined operationally, in a design
based on [13] and [14]. We represent instruction reordering
by using an execution buffer, similar to the “reordering box”
of [15] and the “local instr. buffer” of [14]. To support non-
atomic stores we, like [13], split store operations into a “store;
flush” sequence, and allow local load operations to read values
that have not yet been flushed. This allows us to talk about
the model purely in terms of reordering, without paying any
additional attention to the question of store atomicity.

Barring speculative execution of loads, RLX corresponds
to Sun SPARC v9 RMO and is weaker than the SPARC v9
TSO and PSO models. RLX is strictly weaker than the IBM
370. Since RLX is weaker than these models, any fences that
we infer for correctness under RLX are going to guarantee
correctness under these models.

Our framework allows to instantiate models stronger than
RLX, by disabling some of the relaxations in RLX. In fact, the
framework supports any memory model that can be expressed
using a bypass table (similar to [14] and the “instruction
reordering table” of [13]). This enables us to experiment with
fence inference while varying the relaxations in the underlying
memory model. In Section V, we show how different models
lead to different fence placements in practical concurrent algo-
rithms, demonstrating the importance of automatic inference.

IV. INFERENCE ALGORITHM

In this section, we describe our fence inference algorithm.
Due to space restrictions, the description is mostly informal.
The full technical details can be found in [16].

114



Relaxation W → R W → W R → RW R Others’ R Own
Order Order Order W Early W Early

SC X
IBM 370 X
TSO X X
PSO X X X
Alpha X X X X
RMO X X X X
PowerPC X X X X X

Fig. 4. Categorization of relaxed memory models, from [2].

A. Preliminaries

We define a program P in the standard way, as a tuple
containing an initial state Init, the program code Progi for
each processor, and an initial statement Starti. The program
code is expressed in a simple assembly-like programming lan-
guage, which includes load/store memory operations, arbitrary
branches and compare-and-swap operations. We assume that
all statements are uniquely labeled, and thus a label uniquely
identifies a statement in the program code, and denote the set
of all program labels by Labs.
Transition Systems A transition system for a program P is a
tuple 〈ΣP , TP 〉, where ΣP is a set of states, TP is a set of
labeled transitions σ l−→ σ′. A transition is in TP if σ, σ′ ∈
ΣP and l ∈ Labs, such that executing the statement at l results
in state σ′. The map enabled : ΣP → P(Labs) is tied to the
memory model and specifies which transitions may take place
under that model.
Dynamic Program Order Much of the literature on memory
models (e.g. [11], [12], [17]) bases the model’s semantics on
the concept of program order, which is known a priori. This is
indeed the case for loop-free or statically unrolled programs.
For programs that contain loops, Shen et. al show in [13] that
such an order is not well defined, unless a memory model
is also provided. Furthermore, for some memory models the
program order may depend on the specific execution.

To accommodate programs with loops, we define a dynamic
program order. This order captures the program order at any
point in the execution. For a given state σ and a process p, we
write l1 <σ,p l2 when l1 precedes l2 in the dynamic program
order. The intended meaning is that in-order execution from
state σ would execute the statement at l1 before executing the
statement at l2.

B. An Algorithm for Inferring Ordering Constraints

Given a finite-state program P and a safety specification S,
the goal of the algorithm is to infer a set of ordering constraints
that prevent all program executions violating S and can be
implemented by fences.
Avoidable Transitions and Ordering Constraints The ordering
constraints we compute are based on the concept of an
avoidable transition — a transition taken by the program
that could have been prohibited by some fence. This captures
the intuition of a transition that was taken out of order. To
identify such transitions we use the dynamic program order:
a transition t = σ

lt−→ σ′ is avoidable if there exists some l1
such that l1 <σ,p lt.

With every pair of labels l1, l2 ∈ Labs we associate a
proposition [l1 ≺ l2]. We call such a proposition an ordering
constraint. We define a constraint formula as a proposi-
tional formula over ordering constraints. For each transition
t = σ

lt−→ σ′ we then define the formula prevent(t) =∨
{[l1 ≺ lt] | l1 <σ,p lt}. Intuitively, prevent(t) is the

formula that captures all possible ordering constraints that
would prohibit the execution of t by the program. Note
that if t is not avoidable, this is an empty disjunction and
prevent(t) = false.

Algorithm 1: Fence Inference
Input: Program P, Specification S
Output: Program P’ satisfying S

1 compute 〈ΣP , TP 〉
2 avoid(Init)← false
3 foreach state σ ∈ ΣP \ {Init} do
4 avoid(σ)← true

5 workset← ΣP \ {Init}
6 while workset is not empty do
7 σ ← select and remove state from workset
8 ϕ← avoid(σ)
9 foreach transition t = (µ −→ σ) ∈ TP do

10 ϕ← ϕ ∧ (avoid(µ) ∨ prevent(t))
11 if avoid(σ) 6≡ ϕ then
12 avoid(σ)← ϕ
13 add all successors of σ in ΣP to workset

14 ψ ←
∧
{avoid(σ) | σ 2 S}

15 return implement(P, ψ)

Inference The algorithm operates directly on program states.
For every state σ in the program’s transition system, the
algorithm computes a constraint formula avoid(σ) such that
satisfying it prevents execution from reaching σ. The com-
puted formula avoid(σ) captures all possible ways to prevent
execution from reaching σ by forbidding avoidable transitions.

The algorithm computes a fixed point of avoid constraints
for all states in the program’s transition system. First, we
build the transition system 〈ΣP , TP 〉 of the program. For
σ = Init, we initialize avoid(σ) to false. For all other states,
we initialize it to true. We then add all states to the workset.
The algorithm proceeds by picking a state from the workset,
and computing the new avoid constraint for the state. A state
can only be avoided by avoiding all incoming transitions (a
conjunction). To avoid the transition, we must (i) consider all
possible ways to avoid the transition from the predecessor state
(by using prevent(t)); or (ii) avoid the predecessor state, by
using its own avoid constraint. (see line 10 of the algorithm).

As shown in line 11 every such computation step requires
comparing two boolean formulas for equality. While in general
NP-hard, this is not a problem in practice due to the structure
of our formulas and their relatively modest size.

When a fixed point is reached, the algorithm computes
the overall constraint ψ by taking the conjunction of avoid
constraints for all error states. Any implementation satisfying
ψ is guaranteed to avoid all error states, and thus satisfy
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the specification. Finally, the algorithm calls the procedure
implement(P,ψ) which returns a program that satisfies ψ.

Ensuring Termination In cases where the transition system
is an acyclic graph (e.g. transition systems for spinloop-
free programs), we can avoid performing the fixed point
computation altogether. If the states are topologically sorted,
the computation can be completed with a single linear pass
over the transition system. In the general case, we can show
the set of mappings between states and constraints forms a
finite lattice and our function is monotonic and continuous.
Thus convergence is assured.

Safety and Maximal Permissiveness Given a program P and a
specification S, the avoid formula ϕ computed by Algorithm 1
is the maximally permissive avoid formula such that all traces
of P satisfying ϕ are guaranteed to satisfy S. More formally,
we say a constraint formula admits a transition t = σ

lt−→ σ′ if
there exists an assignment α � ϕ so that every proposition of
the form v = [l1 ≺ lt] where l1 <σ,p lt we have JvKα = false.
Here JvKα is the value of proposition v in the assignment
α. We can lift this definition of admits from transitions to
program traces. Then if ϕ 6= false it only admits traces that
satisfy S, but for any ψ 6= ϕ such that ϕ⇒ ψ, there exists a
trace π of P that reaches σ such that ψ admits π, but σ 2 S.

C. Fence Inference

Our algorithm computes a maximally permissive constraint
formula ψ. We can then use a standard SAT-solver to get
assignments for ψ, where each assignment represents a set
of constraints that enforces correctness. Since for a set of
constraints C, a superset C ′ cannot be more efficiently imple-
mented, we need only consider minimal (in the containment
sense) sets.

An orthogonal problem is to define criteria that would allow
us to select optimal fences that enforce one of those sets. In
our work, we focus on a simple natural definition using set
containment: a fence placement is a set of program labels
where fences are placed and we say that a placement P1 is
better than P2 when P1 ⊆ P2.

Given a minimal assignment C for the formula ψ, for each
satisfied proposition [l1 ≺ l2], we can insert a fence either right
after l1 or right before l2, thus getting a correct placement of
fences. We can try this for all minimal assignments of ψ, and
select only the minimal fence placements. This procedure can
be improved by defining a formula ξ s.t. every proposition
in ψ is replaced with after(l1) ∨ before(l2). Here, after(l)
and before(l) map labels to a new set of propositions, so
that if l2 appears immediately after l1 in the program, then
after(l1) = before(l2). Then, our fence placements will be
the minimal assignments to ξ. This allows us to directly apply
a SAT-solver and consider fewer fence placements.

Of course this local approach will not guarantee a minimal
placement of fences because there can be many ways to
implement a constraint [l1 ≺ l2] aside from inserting a fence
immediately after l1 or before l2. For instance, if l1, ...l4 ap-
pear in this order in the program, and ψ = [l1 ≺ l4]∧ [l2 ≺ l3]

then we can implement ψ by a single fence between l2 and
l3. More precise and elaborate implementation strategies are
possible if the program’s control flow graph is taken into
account. However, in our experiments we found the simple
local fence placement strategy to produce optimal results.

V. EXPERIMENTS

We have implemented our algorithm in a tool called FENDER.
Our tool takes as input a description of a memory model, a
program and a safety specification. The tool then automatically
infers the necessary memory fences.

A. Methodology

We experiment with FENDER by varying the following:
(i) Input Algorithm - we experiment with five concurrent

data structures and one mutual exclusion algorithm.
(ii) Client Program - we experiment with clients of varying

size and complexity.
(iii) Memory Model - we experiment with 3 relaxed models

and the sequentially consistent model as a baseline.
(iv) Specification - in some benchmarks, there is more than

one reasonable specification.
(v) Bound on the execution buffer, when required.

Algorithms We applied our tool to various challenging state-
of-the-art concurrent algorithms:
• MSN: Michael&Scott’s lock-free queue [18].
• LIFO WSQ: LIFO idempotent work-stealing queue [19].
• Chase-Lev WSQ: Chase&Lev’s work-stealing queue [9].
• Dekker: Dekker’s mutual exclusion [20].
• Treiber: Treiber’s lock-free stack [21].
• VYSet: Vechev&Yahav’s concurrent list-based set [22].

Clients For each algorithm, we ran FENDER with several
clients. Our tool permits exhaustive exploration of bounded
clients that consist of a (bounded) sequence of initialization
operations followed by (bounded) sequences of operations
performed in parallel. A client typically consists of 2 or 3
processes, where each process invokes several data structure
operations. Below, we use the term “program” to refer to the
combination of an algorithm and a client.
Memory Models As noted earlier, our RLX model is equiv-
alent to SPARC RMO without support for speculation. Our
framework can instantiate stronger models, and in our exper-
iments, we infer fences under four memory models: RMO,
PSO, TSO, and as a reference, SC, the sequentially consistent
model. The models RMO, PSO and TSO implement three
different sets of relaxations as described in [2]. All three
implement the “read own writes early” relaxation. RMO
implements the W → R, W → W and R → RW relaxations.
PSO removes the R → RW relaxation and TSO additionally
removes the W →W relaxation.
Specification We consider safety specifications realized as
state invariants on the program’s final state. To write an
invariant, for most algorithms, we observed the results a
specification of sequential consistency would produce and
then write invariants that are implied by this specification. In
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Initial Client |E| Time States Edges #C
State Bnd (sec.)

MSN empty e|d ∞ 0.83 1219 2671 2
empty e|e ∞ 1.78 4934 12670 1
empty ee|dd ∞ 5.21 24194 61514 3
empty ed|ed ∞ 13.05 86574 242822 2
empty ed|de ∞ 9.26 59119 167067 4
empty e|e|d ∞ 31.43 233414 653094 3

ChaseLev empty pppt(tpt|sss) ∞ 97.22 386283 1030857 -
WSQ empty tttt(ptt|sss) ∞ 255.5 1048498 2819355 -

empty pppt(ttp|sss) ∞ 90.28 281314 878880 -
empty tttt(tpp|sss) ∞ 355.95 1325858 4150650 -
empty tttp(tptp|ss) ∞ 37.98 280396 698398 -

”LIFO” 2/2 tp|ss ∞ 0.69 2151 3190 2
WSQ 2/2 tpt|ss ∞ 1.94 9721 16668 2

2/2 ptp|ss ∞ 11.41 89884 195246 3
2/2 ptt|ss ∞ 11.31 85104 198353 4
1/1 ptt|ss ∞ 4.07 23913 48997 4

Dekker - - 1 0.64 1388 2702 2
- - 10 2.13 7504 14477 2
- - 20 2.71 13879 26422 2
- - 50 5.99 33004 62257 2

Treiber empty p|t ∞ 1 71 93 2
empty pt|tp ∞ 1.02 3054 6190 2
empty pp|tt ∞ 0.6 1276 2250 2

VYSet empty ar|ra 10 1.98 4079 6247 2
empty aa|rr 10 4.56 20034 31623 2
empty ar|ar 10 2.19 6093 9905 2
empty aaa|rrr 10 7.98 41520 66533 2

TABLE II
EXPERIMENTAL RESULTS FOR THE RMO MODEL

this context, sequential consistency refers not to the memory
model, but to the high level specification that an algorithm
should satisfy. In some experiments we also used additional,
weaker specifications.

Bound on the Execution Buffer As recently shown in [23], the
reachability problem for weak memory models is, depending
on the model, either undecidable or non-primitive recursive
even for finite-state programs. To avoid this problem we add
a stronger condition and require the execution buffers to be
bounded. In four of our benchmarks this was the natural
behavior, and in the other two we’ve had to enforce a bound.

Experimental Setup Experiments were performed on an IBM
xSeries 336 with 4 Intel Xeon 3.8Ghz processors, 5GB
memory, running a 64-bit Red Hat Enterprise Linux. Tab. II
contains performance metrics for RMO, the most relaxed
memory model that we considered.

B. Results

A summary of our experimental results is shown in Tab. II.
For each data structure, several parallel clients were used. For
each client, the “Initial” and ”Client” columns represent the
initial state of the data structure and the operations performed
by the client respectively. “e” represents an enqueue operation,
“d” a dequeue, “p” put, “s” steal, “a” add and “r” remove. The
“|E|” column represents the bound on the length of execution
buffers, and “#C” the number of constraints in a minimal
solution to the avoid formula for that client. Since for Chase-
Lev the constraint formula was solved only for the conjunction
of all clients, individual “#C” values are not given. The “Time”

column shows the total analysis time. This includes the state
exploration time, the constraint inference time and the SAT-
solving time. Note that in all cases the solving component was
negligible.

In Tab. III we show a comparison of the performance of
FENDER for different memory models it supports. On average
the number of states for PSO was ≈ 4.5 times smaller and for
TSO ≈ 40 times smaller than for RMO.

Chase-Lev Work Stealing Queue For this data structure, we
ran an exhaustive set of clients with two bounds: (i) all
clients were of the form of 4 initializer operations, followed
by a parallel section with 5 > X > 3 invocations by
the owner, and 6 − X steal invocations by another process.
(ii) If a particular client’s state space exceeded 2.5 million
states, it was terminated and discarded. In Tab. II we show
representative clients that produced useful constraints. In those
experiments, FENDER inferred a set of 9 constraints which can
be implemented using the 6 fences of Fig. 1. In particular, the
fence between lines 9 and 10 in expand() also prevents the
reordering of the store on line 10 with the stores on lines 8 an
6. Under PSO, we are left with 6 constraints and 3 fences—all
of the fences in steal() are no longer needed. Even under
TSO, one fence still remains necessary—it is the store-load
fence between lines 4 and 5 in the take() operation.

Michael-Scott Queue For MSN FENDER inferred all 3 required
fences under RMO. The placement for this algorithm in [7]
contained 7 fences, however, 2 of these are the result of [7]
allowing extra speculation, and 2 are not required in our model
due to conservative memory allocation. Under PSO a single
fence was inferred, and under TSO no fences are required.

Idempotent Work-Stealing The reference placement in [19] is
phrased only in terms of constraints, and requires 5 constraints.
Under RMO, FENDER produced 4 constraints which are a
subset of those 5. The one constraint not inferred is, again,
only required because of possible speculation.

Dekker’s Algorithm It is well known that Dekker’s algorithm
requires a fence in the entry section and a fence at the end of
the section (to preserve semantics of critical section). In our
experiments, FENDER successfully inferred the required fences.
Under RMO and PSO both fences were inferred, and under
TSO, the tool inferred only the entry section fence. This is
consistent with the reference placement appearing in Appendix
J of [11].

C. Discussion

In our experiments, we observe that the fences inferred by
FENDER are quite tricky to get manually. For some of the
algorithms, there are known correct fence assignments, and
for these we show that FENDER derives all necessary fences
for our memory models with a small number of clients driving
the algorithm. For most of our benchmarks, a bound on the
execution buffer was not required. In the two cases where it
was required, all fences were obtained with a small bound.

A recurring theme in our results was that several
different maximally permissive constraint sets could be
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Initial Client |E| RMO PSO TSO SC
Bound States Edges #C States Edges #C States Edges #C States Edges

MSN empty e|d ∞ 1219 2671 2 455 743 1 228 316 0 146 180
empty e|e ∞ 4934 12670 1 2678 6354 1 586 994 0 252 328
empty ee|dd ∞ 24194 61514 3 7025 13689 2 1724 2512 0 1029 1325
empty ed|ed ∞ 86574 242822 2 15450 35362 2 2476 3972 0 1538 2126
empty ed|de ∞ 59119 167067 4 11023 24362 2 2570 4010 0 1541 2073
empty e|e|d ∞ 233414 653094 3 51990 119050 2 9638 16822 0 4928 7632

Chase-Lev empty pppt(tpt|sss) ∞ 386283 1030857 - 74533 256613 - 12348 20004 - 4961 6740
WSQ empty tttt(ptt|sss) ∞ 1048498 2819355 - 124455 255390 - 6418 9380 - 3101 4069

empty pppt(ttp|sss) ∞ 281314 878880 - 66960 241814 - 10564 16317 - 4199 5700
empty tttt(tpp|sss) ∞ 1325858 4150650 - 361855 1080835 - 9878 13956 - 3473 4537
empty tttp(tptp|ss) ∞ 280396 698398 - 29573 54696 - 9197 14499 - 4760 6455

”LIFO” 2/2 tp|ss ∞ 2151 3190 2 882 1171 1 676 852 0 570 694
WSQ 2/2 tpt|ss ∞ 9721 16668 2 3908 5811 1 2256 3116 0 1410 1786

2/2 ptp|ss ∞ 89884 195246 3 31289 64133 3 4045 5688 0 2317 3007
2/2 ptt|ss ∞ 85104 198353 4 29920 62020 3 4130 5987 0 2198 2866
1/1 ptt|ss ∞ 23913 48997 4 9976 18002 3 2353 3269 0 1314 1654

Dekker - - 1 1388 2702 2 1388 2702 2 489 674 1 388 490
- - 10 7504 14477 2 7504 14477 2 2560 3750 1 388 490
- - 20 13879 26422 2 13879 26422 2 4845 7115 1 388 490
- - 50 33004 62257 2 33004 62257 2 11770 17210 1 388 490

Treiber empty p|t ∞ 71 93 2 71 93 2 43 48 0 36 38
empty pt|tp ∞ 3054 6190 2 3041 6167 2 407 609 0 392 482
empty pp|tt ∞ 1276 2250 2 1276 2250 2 325 407 0 270 323

VYSet empty ar|ra 10 4079 6247 2 4079 6247 2 1088 1308 0 1088 1308
empty aa|rr 10 20034 31623 2 20034 31623 2 1168 1411 0 1168 1411
empty ar|ar 10 6093 9905 2 6093 9905 2 1671 1968 0 1671 1968
empty aaa|rrr 10 41520 66533 2 41520 66533 2 3311 4072 0 3311 4072

TABLE III
EXPERIMENTAL RESULTS FOR DIFFERENT MEMORY MODELS

derived from the constraint formula. However, in all
cases, all of those sets represented one “natural” so-
lution. The reason for the appearance of those ap-
parently different solutions involves data dependencies.

1 STORE Z = 1
2 LOAD R = X
3 STORE Y = R

Consider the simple example program shown
on the right. Assume that the constraint
[l1 ≺ l3] must be enforced in any execution.
However, if [l1 ≺ l2] is enforced, then it is
impossible to reorder l3 with l1. Due to a data
dependency, l2 must come before l3, and we
get the order σ1

l2−→ σ2
l3−→ σ3

l1−→ σ4 in which the first
transition violates [l1 ≺ l2]. Thus, our constraint formula will
necessarily contain the disjunction [l1 ≺ l2] ∨ [l1 ≺ l3]. It is
an interesting question whether there exists an input algorithm
which permits several substantially different constraint sets.

As expected, when we ran the tool with more restricted
memory models, the number of required fences decreases. For
example, the move from PSO to TSO disables reordering of
independent stores and hence all constraints between stores to
different locations are not required.

VI. RELATED WORK

Earlier we discussed work directly related to fence infer-
ence, that is [7], [8]. Additional related work includes:

Explicit-State Model Checking The works closest to ours in
the way they explore the state space for a weak memory model
are [15] and [24]. Both describe explicit-state model checking
under the Sparc RMO model, but neither uses it for inference.

Delay Set Analysis A large body of work relies on the concepts

of delay set and conflict graph of [25] for reasoning about
relaxed memory models. In particular, the Pensieve project
[26], [27], [28] implements fence synthesis based on delay
set analysis. This kind of analysis is, however, necessarily
more conservative than ours since it prevents any potential
specification violations due to non-SC execution, and is not
appropriate for highly concurrent algorithms.

Verification Approaches In [29] and [30] algorithms are pre-
sented that can find violations of sequential consistency under
the TSO and PSO memory models. Those algorithms find
violations based purely on sequentially consistent executions,
thus making them very efficient. However, just like delay
set analysis, this is often needlessly conservative. Another
approach to verification is to try to establish a property which
ensures the program remains correct under relaxed models.
The most common such property is data-race freedom, as for
data-race free programs the “fundamental property of memory
models” [31] ensures that there can be no sequentially
inconsistent executions. In our work we deal with programs
that do not satisfy such properties. Further, none of those
works supports fence inference for programs that are found
to violate SC.

Inference of Synchronization In [32], [22], a semi-automated
approach is used to explore a space of concurrent garbage
collectors and linearizable data-structures. These works do not
support weak memory models. In [33] a framework similar to
ours is used to infer minimal synchronization. However the
technique used there enumerates traces explicitly, which does
not scale in our setting and thus cannot be applied as-is.
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Effect Mitigation Several works have been published on
mitigating the effect of memory fences [34], [35] and making
synchronization decisions during runtime [36]. Those archi-
tectural improvements are complementary to our approach.

VII. SUMMARY AND FUTURE WORK

We presented a novel fence inference algorithm and demon-
strated its practical effectiveness by evaluating it on various
challenging state-of-the-art concurrent algorithms. In future
work, we intend to improve the tool’s scalability and add
support for more memory models. Another direction we intend
to pursue is memory model abstraction and fence inference
under abstraction. This will allow us to avoid bounding the
execution buffer and make our algorithm more suitable for
more general input programs.
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Abstract—Microcode is a critical component in modern micro-
processors, and substantial effort has been devoted in the past to
verify its correctness. A prominent approach, based on symbolic
execution, traditionally relies on the use of boolean SAT solvers
as a backend engine. In this paper, we investigate the application
of Satisfiability Modulo Theories (SMT) to the problem of
microcode verification. We integrate MathSAT, an SMT solver
for the theory of Bit Vectors, within the flow of microcode
verification, and experimentally evaluate the effectiveness of some
optimizations. The results demonstrate the potential of SMT
technologies over pure boolean SAT.

I. INTRODUCTION

A modern Intel CPU may have over 700 instructions in the
Instruction Set Architecture (ISA), some of them for backward
compatibility with the very first x86 processors. Although
the processor itself is a Complex Instruction Set Computer
(CISC), the microarchitecture (basically the implementation
of the ISA) is what can be likened to a Reduced Instruc-
tion Set Computer (RISC). The instructions in the ISA are
translated into a smaller set of simpler instructions called
microinstructions or micro-operations. Most instructions in
Intel processors correspond to a single microinstruction, while
larger programs are stored in a microcode program memory
called the Microcode ROM. Some of these programs may be
surprisingly large, such as string move in the Pentium 4 which
was reported in [15] to use thousands of microinstructions.

Verification of these programs is a critical, but time-
consuming process. To aid in the verification effort, a tool
suite called MicroFormal has been developed at Intel starting
in 2003 and under intensive research (in collaboration with
academic partners) and development since. This system is used
for several purposes:

• Generation of execution paths. These execution paths are
used in traditional testing to ensure full path coverage,
and to generate test cases which execute these paths,
described in [2], [3].

• Assertion-based verification. Microcode developers an-
notate their programs with assertions, and these can be
verified to hold using MicroFormal.

• Verification of backwards compatibility, described in
[1]. When new generation CPUs are developed, they
should be backwards compatible with older generations,
although they may include more features.

At the heart of this set of tools is a system for symbolic ex-
ecution (often called also symbolic simulation) of microcode,
which is the part of the tool suite on which we will concentrate.

The symbolic execution engine explores the paths of the
microcode, generating proof obligations, that have to be
solved by a satisfiability engine. Such proof obligations can
be thought of as constraints over bit-vectors. Traditionally,
they are transformed into boolean satisfiability problems, and
analyzed by means of boolean SAT solvers [7]. Although SAT
technology is very efficient and has been highly specialized to
the context of application, the time spent in the satisfiability
engine is a very significant fraction of the total time devoted
to symbolic execution.

In this work, we tackle this problem by presenting an
alternative approach, based on the use of Satisfiability Modulo
Theory (SMT) techniques [6] to replace boolean SAT. Modern
approaches to SMT can be thought of leveraging the structure
of the problem, by reasoning at a higher level of abstraction
than SAT: efficient SAT reasoning is used to deal with the
boolean component, and it is complemented by specialized
rewriting and constraint solving to deal with more complex
information at the level of bit-vectors.

The work presented in this paper (and described in greater
detail in [12]) is based on the MathSAT SMT solver [9],
that was the winner of the 2009 SMT competition on the
bit-vector (BV) category, and was still unbeaten in 2010
edition. MathSAT was first integrated within the MicroFormal
platform, and then customized to deal with the specific proof
obligations arising from symbolic simulation of microcode.
In particular, tailored solutions were adopted to deal with
the satisfiability of sequences of formulae, and of sets of
formulae. The approach was evaluated on a selected set of
realistic microcode programs. MathSAT was able to provide
substantial leverage over in-house SAT techniques on single
problems; combined with the solutions described in this paper,
we were able to significantly reduce the total execution time.
As a consequence, a modified version of MathSAT was put in
the production version of MicroFormal. Substantial speed-ups
are reported on a wide class of real-world problems.

The rest of this paper is structured as follows. In § II
we present an overview of the MicroFormal framework. In
§ III we describe the nature of the proof obligations resulting
from MicroFormal, and in § III-A and III-B we discuss
tailored techniques to deal with them. In § IV we present the
experimental evaluation. In § V we discuss related work. In
§ VI we draw some conclusions and outline directions for
future work.

121©2010 FMCAD Inc.



II. BACKGROUND

A. Intermediate Representation Language

To simplify the process, the symbolic execution engine does
not work directly with microcode. Instead it works with an
intermediate representation called Intermediate Representation
Language, or IRL. This is a simple formal language with all
features necessary to model microcode programs. Microcode
programs are translated into IRL by a set of IRL templates,
which define the translation from microcode instructions into
a corresponding sequence of IRL instructions. This makes
adapting the tool suite to a new microarchitecture simpler,
since all that needs to be written is a new set of templates
describing how instructions are translated into IRL. Another
benefit of using IRL is that it is possible to handle other
types of low-level software. Although the precise details of
the language used in MicroFormal are not public, its main
features have been presented in [1].

The correctness of the translation from actual microcode
programs into IRL is crucial, but outside the scope of this high-
level description of MicroFormal. We will also make many
simplifications and skip over details that are not immediately
relevant for the work presented.

B. Symbolic execution of microcode

The MicroFormal symbolic execution engine is used to
compute a set of paths through a program, where a path is
a sequence of locations that the program can follow from
start to finish. A path through the program for which there
exists an assignment to input registers such that the execution
follows that path is called feasible. A partial path is a path
from the start to some non-exit location within the program.
The problem solved by the symbolic execution engine is to
find all paths from the starting location to one of the exit
locations. Symbolic execution [18] is a form of execution
where all input (or initial values of variables) are symbolic.
Consider the following simple example, which swaps values
in two bit-vector variables

x, y : BitVector[64];
1: x := x + y;
2: y := x - y;
3: x := x - y;
4: exit;

To execute this program symbolically, we start by giving the
symbolic values x0, y0 to the variables x and y. For the first
assignment x := x + y we create a new symbolic value
x1 and compute how it relates to the symbolic values of the
variables in the right hand side of the assignment x1=̂x0 +y0
and so on for all instructions in the program, accumulating the
equations that define the symbolic values we have created.

1: x := x + y x1=̂x0 + y0
2: y := x - y x1=̂x0 + y0, y1=̂x1 − y0
3: x := x - y x1=̂x0 + y0, y1=̂x1 − y0, x2=̂x1 − y1
4: exit x1=̂x0 + y0, y1=̂x1 − y0, x2=̂x1 − y1

microcode Constraints

+

Symbolic
execution
engine

Dec. proc.

Cache

Path DB

φ

result

Fig. 1. Overview of the MicroFormal symbolic execution engine

By expanding the final definitionswe can see that the final
values of the variables (x′, y′) depend on the initial given by
the equations x′ = (x0 + y0) − x0 and y′ = (x0 + y0) − y0
which can be simplified to x′ = y0 and y′ = x0 respectively.

Apart from the current symbolic values for all variables in
the program, during symbolic execution we also keep track of
a path condition and the program location. The path condition
is the conjunction of the conditions on the conditional branches
along the current execution path, expressed in terms of the
initial symbolic values. A more detailed description of how
this may be performed is presented in [17].

An execution starts by executing the basic block (a non-
branching sequence of instructions) starting at the beginning
of the program to the first branch instruction. This partial
path is marked as open. Then as long as there exists an
open partial path π, all feasible branch targets continuing
this path are computed by generating a sequence of path
feasibility conditions which are sent to a decision procedure.
A path feasibility condition is the path condition which would
result when branching into a given branch target. If this path
condition is satisfiable, the target is feasible in the sense that
there exists some input that would execute down the current
path and branch to that target. For every feasible branch
target, MicroFormal extends π with the basic block starting
at that location into a new path π′. If π′ reaches a terminating
instruction, this path is stored in the path database. Otherwise
it is marked as an open path and the execution continues. An
overview of the symbolic execution engine in MicroFormal
can be seen in figure 1.

A path feasibility condition for a partial path π is a formula
which describes the possible branch targets symbolically in
terms of the input variables combined with some query on
the target, and which is used to determine the possible values
for the branch target. The details on the formulation of path
feasibility conditions are outside the scope of this paper, here
we will focus on the decision procedure used to solve these
and other decision problems generated by MicroFormal.

From the point of view of the decision procedure, the
symbolic execution engine feeds it a sequence of formulae,
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and the result returned for one formula affects the future paths
taken by the symbolic execution engine, and therefore also
which formulae it receives in the future.

C. Improvements to the basic symbolic execution algorithm

To improve performance of the symbolic execution, several
techniques are used as described in [3]; here we will briefly
present three of them. One problem is the sheer size of the
formulae sent to the decision procedure. In order to reduce
the size of formulae, MicroFormal merges sets of partial
paths ending up in the same location into a single path by
introducing extra variables and conditional assignments. The
details are explained in [3], but for our purposes the relevant
effect is that it removes open partial paths which have so
far been generated, and replaces them with a new merged
path which is equivalent to but syntactically different from the
previous paths. Two other techniques that are used are based
on caching and SSAT, briefly described below.

Caching of solver results: The result of each solver call is
stored in a cache shown in figure 1. This cache stores for every
formula solved whether it is satisfiable or not, as well as the
model for satisfiable formulae. If a formula α has been shown
previously to be satisfiable, then any future formula α ∨ β
can be determined to be satisfiable without calling a solver.
In the same way, if α has been shown to be unsatisfiable,
any future occurrence of it as a subformula in future formulae
can be replaced with ⊥ as a simplification step. In case this
fails, it is possible to take a model stored in the cache and
evaluate the current formula with it. In case it evaluates to
true, there is no need to call the solver. It may also happen
that the evaluation results in a new smaller formula due to
some variable occurring in the formula which did not occur
in the model. In this case it is possible to send this simplified
formula to the solver: if it is satisfiable, then it is possible
to extend the old model into a model for the current formula.
The motivations for caching models is that if a path feasibility
check for some partial path shows it to be feasible, then there
exists an extension to this path. Therefore the model for this
path feasibility check should be useful in the future.

SSAT: In most cases, the symbolic execution engine
generates a single formula which must be solved before exe-
cution can continue, because the satisfiability of this formula
determines how the execution should proceed. But in some
cases, it is possible to generate more than one formula, which
it can predict must be solved regardless of their satisfiability.
One technique used to improve performance of solving in
these cases is to apply Simultaneous SAT (SSAT) introduced
by Khasidashvili et al. [16]. This technique is a modification of
the standard DPLL algorithm which allows the user to solve
multiple proof objectives for a single formula in CNF. The
solver will solve all proof objectives and for each of them
return their satisfiability and a model in cases of satisfiable
proof objectives. The motivation behind this technique is
twofold; First a single model may satisfy more than one proof
objective, and second information learnt while solving one
proof objective may be helpful in solving the others. Both of

these assume that the proof objectives are closely related to
each other, which is the case in this application.

III. SMT(BV) FOR SYMBOLIC EXECUTION

The primary objective of this wok is the reduction of
time spent in satisfiability checking of the proof obligations
generated during symbolic execution. The problem has been
tackled along two directions: (i) improve execution time for
each call to the decision procedure, and (ii) identify a more
efficient use of the decision procedure. (In the following,
it suffices to see MicroFormal as a generator of bit-vector
formulae to be solved.)

Direction (i) was pursued by replacing the backend engine
used in MicroFormal, called Prover, with the MathSAT SMT
solver. Prover is composed of an encoder from bit-vector
formulae to boolean formulae (through a process of bit-
blasting), pipelined to a customized (and extremely efficient)
SAT solver working on a boolean formulae in CNF. MathSAT,
on the other hand, can be seen as working at a higher level of
abstraction, and leveraging structural information at the level
of bit vectors to perform simplifications and rewritings. For
example, reasoning at BV level allows simplification based on
the theory of equality. This step, though conceptually simple,
allows exploiting recent progress made in dealing with the
theory of bit vectors in the field of SMT [8], [10]. We refer the
reader to [12] for a detailed description of how MathSAT deals
with BV. Notice that MathSAT won the 2009 SMT competition
on the BV category, see http://www.smtcomp.org/2009/.

In order to identify more effective ways to use the decision
procedure (ii), we consider that MicroFormal presents to
the solver a sequence Φ1,Φ2, . . . ,ΦN , where each Φi is a
nonempty set of formulae. The sequence of formulae is not
known a priori, meaning that the set Φi+1 is not known until all
formulae in the set Φi have been solved. Since all formulae in
the sequence derive from the symbolic execution of the same
microcode program, they will share the same set of variables.

The sets of formulae in the sequence have typically a
very distinct nature: the vast majority are singleton sets,
containing a single formula; the remaining few, non-singleton
sets, however, can contain large numbers of formulae, in some
cases even thousands. Thus, we concentrated on two specific
way to use the decision procedure, i.e. how to efficiently solve

• sequences of single formulae,
• large sets of formulae.

A. Solving sequences of single formulae

In MicroFormal, most sets in a sequence contain a single
formula, and we need to solve this one formula to advance the
search. Each formula is usually very similar to the previous
one. This can be seen by measuring similarity for a number of
medium to large sequences. Seeing each formula as a Directed
Acyclic Graph (DAG) using perfect sharing, we can compare
the similarity of a pair of formulae by measuring the number of
nodes in the DAG for one which do not occur in the DAG for
the other. Formally, given two formulae φ and ψ, we compute
the ratio of terms occurring in φ which do not occur in ψ to
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Algorithm 1: Solve reusing information
Input: φ1, φ2, . . . , φN

Input: Reset interval k
φ← >;
for i ∈ [1, N ] do

if i mod k = 0 then
φ← >;

end
pi ← fresh proposition;
φ← φ ∧ (pi ≡ φi);
solve φ under the assumptions {pi};

end

the total number of terms in φ, and vice versa. The minimal
of the two ratios denotes the similarity.

Consecutive formulae appear to be highly similar, with
a median similarity of 78%, 95% and 99%, respectively in
the sequences of three typical programs (see § IV-A), and
this is something we would wish to take advantage of. The
cases with very small similarity between formulae are almost
always combined with at least one of the two formulae being
very small. The approach we have taken is to reuse learnt
information from the solving of one formula to help solving
the next.

Modern SAT solvers are often quite good at handling
irrelevant information, since the heuristics they use often
manage to focus on the relevant parts of a formula, ignoring
the rest. MathSAT inherits these features from its underlying
SAT solver. We will take advantage of this fact by retaining all
information stored in the solver from one formula to the next.
We will also take advantage of the fact that MathSAT imple-
ments incremental solving under assumptions [11]. The basic
approach is shown in algorithm 1. When solving a sequence
of individual formulae φ1, φ2, . . ., the basic algorithm is to
first create one fresh predicate p1, add the formula p1 ≡ φ1

and solve under the assumption of p1 to discover if φ1 is
satisfiable; then, we create another fresh predicate p2 and add
p2 ≡ φ2 to the solver and solve under the assumption of p2.
In the second iteration, the complete formula in the solver will
be (p1 ≡ φ1)∧ (p2 ≡ φ2) and all learnt information from the
solving of φ1 is still available when solving φ2.

Although the solver might be good at ignoring irrelevant
information, eventually as the amount of irrelevant clauses
grow these will have a negative impact on performance, and
of course also on memory usage. Therefore it is important to
at some point remove this information. The simplest possible
approach would be to just throw away all information irrele-
vant or not, and then solve the next formula as if it is the first
one encountered. The advantages of this is that it is very easy
to implement and to use. The disadvantage are that we also
throw away potentially useful information.

The main question with this approach of dealing with the
accumulation of irrelevant information is, when to reset the
solver? Several solutions suggest themselves:

Algorithm 2: MSPSAT
Input: φ1, φ2, . . . , φN

P ← {p1, ..., pN}; // pi fresh predicates
φ←

∧N
i=1(pi ≡ φi);

Sat ← ∅; Unsat ← ∅;
while P 6= ∅ do

pi ← some element in P ;
if φ under the ass. {pi} satisfiable with model µ then

Sat← Sat ∪ {φj | µ |= pj};
else

Unsat← Unsat ∪ φi;
end
P← P \ {pj | φj ∈ (Sat ∪Unsat)};

end
return Sat,Unsat

• Use fixed reset frequency. Reset every k formulae.
• Reset based on subformula reuse. Measure how much the

next formula is already known to the solver, how much of
it is not previously known, and how much of the solver
information is irrelevant.

• Use an adaptive strategy. Measure solver performance,
and try to predict when degradation starts to occur. Reset
before it becomes detrimental.

• Delete only irrelevant information from the solver, and
keep the rest. This sounds like the best solution, but
computing which information is irrelevant is not a simple
problem. Just because it is not relevant for the current
formula does not mean it will not become relevant again
in the future.

Even in the cases where no learnt information is explicitly
removed, the underlying solver is free to remove learnt clauses,
as any standard SAT solver does. This can be more or less
aggressive, and works regardless of how the solver is used.
However, these techniques will not work on the original
clauses generated from encoding of the formulae given to
the solver, only the learnt clauses. In this application an
aggressive heuristic for clause removal may be interesting,
such as suggested in [4] and used in the glucose SAT solver.

B. Solving sets of formulae

In the cases where the current set of formulas contain more
than one formula, we should try to take advantage of this in
order to improve performance. For three medium-sized to large
microcode programs (see § IV-A) the simulator generates sets
of formulae with 93 non-singleton sets with between 100 and
1000 instances, and 11 sets with over 1000 instances.

To take advantage of this fact, we would like to make the
solver aware of all formulae beforehand. In this way we may
be able to satisfy more than one formula at a time, and also
reuse learnt information to discover that several formulae in
the set are unsatisfiable. One way of achieving this is shown in
a simple algorithm 2 we will call Multiple Similar Properties
SAT (MSPSAT). Here we create one fresh predicate (boolean
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variable) pi for each formula φi and give the solver the formula∧
i

pi ≡ φi

To solve φi, we solve under the assumption pi. Should it be
satisfiable under this assumption, we can easily check which
of the other formulae are also satisfied by the same model
by checking the truth assignment for the other fresh variables.
The algorithm iteratively picks one unsolved formula as a goal
and solves under the assumption of the corresponding fresh
variable. If it is satisfiable we check if any other unsolved
formulae are satisfied by the same model, and discharge all
satisfiable formulae.

IV. EXPERIMENTAL EVALUATION

A. Benefits of incremental and simultaneous solving

We now turn to an experimental evaluation of the techniques
proposed in this paper. Except where explicitly noted, all
experiments were carried out on a machine with dual Intel
Xeon E5430 CPUs running at 2.66 GHz using 32 GB of RAM
running Linux.

The initial experiments are run on instances coming from
three nontrivial microcode programs. For these three, Micro-
Formal was instrumented to dump all instances to files in
SMT-LIB format, and produce a log describing how these
instances were created. In this paper the programs will be
called “program 1”, “program 2” and “program 3”. Table I
gives the number of formulae generated in each of these three
MicroFormal runs. A test bench has been created which can
replay the solver calls in these three runs of MicroFormal,
which makes it easy to experiment with different strategies
and instrument the system to extract interesting information.
In order to emulate the behaviour of MicroFormal, when
solving a formula it is first loaded into memory in a separate
data structure to avoid measuring the time taking for parsing
formulae. From this data structure the MathSAT API is called
creating and solving formulae simulating the in-memory usage
in MicroFormal as closely as possible without actually running
MicroFormal.

Apart from the techniques described in this paper, these
experiments were performed with MathSAT set up to simply
bit-blast and solve the formula using a SAT solver. Since
the vast majority of formulas generated by MicroFormal are
trivial, this seems to deliver good performance, and this setup
should also mean that the techniques described here will also
translate to SAT solvers. For the instances taking the most
execution time, more aggressive preprocessing techniques can
be effective, but the total execution time is dominated by
a large number of trivial instances, and the preprocessing
normally used in MathSAT seems to be too expensive to be
used here.

1) Solving sequences of single formulae: We start by inves-
tigating the effect of fixed reset strategies on singleton sets. For
these experiments, we solve only singleton sets, skipping over
the other calls completely. The result on the three programs are
summarized in figure 2. It shows the relative improvement of

TABLE I
MICROFORMAL TEST SETS

Program Instances Satisfiable Unsatisfiable

Program 1 52933 44359 8574
Program 2 5468 4341 1127
Program 3 28962 13757 15205
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Fig. 2. Effect of reset interval on singleton calls

reusing solver information compared to solving each formula
in isolation. The horizontal axis shows the reset interval, that
is how frequently all learnt information is thrown away. A
reset interval of 1 corresponds to solving each formula in
isolation. From the figure, it is clear that there is a positive
effect of reusing solver information. For program 1 the best
improvement is a factor of 4 (at a reset interval of 161), and
for program 2 the best improvement is a factor of almost 10
(at reset a interval of 169). Lastly for program 3 the best
improvement is a factor of 7.4 (at a reset interval of 99).

We can also see that the exact reset frequency is not critical.
For program 1 and program 2, there is only a minor difference
between different reset intervals above 50. For program 3, the
trend is similar but the data appears to be more noisy. This
is due to some outliers among the instances to be solved,
which are both large and significantly different from any
of the others. These cause significant overhead when these
instances are retained in the solver and we attempt to solve
fresh instances. Performance depends on being able to divest
the solver of this irrelevant information as soon as possible,
but with a fixed reset interval how quickly this happens is
largely due to chance. To avoid this, we will choose a reset
interval of 25 for future experiments, which although shorter
than what is indicated as the optimal, should on the other
hand handle such outliers better. With this reset interval, the
improvement for these three programs is a factor of 2.7, 6.7
and 4.9 respectively.

To check if reuse of solver information is usable outside
of MicroFormal, the technique has also been applied to the
instances coming from the SAGE tool [13] (available in SMT-
LIB under QF BV/sage). Out of 12 sets of instances, a
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Fig. 3. Effect of reusing solver information on SAGE instances. Execution
times in seconds

fixed reset strategy of resetting every 25 instances helped
in all but two sets. In one of the two, execution time was
comparable (332 versus 334 seconds). In the other reusing
solver information used 65 seconds versus 11 seconds for
solving each instance individually. The added time is taken
up in two instances which take considerably more time than
the rest. Full results for these sets of instances can be found in
figure 3, where total execution time (in seconds) for each set
of instances is reported. Although the improvement is not as
large as for the three microcode programs seen earlier, there is
still a fairly clear improvement, and, indeed this improvement
is statistically significant (p = 0.016).

2) Solving sets of formulae: For the cases where Micro-
Formal generates multiple formulae to solve there are several
choices, we will look at a few of them as listed below:

1) Solve them in the same way as single formulae. There
might not after all be any need to treat these instances
any different from any other.

2) Solve them as with single formulae, but with an infinite
reset interval. The motivation is that similarity can be
expected to be better within each set than between
singleton instances since all instances in a set have been
generated at a specific point in symbolic execution.

3) Solve them with MSPSAT.

As a baseline, let’s look at the performance when treating
each instance as a singleton, disregarding that more than one
instance is known a priori. The results are shown in the
first row in table II. We can see a significant improvement
using MSPSAT over solving each formula individually. For
comparison, we also include the execution time when solving
all instances reusing solver information using a reset interval of
25, and also when resetting only in between sets of instances.
We can see that using a reset interval of 25 gives worse
performance than using the MSPSAT algorithm, so there
seems to be some value in treating these sets in a special way.
For these three programs at least there does however not seem

TABLE II
PERFORMANCE OF THE MSPSAT ALGORITHMS

Method Program 1 Program 2 Program 3

No reuse 104459.86 1722.31 55539.64
Reset (25) 9104.31 217.13 5434.52
Reset in-between 4485.51 243.91 2694.61
MSPSAT 6064.98 278.00 2826.98

TABLE III
AMPLE PERFORMANCE SUMMARY (EXECUTION TIMES IN SECS)

Solver Type Median Mean Standard Dev.

Prover Singleton 1072.14 2887.13 5973.29
Non-singleton 389.01 2264.52 4432.13
Ample 2412.00 6282.90 10316.34

MathSAT Singleton 98.48 289.05 704.25
Non-singleton 233.25 975.24 1751.98
Ample 997.00 2183.03 2842.62

to be an advantage with MSPSAT when compared to using a
separate solver instance for non-singleton sets which is reset
in-between every set. Indeed, the latter technique has a small,
but statistically insignificant, advantage over the others.

B. Overall impact of MathSAT within Ample

As a final experiment the impact of the usage of MathSAT
on the Ample tool is evaluated. Ample (Automatic Microcode
Path Logic Extraction) is a tool in MicroFormal used for
generation of execution paths for dynamic testing, and this will
be used for experimental evaluation in this section. For this
evaluation 32 different microcode programs have been selected
to be representative of small, medium, and large programs. For
each, Ample is run with its standard backend engine, the in-
house SAT solver Prover, and with MathSAT. In MathSAT,
reusing of solver information was used with a fixed reset
frequency of 25, and for non-singleton sets MSPSAT was used.
For Prover, singleton sets were solved individually, and non-
singleton sets were solved using the SSAT algorithm. The tool
was run on machines with Intel Xeon 5160 CPUs running at
3 GHz and 32GB RAM running Linux, and the execution
times of solver calls, other processing, total execution time
and memory usage was measured. In these experiments, in no
case was memory usage an issue.

The results are summarized in table III, which presents
the median, mean, and standard deviation values for the total
execution time on, respectively, singleton sets of formulae,
non-singleton sets (using MSPSAT for MathSAT, SSAT for
Prover) and for the total execution time for Ample. The
corresponding values, with one point for each of the 32
programs, are plotted in Figure 4.

For every program, the performance of MathSAT is better
than that of Prover, and for total execution time the improve-
ment is at worst a factor of 1.17, at best a factor of 4.43, and
overall the improvement is a factor of 2.88. Not surprisingly,
the improvement is statistically significant (p = 9 · 10−9). As
the experiments on non-singleton sets showed, simply reusing
solver information resetting the solver in-between each set may
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Fig. 4. Results for each of the 32 programs: (left) total solving times on the singleton sets; (center) total solving times on the non-singleton sets; (right)
Ample total execution times.

improve performance further. At the time of writing, this has
not been tried on these 32 microcode programs.

It should be noted that the difference on non-singleton sets
are not necessarily due to the different algorithms (MSPSAT
versus SSAT) being used, since two completely different
solvers are used for the comparison.

V. RELATED WORK

Whittemore et al. [21] describes reusing of learnt clauses
in the SATIRE SAT solver. This is an incremental SAT
solver which allows the user to retract clauses and add new
ones before searching again. To implement this the solver
keeps track of the dependencies between learnt clauses and
original clauses. If a clause is retracted, all clauses which
have been learnt using this clause are also removed. Silva and
Sakallah [20] proposed a technique for reusing clauses from
one formula to the next in automatic test pattern generation
(ATPG) for circuits. In this application a SAT solver is used
to try to generate stimuli that expose a particular fault. They
notice that some learnt clauses are independent of the current
target fault instead depending only on the circuit being studied,
and could be reused from one SAT problem to the next.
This happens if a learnt clause is derived solely from clauses
originating in the circuit. Strichman [19] noticed that in the
context of Bounded Model Checking (BMC), certain clauses
could be reused from one unrolling to the next.

Eén and Sörensson showed in [11] how learnt clauses could
be reused when doing k-induction. This relies on the idea
that in this application we are monotonically adding non-
unit clauses to the solver, and all unit-clauses can be used
as assumptions rather than adding them permanently to the
solver.

In [14] Große and Drechsler propose to reuse clauses learnt
while solving one formula when solving another iff they can
be derived from the intersection of the clauses in the two
formulae.

Babić and Hu proposed some simple heuristics to decide if
a fact is reusable of not in [5], which allow for reuse of learnt

unit clauses.
The only work which considers the idea of reusing all

information is the work by Eén and Sörensson, which is
targeted for the case of k-induction where all non-unit clauses
in one formula will occur also in the next. For general solving
of similar formulae which are not extensions of one another,
all previous work concentrate on techniques to compute the
relevant parts of the learnt clauses and reuse only those.

A. Simultaneous SAT

Khasidashvili et al. [16] introduced a technique for solv-
ing a set of related formulae using an algorithm they call
Simultaneous SAT (SSAT). Given a formula in CNF and a
set of proof objectives being literals in this formula, their
algorithm is a modification of a normal DPLL-like algorithm.
They always keep a particular proof objective as the current
goal to satisfy, the currently watched proof objective. At any
decision this literal is chosen unless it has already been given
a truth value. When the solver finds a model, it checks all
other proof objectives and records all that have been satisfied
by the model. Then a new currently watched proof objective
is chosen among those which has not yet been solved. This
is repeated until all proof objectives have been solved. The
SSAT algorithm can be seen as a special case of reusing
learnt information when all formulae to be solved are known
in advance.

In contrast to the SSAT algorithm, the MSPSAT algorithm
presented in this work doesn’t require any modifications of the
underlying solver. Indeed it would be possible to implement
using the MathSAT API rather than modifying any part of the
solver.

VI. CONCLUSIONS

In this industrial case study, we have seen how the introduc-
tion of SMT technology can result in increased performance
over pure boolean SAT. The experience also demonstrates
that a tailored integration within a given verification flow
can have a big impact on performance. In particular, reusing
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learnt information from solving previous formulae can be very
useful, and that in some cases it is possible to achieve good
performance without resorting to more complex techniques
for reusing information that have been proposed in the past.
Simply retaining all information, relevant or not, can provide a
significant performance boost with a very low implementation
cost and with no added solver complexity.

The activity described in this paper has had substantial
impact. MathSAT has now been successfully integrated into
MicroFormal, and it delivers significantly improved perfor-
mance over the SAT-based solver previously used. A version of
the tool set with MathSAT integrated has been made available
to users within Intel with MathSAT available as a command-
line option. Using MathSAT, this version has been successfully
used for verification of a next generation microarchitecture.
In the future, MathSAT will be made the default decision
procedure in MicroFormal.

Although some improvements have been made to MicroFor-
mal in this case study, the time taken to solve formulae is still
considerable compared to the rest of the work of the symbolic
execution engine, on average over half the execution time is
spent in solving formulae. Therefore, it would be interesting
to look for ways of further reducing the time taken to solve
instances as well as reducing the number of instances that need
to be solved. Listed below are a few possibilities which may
be interesting to investigate.

Better models: Since MicroFormal is currently capable
of storing models for previous formulae, and then use them
in a model caching scheme to either avoid future solver calls,
or significantly reduce the complexity of future calls, it makes
sense to attempt to adapt the models returned from the solver
to maximize the utility of this feature. A “good” model in this
case is one which models (or can be extended to model) as
many future formulae as possible, therefore minimal (or near
minimal) models may be interesting.

Heuristics for resets: The reset strategy used in this work
is a simple strategy with a fixed reset frequency. Although
it has been shown to deliver a significant performance im-
provement, it is still vulnerable to outliers in the sequence of
instances. It would be interesting to discover heuristics capable
of detecting when irrelevant information stored in the solver is
likely to negatively affect performance, and build an adaptive
reset strategy around such a heuristic. This should allow for
longer reset intervals in the cases where no outliers exists, and
further improve performance.

A hybrid concrete/symbolic execution engine: One tech-
nique which can quickly discover sets of paths in a program
is fuzz testing. It might be possible to combine fuzzing with
symbolic execution by starting with generating a number of
paths with fuzzing, and then extending this set using symbolic
execution. The two methods can be interleaved by a technique
similar to [13]. Judicial use of fuzzing and concrete execution
may in the best case be able to significantly reduce the number
of formulae that need to be solved, and taking a closer look
at this possibility may be a fruitful avenue of research.

Other possibilities: There are many other possibilities for
future improvement. Among them are the following:

• Support for uninterpreted functions. MicroFormal ab-
stracts some parts with uninterpreted functions, but cur-
rently those are eliminated using Ackermann’s expansion
by MicroFormal itself. Passing the original formula on to
the solver may improve performance.

• Parallelism. There are opportunities for parallelism in
MicroFormal. One example would be performing the
symbolic execution in parallel exploring several paths
simultaneously.
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Abstract—
To keep up with the growing complexity of digital systems, high

level models are used in the design process. In today’s processor
design, a comprehensive tool chain can be built automatically
from architectural or transaction level models, but disregarding
formal verification. We present an approach to automatically
generate a complete property suite from an architecture de-
scription, that can be used to formally verify a register transfer
level (RTL) implementation of a processor. The property suite
is complete by construction, i.e. an exhaustive verification of all
the functionality of the processor is ensured by the method. It
allows for the efficient verification of single pipeline processors,
including several advanced processor features like multicycle
instructions. At the same time, the structured approach reduces
the effort for verification significantly compared to a manual
complete formal verification. The presented techniques have been
implemented in the tool FISACO, which is demonstrated on an
industrial processor.

I. INTRODUCTION

The complexity of digital hardware systems has shown an
exponential growth over the last decades and it is growing
still. To keep track of large systems during the design process,
high level models are used increasingly. Especially for the
design of processors, architecture or transaction level models
form the core of an elaborate tool chain that enables the
automatic generation of simulators, assemblers or compilers,
like Facile [27] or LISA [9]. However, formal verification of
the functionality of the design is still not part of this tool chain.

There exist several techniques for the verification of hard-
ware designs. In simulation based verification, the outputs of
the implementation are compared to a golden reference model,
that is usually based on a transaction level description. But,
simulation is not well suited to cover the whole functionality
of a pipelined processor because achieving a sufficient design
quality for such a processor requires a huge simulation-based
verification effort and there is no guarantee that all possible
bugs have been considered. In contrast, formal techniques offer
the highest quality of verification [15].

One successful technique is Interval Property Checking
(IPC) [23], a technique similar to Bounded Model Checking
[3]. IPC is used to check if a system satisfies a set of properties
about the operations of a design like the processing of a
request in a bus bridge, the execution of an instruction in a

This work was carried out jointly by the group for computer architecture
at University of Bremen∗, Germany and OneSpin Solutions GmbH†. It was
supported in part by the German Federal Ministry of Education and Research
(BMBF) within the project VerisoftXT under contract no. 01 IS 07008 C.

processor pipeline, or an arbitration cycle in an arbiter. IPC
has been extended with further proofs which ensure that a set
of properties verifies all input/output behavior of a circuit [5].
This methodology has already been used in industrial context
for the verification of a wide variety of designs [12] including
small or medium size processors [6].

However, these projects also illustrate that the integration
of a thorough formal examination into industrial verification
practice requires larger changes to the education and opin-
ions of verification engineers. Compared to simulation based
approaches, formal verification requires a deep knowledge
of the internals of the design under verification (DUV) in
order to write assertions. An important motivation of the work
summarized here and presented in [20] is therefore, that the
automation of the formal verification of some well defined
class of circuits eases the migration from simulation to formal
verification and hence helps to introduce this technology. We
chose smaller single pipeline processors as this class.

For processors, a structured manual verification flow is
available today [2]. But, automation of the verification is
quite low, the more comprehensive the verification is. On the
other hand, existing approaches for the automatic verification
of processors (see related work in Sect. II) often require a
background of deep and general insight into verification goals
and correctness criteria.

In this paper we present a technique for the automatic
generation of a complete property suite for processors. The
starting point of the approach is an architecture description
of the processor. By defining a number of mapping functions
the user captures how the abstract concepts are mapped to the
register transfer level (RTL) implementation. These mapping
functions refer to pipeline stages, stall and cancel signals,
and similar objects that design and verification engineers are
familiar with. Following this approach, the specification is
captured in a concise and readable form, while the underlying
general processor model enables the verification of several
advanced processor features like multicycle instructions, out-
of-order termination as well as exceptions. The generated
property suite is complete by construction in the sense of [5].
As a driving verification engine, the OneSpin 360 MV tool
[24] is used, offering the performance and capacity to formally
verify whole processor designs.

The main contribution of this work is a well structured yet
pragmatic approach to tackle the formal verification of pro-
cessors. It offers an exhaustive verification for a certain class
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of designs, while the automatic generation of the properties
increases the verification productivity significantly compared
to manual coding of properties. As the input for the approach
is an abstract architecture description, the method can easily be
integrated with existing tool chains for processor design. The
automatic generation of the properties is implemented in the
tool FISACO. The approach is demonstrated with an industrial
control processor used in embedded automotive systems, a
domain with particularly high quality requirements.

The paper is structured as follows. Related work is discussed
in Sect. II. In Sect. III, our formal verification techniques are
reviewed. The automatic property generation is described in
Sect. IV. Sect. V shows the application of the approach to an
industrial processor design. Sect. VI concludes the work.

II. RELATED WORK

An approach for the automatic equivalence verification of
general transaction level models (TLM) with timed imple-
mentations is presented in [4], where the different levels of
abstraction are related by events. However, the lowest level of
abstraction in [4] is behavioral RTL and it is not clear how
the concept of events relates to optimized pipeline designs.
In other words, an automated equivalence check between a
sequential processor architecture and a pipelined RTL imple-
mentation is not feasible for optimized industrial designs.

There has been work on the formalization of pipelined
designs. Part of the approaches in the literature use formal
models for the automatic design of correct pipelines [19], or
to accompany the design process [10], [16]. In [10], starting
from a simple model, the design is incrementally refined until
a pipelined implementation is obtained. A CTL specification is
transformed along with the design to prove the correctness of
the refinement steps. A similar approach is presented in [22].
It decomposes the correctness proof for a complex pipelined
machine with branch prediction into several steps, the first
of which proves the compliance of a simple version of the
processor with its ISA. The drawback of these approaches is
that they cannot handle industrial designs containing legacy
code and manual optimizations that are needed to match hard
power and timing constraints.

There are various techniques for the verification of existing
processors [1], [13], [14], [30]. In [1], a formal pipeline model
is introduced that is based on parcels (instructions) process-
ing through the pipeline. By instantiating several predicates
describing the pipeline, the correctness of the design can
be proved formally. However, the model is rather abstract
and the predicates seem difficult to derive. In contrast, we
provide a clear distinction between the architecture layer and
the mapping to the implementation. Furthermore, our mapping
functions have a more intuitive counterpart in the designer’s
intent of implementing a pipeline.

Further approaches for processor verification rely on inter-
active theorem proving [18], [26], [29]. This generally offers
a high level view on the design. Theorem proving however
requires a significant level of expertise that is usually not
available to designers or verification engineers in practice.

Approaches for the automatic generation of properties are
given in [17], [25]; they are based on learning dependencies

or properties from simulation traces. However, they are only
suited for an initial design understanding rather than for a veri-
fication against a specification. In contrast, our approach starts
with a specification that is then related to the implementation
in a well structured way.

III. FORMAL VERIFICATION SETTING

Within the last two decades, there has been a lot of research
in formal verification techniques. Methods based on Boolean
satisfiability (SAT) have proven to be a robust solution. One
prominent technique is SAT based Bounded Model Checking
(BMC), that has first been described in [3]. Successive im-
provements in performance have made BMC a suitable method
for the formal verification of larger scale designs. For the work
at hand, we use the techniques described in [23], referred
to as interval property checking (IPC). In the following, this
verification methodology will be briefly outlined.

In contrast to BMC, only safety properties are verified using
IPC. As digital circuits always have a finite response time,
this is not a serious restriction in practice. It is rather natural
to capture the specification of a design in terms of safety
properties. Furthermore, using IPC, these properties can be
verified with bounded proofs, which can be checked efficiently
using a SAT solver.

The main idea of IPC is to use an arbitrary starting state
instead of the initial state used in BMC. Any property that
holds starting from an arbitrary state then also holds from any
reachable state and thus, it is exhaustively verified. Conversely,
false negatives can occur in IPC, i.e. counterexamples for
properties starting in unreachable states may be produced.
These false negatives need to be removed by adding invariants
in order to restrict the starting state. For more details on the
idea of IPC and the following formalization, refer to [23].

A synchronous circuit is modeled as a finite state machine
(FSM) M = (I, S, S0,Δ,Λ, O) with input alphabet I ⊆ Bn,
output alphabet O ⊆ Bw, a finite set of states S ⊆ Bm, output
function Λ and next state function Δ. The set S0 ⊆ S denotes
the initial states. With next state function Δ : Bn×Bm → Bm,
the transition relation of the circuit is given by

T (s, s′) = ∃x ∈ Bn : s′ ≡ Δ(x, s). (1)

A safety property f = AG(') is translated to a Boolean
function [[f ]]t, checking the validity of formula ' at time-
point t. Here, the translation is done such that a satisfying
assignment of [[f ]]t corresponds to a counterexample of '.
The resulting function depends on the inputs, outputs and
states within a bounded time interval [0, c]. IPC searches for
counterexamples by solving the SAT instance

c⋀
i=0

T (st+i, st+i+1) ∧ [[f ]]t. (2)

The transition relation is unrolled within the time interval
[0, c] and it is connected to the single instantiation of [[f ]]t.
In order to avoid unreachable counterexamples, invariants are
added. In many cases, such invariants can even be generated
automatically [31]. In the context of the described method-
ology, the needed invariants are usually less complex than
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the main properties; they can thus be verified using inductive
proof techniques like k-induction [28]. For more details on the
method, refer to [23].

IPC is a powerful verification technique, enabling the for-
malization of a specification in terms of safety properties
and its verification against the implementation. However, to
be sure that no bugs have been missed, the verification
engineer needs to reason about the completeness of the written
property suite. A technique to formally check whether a set
of properties forms a complete specification is described in
[5], [8]. These techniques have been successfully applied to
industrial processor designs [6].

Completeness analysis determines whether every possible
input scenario—corresponding to a transaction sequence of
the design—can be covered by a chain of properties that
predicts the value of states and outputs at every point in time.
In other words, any two designs fulfilling all the properties
of a complete property suite are formally equivalent. The
completeness analysis basically boils down to check in the end
state of each property whether (1) there is always a successor
property with matching assumptions, (2) the successor prop-
erty is uniquely determined and (3) each property describes
the outputs and states of the design uniquely. For more details
on the methodology please refer to [5], [8].

For the formal verification of the generated property suite
against the RTL, we use OneSpin 360MV [24]. This com-
mercial solution covers the required spectrum of formal
verification—from the verification of SystemVerilog assertions
all the way to the automatic completeness analysis described
above. Among various other proof engines, 360MV also offers
IPC and k-induction with sufficient capacity and performance
to handle the complete verification of processors [6].

IV. VERIFICATION USING GENERATED PROPERTIES

Technically, the basis of the approach presented here is
to provide a general formal processor model that can be
customized by the user to match his specific implementation.
The general processor model can be thought of as a tool box
with several design features to be picked out. The customiza-
tion is done by setting the architecture design parameters,
like the number of pipeline stages and the possible interface
transactions. Furthermore the mapping from the architecture
description to the RTL has to be established by defining a
number of mapping functions. The basic flow is shown in
Fig. 1. The general processor model consists of three parts:

1) The pipeline model describes the movement of the
instructions through the stages

2) The datapath model describes register access and data
forwarding

3) The interface model describes memory and bus ac-
cesses
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Fig. 2. Interaction of generated properties

After identifying the visible registers and interfaces, the
instruction set and the exception behavior of the processor are
described on the architecture level. The generated property
suite consists of instruction properties and a set of consis-
tency assertions. While each instruction property describes the
processing of a single instruction until it leaves the pipeline,
the consistency assertions ensure the correct interaction of
multiple instructions and the consistent pipeline behavior, if no
instruction is present in a dedicated stage. The latter includes
e.g. checking that empty stages will not update any state
elements. These assertions also help the user in finding an
appropriate mapping by giving him a feedback for debugging.

Basically, the equivalence of the property suite and the DUV
is established by chaining the generated properties, as shown
in Figure 2. Each property is depicted as a rectangular box,
consisting of an assume part (assumption A) and prove part
(consequent C, shaded gray in the figure). The properties are
hooked up at the time point when the processor is ready to
execute the next instruction, represented by the big black dots
in the picture. Thus, starting from reset, the first property
proves that the new instruction state (NIS) will be reached.
Then, the following properties assume the NIS and prove that
after fetching the dedicated instruction, NIS will be reached
again, enabling the connection to the next instruction property.

The basic approach has been described in detail in [20]; it
is based on a patent application [7].

A. General Processor Model

The approach presented here is limited to a class of pro-
cessors that is common in industrial designs. The class is
characterized by the following features:
∙ Single pipeline
∙ In-order-execution, out-of-order termination
∙ Register files with multiple prioritized write channels
∙ Exceptions and interrupts
∙ Delayed branch instructions
∙ Branch prediction
∙ Multicycle instructions
∙ Multiple interfaces, including pipelined protocols
Note that a typical CPU also contains complex data memory

and prefetch logic. With our approach, the core of such a
CPU can be verified with generated properties, providing
exact interface descriptions to the data memory and prefetch.
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These modules can in turn be verified manually, thus ensuring
correctness of the overall CPU. In such manual extensions, the
already established mappings and models can easily be reused.

The components that are included in the architecture view
are described in the following. A processor receives its instruc-
tions via an instruction memory interface, that is addressed by
a program counter PC. The currently processed instruction
word is denoted IW . There can be an arbitrary number of
architecture registers and flags. There can be interfaces to data
memories or buses, each associated with a set of transactions,
at least containing the idle transaction.

The instructions are described on the architecture level.
In order to verify them against the RTL implementation, a
mapping has to be established by the user. For the components
PC and IW , the corresponding mapping function is usually
pointing to a dedicated signal in the RTL showing the value of
the program counter and an instruction register, respectively.
However, the mapping of an architecture register file requires
a model of the pipelining due to forwarding mechanisms that
are part of every pipelined processor design. We first introduce
the architecture description, followed by a discussion of the
models for the pipeline, the data path, and the interfaces.
Finally, the generation of the property suite is described, and
the completeness of the model is discussed.

B. Architecture Description

In our approach, there is a clear distinction between the
architecture description and the mapping functions. In this
way, a readable and proven correct description of the ISA is
obtained. The mapping functions relate the ISA to the RTL.

In the first section of the architecture description, the com-
ponents of the processor are listed, comprising all architecture
registers and flags. Furthermore the interfaces to memories and
buses are given, as well as the respective transaction types on
these interfaces. The main section of the architecture descrip-
tion consists of the ISA description, where all instructions of
the processor are defined. In the ISA description, the registers
are referred to by their specification name.

For each instruction, first the execution condition is given
(TRIGGER). Then, the updates of the program counter and the
architecture registers and flags need to be defined, followed
by the definition of one transaction per interface. The updates
are defined by the read registers (VREGISTER), the target
register (UREGISTER) and the value that will be written by
the instruction (UPDATE).

As an example, consider Fig. 3(b) with a simple processor
description including an ADD instruction. The triggers for the
instruction are divided into two statements, one of which
only depends on the architecture state (TRIGGER_STATE),
while the second one depends on the instruction word
(TRIGGER_IW). Besides the update of the program counter
in line 8, there is one update of the register R, where two
registers are read addressed by parts of the instruction word
(lines 9 and 10). The target register is given in line 11 and the
sum of the two source registers is defined in line 12. Finally,
there is no transaction on the data memory interface, indicated
by the statement DMEM_IDLE in line 13.

opcode = 11000
R[rt] := R[ra] + R[rb];
No memory access.rb rtra

15 11 10 8 7 5 4 2

opcode

Arithmetic Instruction ADD

(a) Specification

1 registers := R;
2 interfaces := DMEM;
3 transactions_DMEM := IDLE, READ, WRITE;
4
5 simple_instruction ADD {
6 TRIGGER_STATE := true;
7 TRIGGER_IW := IW[15:11] == ADD_op;
8 UPDATE_PC := (PC + 2)[7:0];
9 VREGISTER_1 := R(IW[10:8]);

10 VREGISTER_2 := R(IW[7:5]);
11 UREGISTER_1 := R(IW[4:2]);
12 UPDATE_1 := (VREGISTER_1 + VREGISTER_2)[15:0];
13 DMEM_IDLE; }

(b) Architecture description

Fig. 3. Informal specification and architecture description example

C. Pipeline Model

In a pipeline, the processing of instructions is overlapped
in order to speed up computations. Thus, a new instruction
starts before the preceding one has terminated. For example,
a typical simple pipeline would partition an instruction into
fetching the instruction word from the memory, decoding it,
executing logical and arithmetic operations and writing the
result back into the register file. Note that this section only
introduces basic pipeline modeling for the control path in order
to keep track of the different instructions in the pipeline. The
handling of forwarding is part of the data path of a pipeline
and discussed in the following Sect. IV-D.

The major challenge in designing a correct pipeline are
hazards, i.e. conflicts between instructions that are processed
at the same time in different stages. If an instruction needs data
that is currently being computed by a preceding instruction, a
read-after-write conflict occurs and the succeeding instruction
needs to wait for the data. Thus, a mechanism to stall a stage
is needed. Another hazard is related to branching instructions.
When a jump is taken, this is typically detected at a time
when subsequent instructions from the sequential program
flow already have been fetched. Therefore, the pipeline must
possibly be cleaned from wrongly fetched instructions, requir-
ing a cancel mechanism. As this may lead to stages that are
not processing any instructions, it is desirable to distinguish
between empty and full stages to prevent spurious register
updates or similar faults. Based on these requirements, we
now define our pipeline model.

Given the number of pipeline stages n, we define the set
S = {1, 2, . . . n} of pipeline stages. The pipeline architecture
is further classified by defining some constants that refer to
certain stages like the decode stage dec ∈ S and the stages
ia, iv ∈ S that denote the stage when the instruction memory
is accessed and when the instruction word is valid, respec-
tively. The processing of instructions by the pipeline is defined
by the mapping functions1 full, stall, cancel : S → B.

The value of full(s) reflects if the pipeline stage s currently

1The state of the design is an implicit parameter of all mapping functions.
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Fig. 4. Normal processing of instructions by the pipeline
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stall(3)

Fig. 5. Pipeline for a taken jump instruction

holds an instruction. If stall(s) is true, the instruction in stage
s will not proceed to the succeeding stage s + 1. cancel(s)
indicates that the instruction currently in stage s will be
removed from the pipeline and will have no more effects
in later stages. The normal processing of two consecutive
instructions is shown in Fig. 4, where time progresses from left
to right. The time-points when the first instruction is allowed
to proceed to the next stage are denoted by t1 to t3, i.e.,
stall(s) evaluates to false at ts. The boxes indicate the time-
points when the respective stage is processing an instruction,
i.e. full(s) = 1. The pipeline for a taken jump or mispredicted
branch instruction is shown in Fig. 5. At timepoint tjmp, the
canceling of two succeeding instructions is indicated by the
dark boxes. After the taken jump, the target instruction is
fetched from the instruction memory.

The mapping functions have to be defined by the user. This
means for example, that the user needs to identify how the
implementation encodes the fact that a stage is full. Since the
functions are used in the properties, the verification fails as
long as the model is not completed properly.

In addition to the basic model, further pipeline operations
can be supported. It is common for instructions to leave the
pipeline before the last stage, if no more actions will be
taken in later stages, in order to prevent conflicts. Thus, a
last stage can be defined for each instruction. Exceptions are
a crucial feature for practical applications. By nature, they
interrupt the normal instruction processing. The most general
exception model, that is still suited to conform with our
approach, is an injection of a new instruction into the pipeline
after an exception has been acknowledged. Finally, for more
complex arithmetic operations or interactions with protocol
driven interfaces, multicycle instructions are frequently used
in processor designs. Typically, an FSM in an early stage is
responsible for dispatching partial instructions in the pipeline.

For these refinements of the simple model, additional map-

stage1

stage3

stage2

t3,3t2,3t3,2t2,2t3,1t2,1t1,1
stall(1)

stall(2)

dispatch(2)

stall(3)

Fig. 6. Pipeline for a multicycle instruction

ping functions for of out-of-order termination, exceptions, and
multicycle instructions need to be defined.

last stage, inject, dispatcℎ : S → B, (3)

Here, last stage(s) indicates that the instruction in stage s
will leave the pipeline, inject(s) states that an instruction will
be injected into stage s in the next cycle due to an exception,
and dispatcℎ(s) describes that a multicycle instruction is
started in stage s. The pipeline of a multicycle instruction
according to our model is shown in Fig. 6. There, the partial
instructions are dispatched in stage 2.

D. Data Path Model
Based on the above control path model of the pipeline, we

can now define the data path model, describing the way how
data is read, forwarded and stored in the registers.

For a register file R, a mapping function currentR : ℐR →
DR is defined that returns the current implementation state of
the register, where ℐR is the index set and DR is the data
domain of register R. For the data path of the register the
following mapping functions have to be defined:

writeR, validR : S → B (4a)
destR : S → ℐR (4b)
dataR : S → DR, (4c)

where writeR(s) indicates if the instruction in stage s is going
to update register R, while destR(s) and dataR(s) specify
the target register and the data to be written, respectively. By
validR(s), it is stated if stage s already produces a valid result.
With these building blocks, the forwarding in the pipeline to
some forwarding target stage s ∈ S can easily be captured: the
value of a register R with index i ∈ ℐR in the forwarding target
stage s is recursively given by checking whether succeeding
stages write to register i; this corresponds to the forwarding
logic in the pipeline.

DataR(s, i) =

⎧⎨⎩
currentR(i), if s ≥ writebackR;

dataR(s + 1),
if writeR(s + 1)∧
destR(s + 1) = i;

DataR(s + 1, i), otherwise.

Note that this automatically generated function DataR
actually captures the complex mapping of the visible register
R to the implementation, i.e., the architecture value of R for
an instruction in the pipeline is the value of DataR in the
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forwarding target stage of that instruction. Since the value of
DataR may be invalid because the result of some instruction is
not available yet, we introduce an additional mapping function
capturing whether the forwarding data is indeed valid:

V alidR(s, i) =

⎧⎨⎩

false, if s < dec;

true, if s ≥ writebackR;

validR(s + 1),
if writeR(s + 1)∧
destR(s + 1) = i;

V alidR(s + 1, i), otherwise.

E. Interface Transactions

In order to verify the interfaces of the processor, the
following model is used. For each interface IF the constants
daIF , dvIF ∈ S denote the stage when a data access is issued
and when valid data is returned, respectively. For each inter-
face, a set of transactions TAIF is defined by the user with at
least IDLE ∈ TAIF . For each transaction ta ∈ TAIF a func-
tion taIF : ℕ× ℕ→ B is defined, where taIF (addr, wdata)
captures that the specified transaction takes place in the
design, optionally involving the address addr and (for writing
transactions) the write data wdata. As for the example in
Fig. 3(b), the three functions IDLEDMEM , READDMEM

and WRITEDMEM need to be defined, capturing for given
address and data, if the respective transaction is issued on the
data memory interface.

Besides the transactions, for each interface a mapping
function rdataIF points to the implementation port, where
data is read in to the processor. Finally, there is a static
interface to the instruction memory, given by the predicate
ibus read : ℕ→ B, which checks if the instruction memory
is currently being accessed for a given value of the program
counter.

F. Consistency Assertions

While the above models describe the processing of instruc-
tions by the successive pipeline stages, additional assertions
are needed for the overall correctness of the processor. This
includes the behavior of empty pipeline stages as well as the
interaction of succeeding instructions. For this purpose, a set
of consistency assertions are automatically generated.

Note that the overall verification is fail safe, i.e. it cannot
succeed if the design is not correct. But, even for a correct
design, finding the appropriate mapping functions can be
difficult. The consistency assertions provide useful information
on the status of the modeling. Failing assertions can point
the user to certain mapping functions that need to be revised
to complete the verification, thereby guiding the debugging
process.

We show the following assertion as an example. For a more
detailed description of the consistency assertions, see [20].

∀s, 2 ≤ s ≤ n :
( (¬fullt(s− 1) ∨ stallt(s− 1))∧
(¬fullt(s) ∨ ¬stallt(s)) )⇒ ¬fullt+1(s)

(5)

This assertion states that it is illegal to create full stages in
the middle of the pipeline: when the stage before s is empty

TABLE I
USER INPUT FOR PROPERTY GENERATION

(a) Constants
Name Domain Description
n ℕ number of stages
dec S = {1, . . . , n} decode stage
ia S instruction memory access stage
iv S stage in which instr. word is valid
int S highest stage for interrupt injection
daIF S access stage for interface IF
dvIF S data valid stage for interface IF
writebackR S writeback stage for register R

(b) Mapping functions
Arch. Function Signature Description

Basic components
PC pc ℕ program counter
IW iw ℕ instruction word

Pipeline Model
full S → B stage active
stall S → B stage stalled
cancel S → B stage is canceled
inject S → B inject launch instr.
dispatcℎ S → B dispatch micro instr.
last stage S → B instr. leaves pipeline

Datapath Model

R

8>><>>:
currentR DR implementation register
writeR S → B stage will write
destR S → ℐR write destination
dataR S → DR write data
validR S → B data is valid

Interfaces
ibus read ℕ→ B instruction fetch

IF TA taIF ℕ× ℕ→ B transaction
IF RDATA rdataIF ℕ read data

or stalled, and s is empty or it will proceed to the next stage,
then s must be empty in the next cycle. Here, f t denotes the
value of f at timepoint t. Other assertions ensure, for example,
that instructions do not overwrite each other and that empty
pipeline stages do not have an effect on the visible registers
or issue interface transactions.

G. Generating The Property Suite

In order to adapt the general processor model to the actual
DUV, the user needs to specify the mapping functions de-
scribed in Sections IV-C to IV-E. The user input is summarized
in Table I. Besides the basic data on the pipeline, given by
a set of constants, the table shows the mapping functions
corresponding to the architectural components of the general
processor model.

During the generation of the property suite, an architecture
register R(i) is replaced by an instantiation of the function
DataR(sfwd, i), where sfwd is the forwarding target stage,
which is usually the decode stage.

The generated properties prove the correctness of the in-
structions on the implementation level. For this, we define
t0 to be the timepoint when the respective instruction enters
the pipeline and ti > ti−1, 1 ≤ i ≤ n to be the timepoints
when the instruction is allowed to proceed from stage i (see
also Fig. 4–6). The properties have an implication structure
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A ⇒ C. Whenever the assumptions A evaluate to true, the
prove part C must hold as well. In the following, we give an
overview of the templates for instruction execution without
exceptions. There are similar templates for exceptions; for
more details, see [7]. Note that there are two templates for
conditional branches depending on whether the branch is taken
or not. In this way, branch prediction can easily be modeled.
The assume part for an instruction m basically consists of the
following assumptions:
∙ The instruction enters the pipeline at t0.
∙ In decode, instruction m is triggered.
∙ The instruction proceeds from stage i at ti, i ≤ 1 ≤ n.
∙ The instruction is not canceled by preceding instructions

and not replaced by an exception call.
For each instruction, mainly the following will be proved:
∙ The instruction is fetched from the instruction memory
∙ The program counter is updated correctly
∙ The full stages are correctly tagged by the full function
∙ No cancel is generated (except for jump instructions)
∙ All read registers are valid
∙ The registers will be updated (or remain stable) corre-

sponding to the ISA; this includes the verification of
correct forwarding

∙ The correct transactions will take place on the interfaces

H. Completeness

The pipeline model is built such that the final property suite
in combination with the consistency assertions is complete
by construction, if some rules are respected for the definition
of the mapping functions. For a proof for the basic pipeline
model, see [7].

However, the completeness of a concrete generated property
suite additionally depends on the proper definition of some of
the functions. If, for example, the user defined the function
for a read transaction by simply returning true, it is obvious
that the interface signals are not checked at all for read
transactions and there is a gap in the verification. In summary,
the generation ensures that all possible scenarios are covered
with properties, but not that all transactions verify all outputs.
However, the automatic gap detection of OneSpin 360 can be
used to close these gaps as well.

V. APPLICATION

The above method has been implemented as a front-end
for OneSpin 360 MV; we call it FISACO (Formal Instruction
Set Architecture Compiler). It takes an architecture description
and automatically generates the instruction properties and the
consistency assertions in a form readable for 360MV. The
mapping information needs to be supplied in a temporal logic
format. The processor model formed by both the architecture
description and the mapping information can then be verified
and debugged using 360MV.

In the following we will describe the application of the
proposed method on an industrial processor design. We suc-
cessfully verified a control processor that is used in automotive
applications, the Peripheral Control Processor (PCP) by In-
fineon Technologies. First, the basic data of the PCP will be

given, followed by a presentation of the verification results.
Besides, during its development, the method has been applied
for the complete verification of smaller processor designs from
the opencores site (www.opencores.org). Details cannot
be given here due to page limitation.

A. PCP Processor

The PCP processor is a control processor that is part
of automotive systems. Its main purpose is the monitoring
of peripheral components in order to release the central
CPU [11]. Therefore, a great share of the instruction set
is dedicated to data transfer and bit operations, which are
frequently used in typical control applications. The PCP is
connected to a data memory and a pipelined FPI bus (Flexible
Peripheral Interface). As the bus operations require complex
protocol transactions, 35% of the instruction set are multicycle
instructions. In total, the PCP has 66 instructions, divided
into arithmetic/logic instructions, jump and control, memory
instructions, bus instructions and complex math instructions.

The processor is implemented as a four stage pipeline. The
register file contains 8 registers of 32 bit, where one register is
a special purpose register containing various status flags and
the program counter. The whole RTL implementation adds up
to about 17.000 lines of VHDL code, accompanied by a de-
tailed informal specification. Regarding the complexity of the
design and the quality of the source code and documentation,
the time for the formal verification was estimated with 8 to 10
person months, needed to manually write a complete property
suite using OneSpin 360 MV.

B. Results

The PCP has been verified using the presented approach.
The informal specification was ported to an architecture de-
scription. Most of the manual effort was spent for the definition
and refinement of the pipeline and datapath model, given by
the mapping functions explained in Sect. IV-C to IV-E. Using
our approach, the instruction set of the PCP could be success-
fully verified except for two highly complex bus instructions
involving nested loops and excluding three complex math
instructions. For these instructions, the control mechanisms
of the PCP did not match our general pipeline model. It does
not seem useful to extend the model for these cases, as they
are very specific to the PCP implementation. Instead, having
found a good representation of most of the functionality based
on our processor model, the defined functions can be reused
for further manual verification. This has also been done for
some additional functionality beyond the ISA, like loading
and storing full register contexts. The overall verification of the
PCP with our methodology took about 5 person months. Thus,
we could achieve an estimated productivity gain of 100%.

The verification has been carried out on 2.2 GHz work-
station with 16 GB memory. Details on the proof times and
the used memory can be found in Table II. As can be seen,
the generated consistency assertions could be proved quickly.
Most of the time was spent for the verification of arithmetic
and bus instructions. The latter ones are mostly multicycle
instructions and thus the design needs to be unrolled for up to
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TABLE II
VERIFICATION RESULTS

Category Properties Total time Avg. time Memory
assertions 34 600 s 17.6 s 937 MB
arithmetic 15 18788 s 1252.5 s 2500 MB
logic/bit 18 3368 s 187.1 s 2500 MB
jump 7 220 s 31.4 s 2500 MB
memory 16 2135 s 133.4 s 2500 MB
bus 10 3214 s 321.4 s 2500 MB
other 3 147 s 49.1 s 1763 MB
total 103 7:54 h

26 cycles. Note that the two most difficult instructions make
up 3 hours and 48 minutes or 48% of the total runtime.

VI. CONCLUSIONS

We have presented an approach for the automatic generation
of a complete property suite from an architecture description
of a processor. There is a clear distinction between the
architecture model and the mapping information connecting
architecture to RTL implementation. The architecture model
can be easily derived from an informal specification.

The mapping from the specification to the implementation is
based on a general pipeline model that reflects the designer’s
intent in implementing a correct pipelined processor. A set
of consistency assertions is automatically generated to check
the correctness of the model and helps the user in finding
a suitable mapping. When the mapping and the architecture
description are finished, the generated property suite forms a
model of the design, i.e. the verification is exhaustive.

The practicability of the approach has been demonstrated
on an industrial processor design, a control processor from
the automotive domain. With the presented methodology, the
estimated verification productivity could be doubled.

In the future, we want to integrate this approach with our au-
tomatic generation of efficient instructions set simulators (ISS)
[21]. This allows to generate both a complete property suite
and an efficient ISS from a common architecture description,
ensuring that the generated ISS complies to the verified RTL
code. A complementary extension would be the use of existing
ADL like LISA, facilitating the integration of formal methods
into the tool chain for processor design.
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using induction and a SAT-solver. In FMCAD, pages 127–144. Springer,
2000.

[29] J. Skakkebæk, R. Jones, and D. Dill. Formal verification of out-of-order
execution using incremental flushing. In Proc. of the Int’l Conf. on
Computer Aided Verification, pages 98–109, 1998.

[30] M. Velev. Formal verification of pipelined microprocessors with delayed
branches. In Int’l Symp. on Quality Electronic Design, page 4pp., 2006.

[31] M. Wedler, D. Stoffel, and W. Kunz. Exploiting state encoding for
invariant generation in induction-based property checking. In Asia and
South Pacific Design Automation Conference, pages 424–429, 2004.

136



Encoding Industrial Hardware Verification Problems
into Effectively Propositional Logic

Moshe Emmer, Zurab Khasidashvili
Intel Israel Design Center

Haifa 31015, Israel
{memmer,zurabk}@iil.intel.com

Konstantin Korovin, Andrei Voronkov
School of Computer Science,

University of Manchester, UK
korovin@cs.man.ac.uk, andrei@voronkov.com

Abstract—Word-level bounded model checking and equiva-
lence checking problems are naturally encoded in the theory
of bit-vectors and arrays. The standard practice of deciding
formulas of such theories in the hardware industry is either
SAT- (using bit-blasting) or SMT-based methods. These methods
perform reasoning on a low level but perform it very efficiently.
To find alternative potentially promising model checking and
equivalence checking methods, a natural idea is to lift reasoning
from the bit and bit-vector levels to higher levels. In such an
attempt, in [14] we proposed translating memory designs into the
Effectively PRopositional (EPR) fragment of first-order logic.

The first experiments with using such a translation have
been encouraging but raised some questions. Since the high-level
encoding we used was incomplete (yet avoiding bit-blasting) some
equivalences could not be proved. Another problem was that
there was no natural correspondence between models of EPR
formulas and bit-vector based models that would demonstrate
non-equivalence and hence design errors.

This paper addresses these problems by providing more re-
fined translations of equivalence checking problems arising from
hardware verification into EPR formulas. We provide three such
translations and formulate their properties. All three translations
are designed in such a way that models of EPR problems can be
translated into bit-vector models demonstrating non-equivalence.

We also evaluate the best EPR solvers on industrial equivalence
checking problems and compare them with SMT solvers designed
and tuned for such formulas specifically. We present empirical
evidence demonstrating that EPR-based methods and solvers are
competitive.

I. I NTRODUCTION

Use of theorem proving in hardware and software verifi-
cation is not new. A first classification of the use of the-
orem proving in formal verification would be to divide it
into Higher-Order Logic (HOL) and First-Order Logic (FOL)
theorem proving. Because HOL theorem proving is highly
interactive and requires from the user both an expertise in
theorem proving and a good familiarity of the design (or
program) under verification, the use of higher-order theorem
proving in hardware verification is limited to particular styles
of design for which no good fully-automatic verification
methods exist.1 Unlike HOL, there are highly efficient fully
automatic FOL theorem provers, so the potential of FOL for
a wider use in formal verification is significantly higher.

This work is partially supported by EPSRC and the Royal Society.
1This by no means diminishes the importance of the use of HOL theorem

proving in verification – in certain areas of verification it is indispensable.

In this paper we are interested in equivalence checking and
model checking problems in hardware verification involving
decision procedures for bit-vectors and arrays. Such problems
can be solved efficiently by Satisfiability Modulo Theories
(SMT) [16] solvers [5], [6], [21]. More precisely, we are
interested in problems in the theory of fixed-size bit-vectors
and extensional arrays, known as the theoryQF AUFBV .
It has also been shown [14] that such problems can be
encoded into the Effectively Propositional (EPR) fragment of
FOL, which is decidable and for which efficient FOL solvers
exist [20], [15], [3]. The EPR fragment consists of first-order
formulas which in clausal normal form contain no function
symbols other than constants.

The current understanding (on which many experts in the
field agree) is that FOL solvers are good at ”pure first-order
problems” involving formulas with (interleaving and nested)
universal and existential quantifiers, while SMT solvers are
best at quantifier-free theories.2 In this paper we set out to
investigate the scalability of EPR solvers with different proof-
calculi to real-life problems involving reasoning with bit-
vectors and arrays, and comparing their performance with the
best SMT solvers for the theoryQF AUFBV . We propose
several sound and complete encodings of problems in this
theory into EPR, and discuss and experimentally evaluate
the advantages and disadvantages of different encodings. We
also discuss and experimentally evaluate advantages and dis-
advantages of different proof calculi for FOL with respect
to solving the EPR problems arising from industrial scale
hardware verification.

To the best of our knowledge, no similar analysis was
reported before. We find this analysis interesting and important
especially because the significance of the EPR fragment in
software and hardware verification has been realized only
recently [17], [18], by showing that many interesting veri-
fication problems can be encoded in this fragment and can
often be solved efficiently. We hope that the theoretical and
experiential analysis reported in this work will help in cross-
learning between the calculi and algorithms employed in SMT
and FOL approaches, for the class of problems with bit-vectors
and arrays.

2Few SMT solvers, like Z3, do support limited quantified theories; see [22]
for further references.
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In the next section, we recall a sound but incomplete
encoding of problems with bit-vectors and arrays into EPR,
as described in [14]. As a consequence of incompleteness, the
powerful abstraction of the size of bit-vectors and arrays on
which the encoding to EPR is based, is often the source of false
counter-examples in verification. Debugging of verification
failures is the main source of inefficiency in hardware design
projects, and false failures (also called false negatives, caused
by the nature of the verification tool or methodology rather
than an actual bug in the design) are simply unacceptable.
In Section III, we therefore propose several approaches to
achieving the completeness of encoding to EPR, thereby
eliminating the possibility of false negatives.

In Section III, and further in Section IV, we analyze the
advantages and disadvantages of the proposed sound and
complete encodings to EPR, and relate these to the strengths
and weaknesses, relative to the problems we are interested in,
of several important proof calculi employed in the best EPR
solvers (the winners of recent theorem proving competitions
in the EPR and other categories). Extensive experimental
results comparing the performance of the best solvers for EPR
problems with the performance of winning SMT solvers in the
category of bit-vectors and arrays on hardware verification
problems arising from real-life Intel micro-processor design
are reported in Section V. The benchmarks were selected and
organized carefully so to expose the strengths and weaknesses
of different decision procedures, and their sensitivity to the
nature of the benchmarks (such as the presence of extensive
bit-level reasoning as opposed to really bit-vector level rea-
soning, the design style, the writing style of RTL, the nature
of compilation of RTL and schematic descriptions into model-
checking instances). Conclusions appear in Section VI.

II. T HE RELATIONAL ENCODING

In this paper we consider the theory of fixed-size bit-vectors
and extensional arrays. We assume that bit-vector arithmetic
operators are synthesized (or bit-blasted) in the verification
front-end, and the solver engines do not receive arithmetic
operations in the expressions to solve.

For arrays, we assume the standard operations: read (or
select), write (or store), and equality (if the array dimensions
are the same), and the standard consistency and extensionality
axioms [19], [7], [16]:

mem{i← e}(i) = e;
mem{i← e}(j) = mem(j), if j 6= i;
(∀j : mem1 (j) = mem2 (j))→ mem1 = mem2 .

The encodings of the theory of bit-vectors and arrays that
we consider here are all refinements of an encoding proposed
in [14], called therelational encoding (as opposed to the
algebraic encoding that was also considered there and was
shown not to scale on even small verification problems). To
explain the relational encoding and to describe our contribution
clearly, we choose to use as the running example slightly
modified toy specification and implementation designs used
as the running example in [14].

Fig. 1. Specification and Implementation memories

The toy designs are depicted in Figure 1. The specification
design corresponds to the register-transfer level description
(RTL), while the implementation design corresponds to its
schematic implementation (SCH). The specification model
contains a memorysmem with 64 rows and 71 columns,
its address bit-vectoraddr is of width 12, and it is used
to pass the memory address for both write and read oper-
ations: bitsaddr[5 : 0] are used for the write operation
and bits addr[11 : 6] are used for the read operation.
Further,swrite andsread denote the write and read data
vectors, respectively, of width71, andwren andrden are the
control bits enabling write and read operations, respectively.
The bits wren and rden, as well as the clockclock
and addressaddr, are shared between the specification and
implementation designs. The implementation design has mem-
ory imem with the same dimensions assmem. 3 The write
operation in the implementation model is different: bit-vector
dataiwrite is split into two parts during the write operation
– iwrite[70 : 36] and iwrite[35 : 0]. Each of the
parts is written to the corresponding part ofimem, so the
implementation memory is shown split into two parts. Beyond
the boundaries of the implementation memory unit the data is
bitwise negated before being written to the implementation
memory and after being read from it, so the write data
iwrite (respectively, read datairead) in the implemen-
tation memory is the negation of the write (respectively, read)
data in the specification memory.

With the relational encoding [14] of memory equivalence
checking problems into EPR, any bit-vectorb is considered as
a relation on integers. Thus, for every integerk, it holds that
b(k) is true if and only if thekth bit of b is 1. If b does not
have thekth bit, the relational encoding in [14] assumes that
b(k) is either true or false. Such a representation of bit-vectors
is a powerful abstraction, since, instead of considering a bit-
vector a mapping from a finite range of integers to booleans,
as is done in the SMT theoryQF AUFBV , a bit-vector is
now a mapping fromall integers to booleans. The width of bit-
vectors is thus abstracted away. In the relational encoding, a
memory becomes a binary relation: the first argument denotes
an address and the second a bit. For example,imem(a, k)
denotes the value of thek-th bit of the element at the address

3Intel’s logic extraction tool can identify memories and address decoders
in the schematic models [14].
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a in imem.
Let us now recall the relational encoding (as in [14])

of our running example. First, define the correspondence
between the specification and the implementation designs as
the conjunction of correspondence of the memories and of the
read data.

∀A∀B(imem(A,B)↔ ¬smem(A,B)). (1)

∀B(iread(B)↔ ¬sread(B)). (2)

The input write data correspondence is specified as follows:

∀B(iwrite(B)↔ ¬swrite(B)). (3)

To be able to use the relational approach, one should identify
bit-vectors in the design used as addresses and add equations
enabling to decide when any pair of addresses is equal. For
example, in our running example, we might need formu-
las describing when the termwriteAddr corresponding to
addr[5 : 0] is equal to the termreadAddr corresponding
to addr[11 : 6]. Since the bit indexes involved in these
two bit-vectors are different (in particular, are shifted), the
corresponding bit-index constantsbitInd0, . . . ,bitInd11

are introduced, and the following axiom is added:

(writeAddr = readAddr)↔
((addr(bitInd0)↔ addr(bitInd6)) ∧ . . .∧
(addr(bitInd5)↔ addr(bitInd11))).

(4)

The transition relation for the specification memory is as
follows, where the prime symbol′ is used to denote next-state
variables:

∀A(clock∧ wren ∧A = writeAddr→
∀B(smem′(A,B)↔ swrite(B)));

∀A(¬(clock∧ wren ∧A = writeAddr)→
∀B(smem′(A,B)↔ smem(A,B))).

(5)

Splitting bit-vectors into parts is done by introducing pred-
icates true on bits belonging to the LSB part. For the running
example, predicateless36 is introduced, intended to hold
(only) on bits with numbers strictly less than36. We also
introduce propositional variableswrenh1 and wrenh2 for
enabling writing into the two parts of the memory.

wrenh1 ↔ wren ∧ clock;
wrenh2 ↔ wren ∧ clock. (6)

The transition relation for the implementation memory is
then given as follows:

∀A(wrenh1 ∧A = writeAddr→
∀B(less36(B)→ (imem′(A,B)↔ iwrite(B))));

∀A(¬(wrenh1 ∧ A = writeAddr)→
∀B(less36(B)→ (imem′(A,B)↔ imem(A,B))));

∀A(wrenh2 ∧A = writeAddr→
∀B(¬less36(B)→ (imem′(A,B)↔ iwrite(B))));

∀A(¬(wrenh2 ∧ A = writeAddr)→
∀B(¬less36(B)→ (imem′(A,B)↔ imem(A,B)))).

(7)
The definitions of the read operations for the specification

memory are as follows.

clock ∧ rden→ ∀B(sread′(B)↔ smem(readAddr, B));
¬(clock ∧ rden)→ ∀B(sread′(B)↔ sread(B)).

The definitions of the read operations for the implementa-
tion memory are similar; one should only replacesread and
smem by iread andimem.

III. R ELATIONAL ENCODINGS ELIMINATING SPURIOUS

MODELS

Unfortunately, as pointed out in [14], the powerful abstrac-
tion resulting from considering bit-vectors as functions onall
integers comes in the expense of loosing the completeness
of the encoding – false negatives (i.e, counter-examples that
are not real) are possible. For example, ifa, b, c represent bit-
vectors of length 1, the formula

a = b ∨ a = c ∨ b = c (8)

is valid, but it is not valid in the abstraction since its negation
is satisfiable.

In order to avoid the possibility of false negatives (i.e., spuri-
ous models), we would like the relational encoding to become
aware of the ranges of bit-vectors and arrays involved in circuit
operation, and we would like to record this information in the
translation. The main idea of the refined encoding – let us call
it range-aware relational encoding to EPR – is that for every
formula that we generate during the encoding, the range of bits
in the involved bit-vectors or arrays is explicitly encoded in
the formula using the less-predicates and bit-index constants
(such asless36 or bitInd5). For this to work, we need to
relate the less predicates introduced during the encoding with
the bit-index constants introduced during the encoding. Note
that there is no need to relate a bit-indexbitIndk with a less
predicatelessn for many pairs(k, n): it might be irrelevant
to capture the fact that

lessn(bitIndk) if k < n;
¬lessn(bitIndk) otherwise. (9)

Next we discuss several ways to eliminate false negatives,
and discuss the advantages and disadvantages of each ap-
proach.

A. Encoding 1: precise ranges

Let us first define range-predicates: For a pair of non-
negative integersn ≤ m, let us define

range[m,n](B) ↔ lessm+1(B) ∧ ¬lessn(B).

When equality between arrays is introduced, it should be
guaranteed that there will be no bits beyond the range of the
data on which the array equality will fail. For example, we
write the invariant formula (1) for memories as

∀A∀B(range[70,0](B)→ (imem(A,B)↔ ¬smem(A,B))).

When equality between bit-vectors of the same range is in-
troduced, we explicitly restrict the corresponding equivalence
of bits to the relevant bit-range. For example, we now write
the formula (7) as
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∀A(wrenh1 ∧A = writeAddr→
∀B(range[35,0](B)→ (imem′(A,B)↔ iwrite(B))));

∀A(¬(wrenh1 ∧A = writeAddr)→
∀B(range[35,0](B)→ (imem′(A,B)↔ imem(A,B))));

∀A(wrenh2 ∧A = writeAddr→
∀B(range[70,36](B)→ (imem′(A,B)↔ iwrite(B))));

∀A(¬(wrenh2 ∧A = writeAddr)→
∀B(range[70,36](B)→ (imem′(A,B)↔ imem(A,B)))).

Similarly, instead of (2) we now write

∀B(range[70,0](B)→ (iread(B)↔ ¬sread(B))).

We add axioms stating that bit-index terms corresponding
to different indexes are not equal. For a less-predicate like
less36, that has been introduced, we add the axiom

∀B(less36(B)↔
(B = bitInd0) ∨ . . . ∨ (B = bitInd35)).

(10)

How can the range-aware encoding solve the incomplete-
ness of the relational encoding of [14]? With the relational
encoding, the equation (8) is represented with the following
formula, which is false already for 2-bit bit-vectors, say
a = 10, b = 00, c = 11.

(∀B(a(B)↔ b(B))) ∨
(∀B(a(B)↔ c(B))) ∨
(∀B(b(B)↔ c(B))).

With the range-aware relational encoding, the same formula
is represented by

(∀B(range[0,0](B)→ a(B)↔ b(B))) ∨
(∀B(range[0,0](B)→ a(B)↔ c(B))) ∨
(∀B(range[0,0](B)→ b(B)↔ c(B))).

From the axiomatization (10) of theless and range
predicates, we conclude that the above formula is equivalent
to the one below, which is clearly true.

(a(bitInd0)↔ b(bitInd0)) ∨
(a(bitInd0)↔ c(bitInd0)) ∨
(b(bitInd0)↔ c(bitInd0)).

Note that with the precise-ranges relational encoding the
widths of bit-vectors and the dimensions of arrays are still
abstracted away. This is different from the information spec-
ified to SMT solvers in the theory of fixed-size bit-vectors
and extensional arrays. However, since our modeling of every
bit-vector or array operations explicitly encodes the relevant
ranges, the bit-vector width and array size information be-
comes redundant.

Theorem 1: The precise ranges encoding is sound and
complete: an EPR formula obtained by the precise ranges
encoding is satisfiable if and only if it is satisfiable over bit-
vectors of the specified size.

B. Encoding 2: bit-index pre-instantiation

In the precise-ranges encoding, the axioms like (10) intro-
duce many equalities between terms describing bit-indexes.
Dealing with many such equalities may significantly slow
down the EPR solvers. This is explained in the next section.
The most straightforward way to avoid these equalities be-
tween the bit-index terms (and still retain the completeness)
is to pre-instantiate all quantifiers ranging over bit-indexes
with concrete index values. This is a meaningful alternative
in the case where there is a lot of bit-wise reasoning, like
in schematic models, and most of the bit-indexes introduced
during pre-instantiation would have been introduced anyway
with the precise-ranges approach.

This approach is sensitive to the amount of bit-index con-
stants that will be introduced during pre-instantiation. In64-bit
based real-life micro-processor designs, there normally are no
bit-vectors longer than around71 bits (which consist of64 bits
of data and several other encryption bits and flags). However,
because of the writing style of RTL and Schematic, and the
way many RTL compilers work, often long vectors are created
from nested structures. For example, in our toy example, if two
different bit-vectors of width6 were used for the write and
read addresses instead of using a12-bit vectoraddr, there
will be no need to introduce bitsbitInd6, . . . ,bitInd11 to
the instance. Similarly, if the write and read data bit-vectors
swrite and sread were defined as the LSB and MSB
halves of a data bit-vectorsdata[141 : 0], or as a structure
with two fields [70 : 0] swrite and [70 : 0] iwrite, the
functionality of the design would not change but the encoding
with index pre-instantiation would force us to introduce extra
bit-indexesbitInd71, . . . ,bitInd141. In our experiments
below, we will see how introduction of bit-indexes caused by
the RTL and SCH writing style and compilation of RTL and
SCH into the model-checking instance can affect the solvers
performance.

C. Encoding 3: Skolem predicates

We now introduce a smarter way to avoid introduction of
equalities between bit-index terms as in the less predicate ax-
ioms like (10). Our approach can be seen as reasoning modulo
a fixed domain of indexes and is inspired by approaches used
in state-of-the-art finite model finders [1], [8].

First, note that the Skolemization of the invariant formu-
las (1) and (2) introduces Skolem constants. For example,
let boolean variablereadeq denote the truth value of the
equality (2):

readeq↔ ∀B(range[70,0](B)→ (iread(B)↔ ¬sread(B))).

This formula is translated into a collection of following
clauses, wheresk0 is a fresh Skolem constant:

readeq ∨ ¬iread(sk0) ∨ ¬sread(sk0);
readeq ∨ iread(sk0) ∨ sread(sk0);
readeq ∨ ¬less0(sk0);
readeq ∨ less71(sk0);
sread(B) ∨ ¬iread(B) ∨ less0(B) ∨ ¬less71(B) ∨ readeq;
iread(B) ∨ ¬sread(B) ∨ less0(B) ∨ ¬less71(B) ∨ readeq.

(11)
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On the clauses containing occurrences of Skolem constants,
we perform the following transformation: For each Skolem
constantski we introduce a new unary predicateskPi and
the following axiom, wherek, . . . ,m is the index range
corresponding toski.

skPi(bitIndk) ∨ . . . ∨ skPi(bitIndm). (12)

Informally if skPi(bitIndj) is true then we can assign
ski to be equalbitIndj . Further, whereverski occurs in
a clauseC(ski, X1, . . . Xn) then we replace this clause with
¬skPi(Y ) ∨ C(Y,X1, . . .Xn). After this transformation, the
first four formulas in (11) will have the following form:

readeq ∨ ¬iread(B) ∨ ¬sread(B) ∨ ¬skP0(B);
readeq ∨ iread(B) ∨ sread(B) ∨ ¬skP0(B);
readeq ∨ ¬less0(B) ∨ ¬skP0(B);
readeq ∨ less71(B) ∨ ¬skP0(B).

Then we can define predicateslessi for i as follows: e.g.
for less3 we have unit clauses:

less3(bitInd0),less3(bitInd1),less3(bitInd2),
¬less3(bitInd3), . . . ,¬less3(bitIndn).

(13)

Note now we do not need axioms like (10) (introducing
equalities between bit-index terms) any more.

Theorem 2: The Skolem predicates encoding is sound and
complete: a formula obtained by the precise ranges encoding
is satisfiable if and only if the corresponding formula obtained
by the Skolem predicates encoding is satisfiable.

Proof: An adaptation of results from [1], [8].

IV. A NALYSIS OF PROOF CALCULI FOREPR

We compare general purpose first-order reasoners with
dedicated SMT solvers on the benchmarks generated from
industrial memory designs. Since our encodings are falling into
the EPR fragment we focus on instantiation-based first-order
reasoners which are especially efficient in this fragment, as
witnessed by recent CASC competitions4. Instantiation-based
methods are general purpose reasoning methods for first-order
logic which are based on combining efficient propositional, or
more generally ground, reasoning techniques with instantiation
of first-order formulas. Instantiation-based methods are there-
fore well-suited for reasoning with fragments closely related to
propositional logic such as the EPR fragment and in particular
decide the EPR fragment. We consider two sate-of-the-art
instantiation-based reasoners: the Darwin system [3], based on
the Model Evolution calculus [2] and the iProver system [15],
based on theInst-Gen calculus [10].

The Model Evolution calculus can be seen as a lifting of
efficient propositional DPLL calculus into first-order logic
together with a number of DPLL-style techniques such as
(dynamic) backtracking and lemma learning. The Model Evo-
lution calculus is space efficient since only the candidate

4http://www.cs.miami.edu/˜tptp/CASC/

model is growing during the proof search (and optionally, the
set of lemmas if lemma learning is applied). On the other
hand, such lifting to the first-order logic requires to compute
expensive context unifiers and considerably complicates dy-
namic backtracking and lemma learning, generally rendering
them not as effective as in the propositional case.

The Inst-Gen calculus is based on a modular combination
of propositional reasoning with refined instantiations of first-
order formulas. One of the distinctive features of the Inst-
Gen approach is that it allows one to employ off-the-shelf
efficient propositional solvers (currently iProver integrates
MiniSAT [9]) for reasoning with propositional abstractions
of first-order clauses, guiding the instantiation inferences and
simplification of clauses. We believe that such a modular
integration of industrial-strength propositional solvers gives
a considerable advantage when solving large real-life prob-
lems. Another important requirement from a solver used in a
verification environment is to produce models for satisfiable
problems. Such models correspond to bugs in the design and
it is crucial to have a model representation amendable to
efficient analysis. As a byproduct of this work, iProver has
been extended with a representation of models such that the
value of each bit in a bit-vector can be retrieved efficiently;
this considerably simplified model analysis.

Our experimental results show that already non-tuned gen-
eral purpose instantiation-based systems are close in perfor-
mance and in some examples outperform highly optimized
dedicated SMT solvers. These initial results are very encour-
aging and we believe that instantiation-based reasoners can
be tuned further by exploiting the problem structure and by
optimizing inference selection.

Let us now discuss different effects of our encodings on
the EPR reasoners. First we note that the size of bit-vectors
is directly related to the size of the search space. Therefore
reducing the size of bit-vectors in the encodings is a promising
research direction. Moreover, large ranges of bit-indexes pro-
duce clauses with large numbers of equational literals like (10).
In general, instantiation-based methods are more tolerant to
clauses with many literals than resolution-based methods since
the number of literals in clauses does not increase during the
instantiation process. Nevertheless equational axioms as (10)
can produce numerous redundant inferences by substituting the
variableB with different indexes during equational reasoning.
All this instantiations are redundant and can be avoided as
shown in Section III-C.

Let us compare our approach of encoding bit-vector and
array reasoning into the EPR fragment with approaches used
in SMT solvers. Reasoning in SMT solvers is done at the
ground level and frequently results in full bit-blasting. Using
first-order logic we can use higher levels of abstraction which
can result in memory/bit-vector size independent reasoning.
We believe this can lead to better scalability of our approach
to large memories and bit-vectors. On the other hand, SMT
solvers have advanced built-in bit-vector functions which are
needed in many memory designs. Although it is possible to
bit-blast such functions in our approach, a better approach
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would be to devise encodings of these functions into the EPR
fragment.

A further research direction is to strengthen our encodings
by introducing higher level abstractions and by more sophisti-
cated encoding of bit-vector reasoning. Such an encoding can
also pave the way for using powerful resolution-based first-
order reasoners such as Vampire [23], as the current encoding
tends to produce very long clauses which are known to be
hard for resolution-based reasoners.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the three above-discussed sound
and complete encodings of problems with bit-vectors and
arrays into EPR on two fastest EPR solvers, iProver [15] and
Darwin [3]. We further compare their performance to that
of the fastest SMT solvers for the theoryQF AUFBV –
Boolector [5] and MathSAT [6]. We used a standard, and
straightforward, encoding of RTL descriptions of hardware to
the theoryQF AUFBV (for example, we haven’t used the
abstraction technique in [11] to reduce the number of involved
bits during the encoding). With the incomplete encoding
of [14], iProver returned spurious models on all problems
which are UNSAT with the complete encodings; therefore we
do not report here the EPR solver results with this encoding.

A. Description of benchmarks

In our experiments, we use five equivalence checking prob-
lem instances originating from a recent micro-processor design
at Intel. Each problem instance corresponds to an equivalence
checking problem between an RTL functional block (FUB)
and the corresponding FUB in the schematic model.

The first group of experiments reported in Table 2 corre-
spond to the original RTL and schematic FUBs. The schematic
model contains lots of bit-level reasoning, and as a result
the resulting EPR instances contain lots of bit-level equations
(using the bit-indexes). On such instances, the abstraction
techniques are less efficient, and the solvers that do not really
employ the bit-vector level reasoning can perform almost as
efficiently as on the problems with lots of reasoning at higher,
bit-vector level reasoning.

Recall that in EPR encodings often there is a need to write
axioms at bit level, say in equations like (4). As explained
above, one expects that existence of a large amount of such
index constants will negatively affect the performance of EPR
solvers. To evaluate this point experimentally, for each equiv-
alence checking benchmark we tried to produce an equivalent
instance involving significantly fewer bit-indexes. This trans-
formation was performed by manually editing the RTL and
SCH descriptions and changing compilation switches when
generating the model-checking instances (e.g., the next-state
functions) from hardware descriptions. In brief, because of the
way how the compiler works, linearization (or flattening) of
(nested) structures or modules, causes creation of long bit-
vectors containing the original bit-vector fields of structures
and bit-vectors of modules as sub-vectors. This phenomenon
is an artifact of compilation and does not change the meaning

of the design. Undoing or preventing this linearization (even
if it was not done as aggressively as possible), allowed us
to significantly reduce the amount of long bit-vectors and the
amount of bit-indexes involved in the generated EPR instances
for FUBs 1 and2. For the other FUBs the maximal width of
bit-vectors remained unchanged. Benchmark results on these
modified FUBs are reported in Table 3.

It is well understood that solvers might perform particularly
well or badly on SAT vs UNSAT problems, and we aim
to evaluate the selected solvers and encoding methods from
this angle as well. To generate SAT instances, we manually
introduced several common types of bugs into the designs or
verification instances (such bugs include mismatches between
the corresponding read or write enables, mixture in the order
of data bits, incorrect or missing constraints (3) connecting the
corresponding write data of the compared slices of specifica-
tion and implementation designs, etc.). Tables 4 and 5 report
runtime results on5 FUBs obtained by these manipulations
from the equivalence checking problems evaluated in Tables 2
and 3, respectively.

The formulas checked for SAT/UNSAT correspond to the
induction step formulas [24] at depths smaller or equal to3 –
the depths needed to prove the induction invariant stating the
equality of memories (1) and the read data (2). For the sake
of performance efficiency, checking these formulas there split
into two independent runs of the solvers; in one run, the initial
value of the main clock was set to true, while in the second
check it was set to false.

B. Performance results

One of the most important observations based on our
experimental results is that already at this initial stage, non-
tuned general purpose instantiation-based methods can solve
industrial-size hardware verification problems within a reason-
able time limit. Moreover, there are a number of problems
where instantiation-based solvers outperform highly optimised
SMT solvers, see Tables 2–5. In particular, instantiation-based
methods perform well on the problems with long bit-vectors
such as problems FUB 4 and FUB 5 (Tables 2–3), with max-
imal bit-vector sizes 994 and 1047 respectively. We believe
this is one of the promising aspects of the instantiation-based
approach which is achieved due to a higher level reasoning.

Let us note that SMT solvers and an instantiation-based
solver iProver are all using SAT solvers as the back-end.
In the case of Boolector it is PrecoSAT and in the case
of MathSAT and iProver it is MiniSAT. Recently developed
PrecoSAT is a highly optimized propositional solver which
won the latest SAT competition. Thus, comparing MathSAT
and iProver better highlights the differences between SMT
and instantiation approaches since the same SAT solver is
employed. We can see that iProver outperforms MathSAT on
many problems both in SAT and UNSAT categories.

These experimental results indicate that instantiation-based
methods and SMT technology complement each other and
both are useful alternatives for industrial-size hardware ver-
ification. There are still a number of problems were SMT

142



solvers perform better than instantiation-based methods, es-
pecially on satisfiable problems. Therefore we are planning to
explore applicability of recent advances in bit-vector reasoning
developed in the SMT framework [5] into instantiation-based
reasoning.

Let us compare our different encodings. Tables 2–5 indicate
that there is no clear winner among our encodings. There is
a trade-off between concise, higher-level encodings such as
precise ranges and Skolem predicates encodings; and more ex-
plicit bit-index pre-instantiation encoding. These tables show
that explicit encodings are better for unsatisfiable problems
whereas concise encodings are better for satisfiable problems.
The reason for this can be that in many cases low level
reasoning is unavoidable for unsatisfiable problems whereas
for satisfiable problems it is sufficient to consider concise
representations.

Tables 2–5 show experiments with longer/shorter bit-vector
encodings. The reduction of bit-vector sizes was not always
successful, only in two first FUBs there was a noticeable
reduction in the maximal bit-vector size: in FUB 1 from 286
to 185 and in FUB 2 from 640 to 203, in other three cases
the instances have changed but the max bit-vector size was
unchanged. We can see that in some cases shorter bit-vectors
lead to performance improvement and therefore in our future
work we will study how to reduce bit-vector sizes in our
encodings.

Finally, we run Darwin on several groups of benchmarks
(including the simplest FUBs 1-3) with time limit of 500
seconds, but unfortunately it could not solve any single
problem. The reason can be the large number of clauses in
the resulting problems which ranges from 30 thousands to
over 100 thousands of clauses. We believe that a modular
integration of propositional reasoning as it is done in iProver
is advantageous on such problems. The problem of reducing
the size of the encodings is also needed to be addressed.

VI. CONCLUSIONS AND FUTURE WORK

The aim of this work was to explore the scalability and
potential of several approaches to first-order logic theorem
proving in solving industrial-sized verification problems in-
volving reasoning with bit-vectors and arrays, and to compare
them with SMT-based techniques. Taking into account that
the EPR solvers are currently less optimized on industrial
sized problems compared to more mature SMT solvers, the
reported experiential results and theoretical analysis indicate
that several first-order proof calculi do have a great potential in
this domain. Furthermore, we believe that smarter encodings
into EPR of the problems with bit-vectors and arrays can be
developed by exploring abstraction and refinement techniques
similar to those proposed for accelerating SMT solving and
this can make the EPR-based approaches even more efficient.

Another big promise of using EPR solvers in model check-
ing is that bounded model checking problems have a succinct
encoding into EPR, such that the size of the BMC formulas is
not affected by the unrolling bound [17]: unlike the SAT-based
BMC [4], it is not needed to replicate copies of the temporal

assertion and the transition relation for every unrolling depth.
One of our major next goals in the EPR related model-
checking research is to combine the ability of solving bit-
vector and array reasoning instances in EPR at the word level
with the EPR-based BMC proposed in [17] for bit-blasted
model-checking instances. Furthermore, we believe that EPR
solvers can be optimized on model checking instances resulted
from this combined encodings.

This reported and future work is part of an ongoing re-
search collaboration between Intel’s formal technology group
developing efficient model-checking and equivalence checking
solutions for Intel’s chip design project and between the Uni-
versity of Manchester. The developed word-level equivalence
checking method will replace the more traditional sequential
equivalence checking solution implemented in Intel’s sequen-
tial equivalence checking tool, Seqver [12], [13], [14].
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[8] Claessen K., N. Sörensson. New techniques that improve MACE-style
model finding. Workshop on Model Computation (MODEL), 2003.
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Solver Boolector MathSAT iProver pre-inst iProver Skolemize iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1

FUB 1 0.39 / 0.18 13.0 / 3.5 1.6 / 11.6 1.3 / 1.2 9.1 / 12.8
FUB 2 0.36 / 0.3 7.7 / 4.7 1.9 / 7.6 6.7 / 11.6 42 / 78.3
FUB 3 0.05 / 0.04 0.8 / 0.9 1.4 / 0.4 3.6 / 1.8 4.1 / 4.7
FUB 4 0.13 / 138.5 26 / t-o 4.8 / 51.1 44 / t-o 42 / t-o
FUB 5 5861.26 / 3.2 160.15 / 31.75 179.24 / 13.3 t-o / 680.94 1132.36 / 329.1
TOTAL 5862.19 / 142.04 207.65 / t-o 188.94/ 84 t-o / t-o 1229.56 / t-o

Fig. 2. Equivalence checking UNSAT problem instances with long bit-vectors.

Solver Boolector MathSAT iProver pre-inst iProver Skolemize iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1

FUB 1 0.28 / 0.18 12.0 / 3.8 1.6 / 6.4 6.6 / 40.3 8.6 / 11
FUB 2 0.32 / 0.34 14.7 / 11.5 1.8 / 19.0 9.0 / 43.1 19.6 / 31.3
FUB 3 0.04 / 0.04 0.8 / 0.9 1.2 / 0.4 3.6 / 1.9 4.1 / 4.7
FUB 4 0.13 / 138.8 t-o / t-o t-o / t-o 43.7 / t-o 42.2 / t-o
FUB 5 t-o / 2.98 158.94 / 31.71 149.88 / 11.08 t-o / 592.3 1084.7 / 320.33
TOTAL t-o / 142.34 t-o / t-o t-o / t-o t-o / t-o 1159.2/ t-o

Fig. 3. Equivalence checking UNSAT problem instances with shorter bit-vectors.

Solver Boolector MathSAT iProver pre-inst iProver Skolemize iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1

FUB 1 0.14 / 0.14 36.3 / 34.9 5.1 / 11.2 1.4 / 1.2 9.0 / 29.3
FUB 2 0.22 / 0.24 50 / 38.9 5.3 / 15.3 6.3 / 11.5 24.4 / 57.5
FUB 3 0.04 / 0.04 3.2 / 3.3 15.1 / 0.9 26.4 / 1.7 6.2 / 2.7
FUB 4 0.14 / 0.42 t-o / t-o 147.5 / t-o 39.7 / t-o 46.7 / 46.4
FUB 5 1.66 / 1.56 t-o / t-o 63.65 / 62.57 46.58 / 48.51 379.68 / 439.95
TOTAL 2.2 / 2.4 t-o / t-o 236.65 / t-o 120.38 / t-o 465.98 / 575.85

Fig. 4. Equivalence checking SAT problem instances with long bit-vectors.

Solver Boolector MathSAT iProver pre-inst iProver Skolemize iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1

FUB 1 0.14 / 0.16 42.8 / 36.9 5.0 / 10.4 5.7 / 71.7 8.3 / 11.9
FUB 2 0.21 / 0.26 92.2 / 48.4 6.1 / 11.4 10.3 / 47.9 10.5 / 32.3
FUB 3 0.04 / 0.04 3.1 / 3.2 15.3 / 1.0 26.6 / 1.6 6.0 / 2.7
FUB 4 0.14 / 0.38 t-o / t-o 129.5 / t-o 44.0 / t-o 44.1 / 47.4
FUB 5 1.66 / 1.54 t-o / t-o 291.48 / 92.93 43.61 / 42.89 424.71 / 511.34
TOTAL 2.19 / 2.38 t-o / t-o 447.38 / t-o 130.21 / t-o 493.61 / 605.64

Fig. 5. Equivalence checking SAT problem instances with shorter bit-vectors.
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Abstract 

Often sequential logic synthesis can lead to substantially easier 

verification problems, compared to the general-case for 

sequential equivalence checking (SEC). We prove some general 

theorems about when SEC can be reduced to combinational 

equivalence checking (CEC). These can be applied to many 

sequential clock gating transforms, where correctness is argued 

intuitively using a finite unrolling of a sequential design. A 

method based on these theorems was applied to six large 

industrial examples. It completed on all examples and was about 

30x faster on the three examples where the conventional engine 

was able to finish.  

1 Introduction 

To motivate this work, consider a sequential circuit, A, which is 

to be optimized by a k-step unrolling process; then combinational 

synthesis is applied to the first frame while the other k-1 frames 

are left untouched. This synthesis is done so that no difference 

between the two circuits is observed i.e. neither at the POs of each 

of the k frames nor at the flip-flop (FF) inputs of the final frame 

(see Figure 1). The last k-1 copies of A are used only to produce 

“ODCs” for transforming the combinational part of A into the 

combinational part of a new sequential circuit B.  

Several questions arise in similar types of synthesis: 

1. Is the derived circuit B sequentially equivalent to A? This 

is not obvious because it is the k-1 copies of A that provide 

the observability don’t cares (ODCs), for B, and not B 

producing those ODCs as would be the case during the 

sequential operation of machine B. Although there is a 

known 1-1 correspondence between FFs in A and B, their 

state-transition functions are not necessarily the same.  

2. Suppose A is unrolled n times and the last copy of A is 

synthesized using satisfiability don’t cares (SDCs) 

provided by the first n-1 copies of A. Are A and B 

sequentially equivalent? As in Question 1, this is not 

obvious. 

3. More generally, suppose A is unrolled n + k times and the 

nth copy of A is synthesized, using both ODCs and SDCs, 

to produce machine B. Is B sequentially equivalent to A? 

This is not only not obvious, but generally incorrect. 

In Section 2, we answer these questions, affirmatively for the 

first two with Theorems 1 and 2, and give a counterexample for 

the last one. The theorems are stated for general SEC and give 

sufficient conditions when it can be solved by a CEC method. 

Theorem 1 might be expected to apply when a synthesis transform 

can be argued from non-observability principles and Theorem 2 

when non-controllability is used. In Section 3, we discuss relevant 

literature and related parallels to the results obtained in this paper, 

and in Section 4, we give some experimental results illustrating 

how these methods can make sequential equivalence checking 

(SEC) much more effective and practical on certain types of 

problems. Section 5 summarizes and poses some open questions 

for future research. 

2 Sequential Equivalence  

Let A be a sequential circuit and A1 denote the combinational 

part of A. Let An denote the combinational circuit obtained by 

connecting n copies of A1 at the FF inputs and outputs. The 

outputs of An are the set of n POs of A one for each time frame 

plus the final FF input signals after the nth frame. The inputs of An 

are the set of n PIs of each frame, plus the initial FF output signals 

at the start of the first frame.  

Let A and B be two sequential circuits with the same PIs and 

POs, and the same number of FFs. ( , )
n k

B A denotes the 

combinational circuit where the outputs corresponding to the final 

FF inputs of Bn are connected to the inputs corresponding to  the 

initial FF outputs of An . The connection is done using some 1-1 

mapping between the FF of A and B. We overload notation by 

dropping the superscript in A1 when the context is clear, as in 

( , )
k

B A . 

In this paper, it is always assumed that a single initial state is 

given for a sequential machine. We are not concerned with 

initializing sequences etc., but follow the philosophy articulated 

in [1]. Thus two machines are considered sequentially equivalent 

if starting at their respective initial states they produce the same 

sequence of POs for any sequence of PIs. This is usually 

equivalence checked by forming a miter (which creates a single 

output formed by ORing XORs of corresponding POs) of the two 

circuits to obtain one machine with a single output. Then it is to 

be proved that the output is always 0 for all time if the miter 

machine is started in the initial state given by the initial states of 

the two machines. 

For two sequential circuits, A = B denotes that the circuits are 

sequentially equivalent starting from the two given initial states. If 

C and D are combinational circuits, the C = D means that they are 

combinationally equivalent, i.e for any input, their outputs match.   

The first question in Section 1 concerns equivalence of two 

related combinational circuits, i.e. does kA = 
1

( , )
k

B A
−

 imply A = 

B? This is depicted in Figure 1 where k = 3. We emphasize that to 

create the related combinational circuit 
1

( , )
k

B A
−

 from A1 and B1, 

it is necessary that there is a 1-1 correspondence between the FFs 

of A and B. In some applications, this can be relaxed by inserting 

dummy FFs in one of the circuits. 

Theorem 1: Suppose two sequential circuits A and B have the 

same PIs and POs. Using some 1-1 mapping between the FF of A 

and B to form ( , )
n k

B A , suppose that ( , )
n k n k

B A A
+= . Then A = 

B, for any common initial state.  

Note that A and B are initialized with the same initial state. 
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Proof:1 Assume that ( , )
n k n k

B A A
+= . Consider the following 

infinite sequence of lines.   

 

0 0

1 1 1

2 2 2

( ) (2 )*

( ) (2 ) (3 )*

( ) (2 ) (3 )*

( ) (2 )*

         time frame number 

                          

j j

S n S nS n n n

S n S n S nS n n n

S n S n S nS n n n

S n S nS n n

A A A

B A A

B B A

B B B

→→ →→

→ → →

→ → → →

→ → → →

→ → →

�

�

�

�

(3 )jS nn nB→ �

 

 

It is assumed that all lines at each time-frame receive the same 

sequence of common PI inputs. Denote the POs of line j by 

( )jPO t , where {1,2,3, }t ∈ �  and {0,1,2,3, }j ∈ � . Similarly for 

the states; ( )jS t  denotes the state of line j at time t, 

{0,1,2,3, }t ∈ �  where (0) *jS S= , the set  of all states. Since 

( , )
n k n k

B A A
+= , then 

0 1( ) ( )PO t PO t=  for {1,2,3, , }t n k∈ +� . 

Note that for all t n k> + , this is also true because 

0 1( ) ( )S n k S n k+ = +  and the circuit copies in both lines are A 

from then on. Now compare lines 1 and 2. Clearly 

1 2( ) ( ), 1,...,PO t PO t t n= =  since in both lines, the inputs are to 

n copies of B, and by using the template, ( , )
n k n k

B A A
+= , but 

applying it starting at the end of frame n, we have
1 2( ) ( )PO t PO t=  

for all t, by the same argument that established that 

0 1( ) ( )PO t PO t=  for all t. Thus by transitivity, 
0 2( ) ( )PO t PO t= . 

Continuing, we get 0 ( ) ( )jPO t PO t=  for all lines {1,2,3, }j ∈ � . 

Thus line 0 and line ∞  always produce the same sequence of POs 

for all time no matter what is the initial state. Since the miter for 

A B⊕  is proven to be UNSAT, we have A B= . QED. 

 
Note that nothing is assumed about how B derived. Also, if 

( , )
n k n k

B A A
+≠ , one can still try to prove A B=  by increasing k 

or n, and a false negative may go away. 

                                                           
1 It has been suggested by several people (including one reviewer) that the 

theorems of this paper can be proved more elegantly by induction. 

However, we prefer the more graphical proofs (which are basically 

induction). 

Note also that no initial state information was used in proving 

this theorem, i.e. (0) *jS S=  is the set of all states. However, we 

could use a subset ˆ *S S⊂  as long it is guaranteed that 

0 1 2( ), (2 ), (3 ),S n S n S n �  are all subsets of Ŝ . Thus a corollary of 

the theorem would be that ˆ[( , ) ]n k n k

S
B A A A B+= ⇒ =  for any 

initial state ˆs S∈ , where ˆ[( , ) ]n k n k

S
B A A +=  denotes that 

combinational equivalence need only hold on state inputs in Ŝ . 

A variation of Theorem 1 states that SEC holds after n cycles of 

A. 

Theorem 2: [( , ) ]
n k n k

A B A A B
+= ⇒ =  on any initial state 

chosen from the subset of states that can be reached by A after n 

cycles, denoted A

n
S .  

Proof: We use the fact that the state space is finite, and 

therefore its diameter, D, is bounded. Thus after D time frames, 

every possible state has been seen under all possible inputs. The 

proof is similar to that of Theorem 1, except we proceed 

backwards from time-frame ( )T D k D k= + ÷   . We first apply 

the template, ( , )
n k n k

A B A
+= , to insert k B’s just before t T= . 

This is iterated D k÷    times until we arrive at a line with n A’s 

followed by all B’s up to t = T. At each iteration j,  we are assured 

that  1( ) ( )jPO t PO t=  for all time. At this point we know that all 

states and all PIs for these states have been seen and for all of 

these the PO’s agree. Thus starting at any state in A

n
S , A B= . 

QED. 

To illustrate the need to start only on the states reachable by an 

initial sequence of A’s, consider the example of Figure 2 (a bubble 

at an input to a gate denotes inversion). 

 
It is easy to check that (A,A) = (A,B) from the STGs shown, but 

A B≠ . The counterexample is that if A and B start in State 01, 

the PO sequences for A and B are not the same. However, note 

that starting from any state that can be reached after one clock 

cycle of A (i.e. States 00 and 11), then A B= .  

The first theorem is essentially an observability theorem and the 

second a controllability theorem. One might conjecture that 

analgous combined controllability and observability theorems 

hold. Indeed we have the following. 

Figure 1. SEC by unrolling and CEC. POs are compared 

at each time frame as well as FF inputs after the last 

frame. 
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Figure 2. 
2

,A B A= , but sequential equivalence occurs 

only after one cycle of A. 
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Theorem 3: [( , , ) ( , , )]B A A B B A A B= ⇒ =  on any initial state 

chosen from the subset of states that can be reached by B after 

one cycle, denoted 
1

BS . 

Proof: Consider the sequence of transformations shown below. 

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

B A A A A A

B B A A A A

B B B A A A

B B B B A A

�

�

�

�

�

 

Each new line is obtained by using 
2 2

( , ) ( , )B A B A= . At each line 

note that 0( ) ( ),jPO t PO t t= ∀ . Thus after the first time frame, the 

set of states that can exist is 
1

BS  and after that, we have  

, , , , , , , , , , , ,A A A A A A B B B B B B=� �  

Thus, A B= on 
1

BS . QED 

Note that in Figure 2, 
2 2

( , ) ( , )B A B A≠ , which can be seen by 

starting at State (01), so it is not a counterexample to Theorem 3. 

One could consider this as a B-controllable, A-observable 

theorem and the first two theorems as A-observable and A-

controllable theorems respectively. What about an A-controllable, 

A-observable theorem, where we consider ( , , ) ( , , )A B A A A A= ?  

Such a result does not hold. Consider the STG example shown 

in Figure 3, which has no inputs; the label on the edges denotes 

the output value. Although ( , , ) ( , , )A A A A B A= , one can check 

that A B≠ , even on the states that A can reach after one cycle, e.g. 

starting at State 01  A 110… and B outputs 111…. 

 
Although such a theorem does not hold, it still might be useful to 

synthesize ( , , )A A A  into ( , , )A B A  to derive a new sequential 

machine B. This is easier to do than obtaining a new machine B, 

for example, by synthesizing ( , , )A A A  into ( , , )B B A  or 

( , , )A B B . These twi cases can guarantee equivalence using 

Theeorems 1 and 2 respectively. However, it is possible in the 

synthesis into ( , , )A B A , that the SDC or ODC don’t cares 

actually used would be produced also by B. We can try to check 
3

( , , )A B A A=  or 
3

( , , )A A B B=  using Theorems 1 or 2, or 

( , , ) ( , , )B A A B B A=  or  ( , , ) ( , , )A A B A B B= using Theorem 3. If 

any of these cases hold, then A B= . For the last three checks, it 

needs to be checked also that the initial state is in the appropriate 

subspace.  

3 Relations to Previous Work 

One of the pragmatic aspects of sequential synthesis is that it is 

insufficient to provide synthesis software, which may even use 

formally-proved2 transforms because the software that embodies 

these may have bugs. Even if the software has withstood the test 

of time having been applied to many examples, most companies 

insist on formally verifying the result against the original design. 

Equivalence checking of combinational netlists (CEC) is practical 

for most industrial designs and, partly because of this, 

combinational synthesis is readily accepted. Also, resolution 

proofs [9] can be used for CEC.3  

However, the PSPACE-complete complexity of SEC often 

discourages the use of sequential synthesis. In special cases, the 

complexity of SEC is simpler, e.g. if synthesis is restricted to one 

set of combinational transformations followed by one retiming (a 

sequential synthesis step) or vice versa, the problem is provably 

simpler - only NP-complete. If retiming and resynthesis are 

iterated, the problem is PSPACE complete [3]. Like CEC, SEC 

becomes simpler in practice if there are many structural or 

functional similarities (cut-points) between the two circuits being 

compared.  

There are instances where SEC can be transformed into a CEC 

problem on which today’s commercial CEC engines usually can 

be successful, even on very large problems. One is where 

sequential signal equivalences (signals that are equivalent on the 

reachable state set) are derived using induction [5] and used in the 

synthesis process. If equivalence checking is done immediately 

after this without other transformations intervening, SEC can be 

proved by CEC methods.  

Another example is where a history of synthesis is recorded as a 

redundant sequential circuit [6]. In most cases, this history circuit 

provides a set of intermediate equivalences, which can be proved 

inductively, and these are enough prove SEC . Also, the concept 

of speculative reduction [7] can be used to make the equivalence 

checking problem even easier in this case.  

Several papers have used an (explicitly or implicitly) unrolled 

version of the circuit to derive redundancies for synthesizing an 

improved sequential circuit. These papers do not address the 

formal SEC of the synthesized result. All deal with the case where 

the redundancies derived are independent of any initial state, 

similar to the theorems in the present paper. These types of results 

come mostly from the testing community, where a signal is 

redundant if the good and faulty (with a stuck-at fault inserted) 

machines can not be distinguished for any initial state.  

There is a subtle distinction between untestable faults and 

redundant faults. If fs  and s are the initial states of the faulty and 

good machines respectively, then a fault is untestable if 

( ) ( , )[ ( , ) ( , )]f

f fI s s Z I s Z I s∀ ∃ =  and it is redundant if 

( , ) ( )[ ( , ) ( , )]f

f fI s s Z I s Z I s∀ ∃ = . ( , )Z I s  is the trace, starting at 

state s, of POs under the sequence I of PI inputs. Using 

redundancy in synthesis means that when the good machine is 

replaced with the “faulty” (redundancy removed) machine, no 

difference can be observed externally because no matter what 

state fs  the faulty machine starts in, there is an equivalent state in 

which the good machine could have started in. Such a 

replacement is safe4 [10] and compositional. In contrast, if the 

fault is merely untestable, then there could exist a pair of states in 

which the two machines could start, such that the difference 

between the two machines could not observed. However, there 

                                                           
2 There are cases where “proved” methods in the literature have been 

shown to have counterexamples. 
3 We know of no similar capability for SEC. 
4 A safe replacement is one for which there is no possibility of externally 

detecting any difference from the original. 
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Figure 3. Although ( , , ) ( , , )A A A A B A=  

combinationally, A and B are not sequentially equivalent. 
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could be a state in either machine which has no equivalent in the 

other, and if one of the machines happened to start in such a state, 

the two machines would have different observable behaviors. 

Such a (untestable) replacement is not safe and is not 

compositional, and its use in synthesis is problematic. A good 

discussion on the difference between undetectable faults and 

redundant faults is in [3]. 

From Theorem 1, if ( , )
n k n k

B A A
+= , then the synthesized 

circuit is a safe replacement for the original one. Safe 

replacements are useful because safety implies that every 

synchronization sequence for the original design also 

synchronizes the replacement. This is often desired because it is 

not necessary to re-derive a new synchronizing sequence for 

initializing the synthesized machine. 

A useful notion is c-cycle redundancy [2] where the two 

circuits’ outputs need not match for the first c cycles after power-

up. This allows more flexibility in synthesizing a circuit because 

the behavior of the machine need only be preserved on states that 

can be reached after c cycles as long as initialization is preserved. 

Several papers make use of this and determine a bound k and a 

new circuit with the redundancies removed (called a k-delayed 

replacement) [4]. In [2] such redundancies are identified, one is 

then removed, and new ones identified. This is repeated until no 

more can be found. In [4], a set of “compatible” redundancies is 

found and removed simultaneously.  

The method of [4] derives a constant n which is the difference 

between the time frame of an identified redundancy and the least 

time frame needed to infer this redundancy. Their theorem states 

that if the redundancy is used to create the new circuit, then it is 

an n-delayed replacement of the original. Note that in n-delayed 

replacement, it is B that is delayed for n cycles before equivalence 

can be guaranteed, but in Theorem 2 it is A that is delayed n 

cycles.  

A sequential ATPG engine can be used to determine if a test 

vector sequence can be found which justifies a state that activates 

the fault in n cycles and then propagates the fault effect to a PO in 

k cycles. If none can be found, the fault might be redundant, but 

three things can go wrong; (i) undetectable faults are not 

necessarily redundant, (ii) the justification and propagation 

conditions are usually done on the good machine, and (iii) finite 

values for n and k were used. Such a fault is a good candidate for 

redundancy removal, but the result must be sequentially verified, 

possibly by applying Theorems 1-3, which may work if A or B are 

supplying a sufficient set of SDCs or ODCs. An interesting 

discussion of some incorrect “proofs” in the literature related to 

the use of ATPG for redundancy removal can be found in [3], as 

well as limitations of some other methods.  

4 Experimental Results 

A few experimental results are shown in Table 1. They were 

designed to compare the efficiency of applying the new SEC 

approach of this paper with the general SEC method of the ABC 

system. Six large industrial benchmarks were synthesized using 

sequential clock-gating transforms, based intuitively on sequential 

ODC arguments, but not formally proved. The synthesized 

versions are denoted by B and the originals by A. Columns 1-5 

give the sizes of the circuits. The entries in column 6-11 give the 

times in minutes taken to verify equivalence. The columns labeled 

New denote the use of Theorem 1 and Berkeley’s ABC system 

CEC algorithm to prove SEC. The column ABC general denotes 

that the ABC command dsec was used. Columns seq-j denote 

experiments where ( , )
j

B A  was compared combinationally with 

1jA +  to illustrate how CEC run-times might scale as j increases. 

The items marked with * or **, denote that the corresponding 

equivalence checking problem timed out.   

Observations.  

1. In general, New is significantly faster than General, as 

expected (about 30 times faster when General could complete. 

The fact that General could actually complete on three out of six 

large problems was surprising to us).  

2. Except for Design 4, CEC times scale approximately linearly 

with the size of the CEC problem. 

5 Conclusions and Future Work 

Some sequential synthesis transforms do not use the initial state 

information but preserve a circuit’s behavior starting from any 

initial state. Such transforms may use sequential observability [2] 

[4] and can be practical because they do not use state space search 

or can be argued using structural information as in the case of 

many clock-gating methods. These contrast with transforms that 

extract ODCs using reachability analysis such as BDD 

reachability, interpolation or SAT-based induction [5].  

In the sequential observability case, it may be possible that 

sequential equivalence can be proved by combinational 

equivalence checking methods, making SEC much easier. This 

can have a significant impact in applications where parts of the 

circuit are changed based on a local view of the circuit.  

We have given a method for SEC, which can be effective in 

certain special cases, leading to considerable reduction in 

computation effort. The method is conservative; it fails no 

information is obtained. Some conditions under which it can be 

expected to succeed include sequential clock-gating methods and 

methods that alter pipeline behavior. Experimental results were 

given on a six large industrial SEC problems, comparing the 

sequentially synthesized design against the original design. It was 

demonstrated that the new SEC method was about 30 times faster 

than in the general case. In addition, it was able to check three 

examples where general SEC could not complete. 

Our theorems are stated in terms of having a one-to-one 

correspondence between the FFs of A and B.  This was necessary 

for combinational circuits (A,B) or (B,A) to be formed where 

signals in the first circuit are wired to their corresponding signals 

in the second circuit. However, some clock-gating transforms 

require that a signal be delayed one or more time-frames. In such 

cases, FFs must be introduced in B that have no correspondence 

in A. This can be handled by introducing dummy FFs in A with no 

fanout. 

We conjecture, more generally, that it is sufficient to find two 

cuts of the same size, one in A and the other in B. The signals in 

the cuts can be a mixture of internal wires and FFs. It may be that 

the only requirement is that the cuts are feedback arc sets, i.e. 

cutting them makes each circuit acyclic. This would allow 

applications of the theorems to retimed circuits.  

Also, it would be desirable to have a practical method to check 

general k-delayed equivalence, such as for designs produced by 

the methods of [2][4]. These situations are cases of local 

sequential synthesis being done. Note that if k k

B A
S S⊆ , then 

Theorem 2 applies and can be used to prove k-delayed 

equivalence. It is possible that Theorem 3 can be used in such 

cases, although at the moment, we have no experimental results 

on this. 

Theorem 1 legitimizes sequential synthesis based on unrolling a 

sequential machine A, k times, and combinationally synthesizing 

the first copy of A to obtain a new equivalent sequential machine 
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B. However, we have not done experiments on how effective this 

might be in terms of improved quality of the synthesis result. 
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Table 1. Experimental results. 

Design Statistics Seq-1 Seq-2 Seq-3 Seq-4 Seq-5 

 Ands Flops PI PO New General New New New New 

1 39282 6506 51 83 0.68 15.16 0.98 1.34 1.55 1.78 

2 18932 10544 96 115 0.51 18.88 0.7 0.88 1.06 1.25 

3 31103 7276 105 79 0.78 *60.55 1.29 1.51 1.69 1.63 

4 81782 13822 394 703 1.61 *152.21 2.34 17.22 72.93 267.83 

5 45241 11595 1741 301 0.94 25.63 1.26 1.63 2.37 **6.18 

6 114824 15284 857 804 2.05 *112.83 3.26 4.09 4.79 6.22 

 

Notes:  *   General sequence equivalence in ABC timed out. Although time-out was set to 1 hour,  

we were curious to see if the problem could complete if more time was given. Hence the  

irregular time-out times reported. 

** Unresolved by ABC combinational equivalence checking 

Entries in columns 6-11 denote run times in minutes. 

Seq-j denotes the CEC problem where  j copies of A are used, i.e. (B,Aj) is compared to Aj+1. 
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Abstract—The correctness of some arithmetic functions can
be expressed in terms of the magnitude of errors. A reciprocal
estimate function that returns an approximation of 1/x is such
a function that is implemented in microprocessors. This paper
describes an algorithm to prove that the error of an arithmetic
function is less than its requirement. It divides the input domain
into tiny segments, and for each segment we evaluate a require-
ment formula. The evaluation is carried out by converting an
arithmetic function to what we call a polynomial of bounded
functions, and then its upper bound is calculated and checked if
it meets the requirement. The algorithm is implemented as a set of
rewriting rules and computed-hints of the ACL2 theorem prover.
It has been used to verify reciprocal estimate and reciprocal
square root estimate instructions of one of the IBM POWERTM

processors.

I. I NTRODUCTION

Formal verification has been used to verify floating-point
arithmetic logic in the past. Especially, verifying primitive
floating-point arithmetic operations, such as multiply or add
operations, can be handled by automatic equivalence checking
[1]. The results of floating-point addition or multiplication
are well-defined in the IEEE 754 floating-point standard [2],
and it is not hard to define their reference model. Running
equivalence checking between a hardware implementation and
its reference model may require a number of tricks [3], [4],
such as using proper case-splitting and variable ordering for
BDD [5] representations, but today’s formal verification tools
can handle it pretty well. Because the equivalence checking
of these operations does not rely on the equivalence of the
intermediate results, the reference model can be developed
independently of hardware implementations, making it less
likely to have the same defects in both. The reference model
can be reused over and over for different projects, which makes
the reference model even more trustworthy. Furthermore, the
reference model itself can be formally checked by theorem
proving technology, which can be done once and for all [6].

On the other hand, verifying micro-coded floating-point
operations, such as divide and square-root, is not as easy. First
of all, applying the same equivalence checking approach for
primitive floating-point operations does not work well. Micro-
coded operations are far more complex, and it is intractable
to symbolically simulate an entire microcode sequence and
perform equivalence checking. Industrial equivalence checking
tools are very good at comparing two similar net-lists, by

taking advantage of internal equivalent points. However, such
internal equivalent points do not exist in general between the
hardware execution of micro-code and its reference model.

One approach to solve this problem is writing ahigh-level
modelwhich mimics the hardware behavior and using it as a
stepping stone for the verification. Since the high-level model
is specifically built to have the same intermediate results as
hardware, the equivalence checking becomes more tractable.
One must also prove that the high-level model is correct. Since
the high-level model is built to mimic the behavior of the
hardware, both may contain the identical algorithmic defects.

The proof of a high-level model usually requires theorem
proving or similar techniques. In the past, theorem provers
have been used to verify divide and square root algorithms
[7], [8], [9], [10]. However, the verification of a high-level
model using mechanical theorem proving takes a lot of time
and expertise, and it has not been used widely in the industrial
setting. Some early work used mathematical analysis such as
derivatives [11] or series approximations [12] to verify the
algorithms, but the use of analysis further complicates the
proof. It would be desirable if one can automatically verify
a high-level model.

In this paper, we will consider reciprocal and reciprocal
square root estimate instructions in order to study the automa-
tion of high-level model validation. Floating-point instructions
fre andfrsqrte in the POWER architecture [13] are exam-
ples of such instructions. Estimate instructions are somewhat
similar to micro-coded instructions from the perspective of
verification. An estimate instruction returns a number close
to the actual reciprocal or the reciprocal of a square root,
but not exact one. Their correctness is given as a relative
error being less than a certain value. Therefore, there is no
single reference model that could be used for the equivalence
checking against any implementations. The verification needs
to be carried out by first creating a high-level model, verifying
its correctness, and then checking the equivalence against
the hardware. The equivalence part is relatively easy because
estimate instructions are much simpler than that of divide or
square root. The high-level model verification is a key for
successful verification.

We developed a new algorithm to verify the high-level mod-
els of estimate instructions. This algorithm runs automatically
with no human guidance. We used the new algorithm to verify
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the estimate instructions implemented in an industrial proces-
sor. In theory, this algorithm can be applied to other arithmetic
operations whose correctness is expressed in terms of relative
error size. For example, the correctness of divide and square
root algorithms using the Newton-Raphson procedure can be
represented by a relative error requirement.

In Section II, we describe our evaluation algorithm used
to verify the high-level model of estimate instructions, and
in Section III, we describe its ACL2 implementation. In
Section IV, we apply the verification algorithm to instructions
of an industrial processor. In Section V, we discuss future
improvements of our algorithm and its implementation.

II. V ERIFICATION ALGORITHM

A. Overall Verification Scheme

The overall verification framework is as shown in Fig. 1.
The design under test(DUT) is typically a hardware imple-
mentation of an arithmetic function, and it is written in a
hardware description language such as VHDL or Verilog. DUT
may be implemented as microcode or firmware, essentially a
piece of software working with the hardware.

In order to verify DUT, one has to provide a high-level
model of the algorithm. It should precisely define arithmetic
operations performed by DUT, but it may not capture imple-
mentation details such as what type of adder or multiplier
implementations are used.

There are two paths to check the correctness of the arith-
metic operation. The first path employs an algorithm eval-
uation process to check that a high-level model satisfies a
desired mathematical property. Then, the second path uses
an equivalence checker to compare the high-level model and
the DUT. If both paths succeed, the operation of the DUT is
guaranteed to meet the mathematical property. We assume in
this paper that a verified mathematical property is written in
an inequality like the maximum relative error requirement for
an estimate instruction.

The second path operation of verification is the well-studied
equivalence checking problem that is straightforward to skilled
engineers. The high-level model must be translated into a bit-
level net-list so that a bit-level equivalence checker can be
used. We may need to perform symbolic simulation on the

DUT to obtain the symbolic result of the arithmetic operation,
which is then compared to the net-list representation of the
high-level model. Equivalence checking tools are widely used
in hardware verification in industry [14], [15].

If one is only interested in checking the algorithm, not
hardware, we can only use the algorithm evaluation process
alone, and skip the equivalence checking path altogether. In
the rest of the paper, we will focus on the algorithm evaluation
process to check the high-level model.

B. Formal Specification of Mathematical Operations

In a high-level model, an arithmetic operation is represented
as a function of rational numbers. It should be specified in
a polynomial of bounded functions (PBF) as defined below
using a Backus-Nauer form:

PBF ::= Constant | V ariable | PBF+ PBF

| PBF× PBF| ERR FUNC(PBF, . . . ,PBF)
| USR FUNC(PBF, . . . ,PBF)

Here, the ERRFUNC is a set of functions such that, for
any functione ∈ ERR FUNC, there is a polynomial function
B(x1, . . . , xn) and:

∀i.|xi| ≤ ∆i => |e(x1, . . . , xn)| ≤ B(∆1, . . . ,∆n).

Since functions in ERRFUNC are used to represent the
errors of primitive arithmetic operations, we call themerror
functions. We restrict the bounding functionB(x) to be a
polynomial function in order to make it easy to compute
the upper bound of an error function when its argument
domains are also bounded. The error function will be treated
as an uninterpreted function during the evaluation process.
USR FUNC is the set of user-defined functions. One can
define a new functionf to be f(x1, . . . , xn) = g, where g
is a PBF with variablesx1, . . . , xn.

PBF is used to model mathematical operations that can be
approximated with a polynomial, and we found that many
arithmetic operations used in hardware designs can be nicely
represented as a PBF.

For example, the nearest mode rounding defined in the
IEEE 754 standard rounds a value to the closest representable
floating-point number. For 53-bit double-precision numbers,
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Fig. 1. Overall Scheme of the Verification
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Fig. 2. Fraction field value and its approximation.

the nearest mode rounding can be defined as a user-defined
function:

neardp(x) = x + Enear,53(x)

with an associated bounding condition|Enear,53(x)| ≤ 2−53×∆
for any |x| ≤ ∆.

Next, the double-precision floating-point add operation with
the nearest mode rounding can be defined as:

add(x, y) = neardp(x + y),

and similarly the multiply operation is:

mult(x, y) = neardp(x× y).

Another example is an operation to extract a bit-field
from the fraction of a floating-point number. A floating-point
numberx is typically represented with sign bitsgn, exponent
expo and fraction frac, wherex = (−1)sgn × 2expo× frac.
We assumex is normalized, which means thatfrac satisfies
1 ≤ frac < 2. Thus the binary representation offrac looks
like 1.b1b2b3 · · ·, wherebi is 1 or 0. Let us consider a function
FracFld l,r(x) that returns binary integerblbl+1 · · · br−1br. In
Fig. 2, theFracFld l,r function is represented as a solid line.

We can approximate theFracFld l,r with (x − xi) × 2r

represented as a dashed line in a domain[xi, xi+1) such that
xi = 2−l × i, and 1 ≤ xi < 2. Thus FracFld l,r can be
represented as:

FracFld l,r(x) = (x− xi)× 2r + EFracFld l,r (x), (1)

with an error functionEFracFld l,r (x) satisfying:

EFracFld l,r (x) ≤ 1.

Note that FracFld l,r(x) is a user-defined function of PBF
because2r is a constant, andx − xi is a shorthand of
x + (−1)× xi.

Similarly, we can consider truncating lower bits of an
integer as yet another example. Let us supposex is an m-
bit binary integer and truncaten(x) removes the lowern-bit
of x and returns(m − n) bit integer. This truncation can be
represented as:

truncaten(x) = x× 2−n + Etruncaten(x)

Simplify(P(x), [xi, xj))

1) Substitutexi + δ for x in P (x). Variable δ satisfies|δ| ≤
xj − xi.

2) Replace user defined functions with the corresponding PBF,
3) Expand and simplify to normalize the the polynomial.
4) Move the constant term to the right of≤ and non-constant

terms to the left. Return the resulting inequationQi(δ) ≤ Ci.

Fig. 3. PBF Simplification Algorithm

whereEtruncaten(x) satisfies

Etruncaten(x) ≤ 1.

We can represent a number of operations used in the
implementation of numerical operations as functions of PBF.
Sometimes restricting the domain of input variables is a key.
For example, floating-point divide and square root operations
using the Newton-Raphson algorithm is usually implemented
by combining an initial table look-up, floating-point multiply-
and-add operations, and a final rounding operation. If we
narrow the input range so that the table look-up value is
a constant, the entire algorithm except the final rounding is
represented by PBF. Then the correctness of the algorithm
can be given by a formula bounding the error of the final
approximation before rounding.

Some arithmetic operations are hard to be represented as a
PBF. For example, representing the SRT division algorithm
as a PBF is difficult. The SRT division algorithm guesses
the next quotient digit by table look-up using some bits of
an intermediate remainder as an index. Depending the guess,
the next intermediate remainder can be completely different,
making it hard to approximate using a polynomial.

C. Algorithm to Verify a Property of Formal Specification

In this subsection, we consider an algorithm to verify a PBF
formula of the form:

Formula::= PBF≤ PBF.

This type of formula can be used to represent relative error
requirements such as the correctness statement of an estimate
function. Let us consider verifying formulaP (x), with the
assumption that the input variablex satisfiesx0 ≤ x < xn,
and the error functions appearing inP (x) may take any values
as long as they satisfy the associated bounding condition. We
assumex is the only free variable inP (x), but we can easily
extend the algorithm to a multiple-variable formula.

The evaluation algorithm is carried out by splitting
segment [x0, xn) into non-overlapping segments,
[x0, x1), [x1, x2), . . . , [xn−1, xn), and simplifying and
evaluating P (x) in each sub-segment. The algorithm
Simplify(P(x), [xi, xj)) in Fig. 3 is used to simplify the
original formulaP (x) in segment[xi, xj).

The first step of the simplification algorithm produces
P (xi + δ), a formula of variableδ where |δ| < xj − xi.
Let us define∆ij = xj − xi. After expanding user-defined
functions, Step 3 normalizes the polynomial by applying the
associativity, commutativity and distributivity laws of× and
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U(c, ∆) = |c| wherec is a constant.
U(δ, ∆) = ∆ whereδ is a variable.
U(Q1 + Q2, ∆) = U(Q1, ∆) + U(Q2, ∆).
U(Q1 ×Q2, ∆) = U(Q1, ∆)× U(Q2, ∆).
U(e(Q1), ∆) = P (U(Q1, ∆))
where|x| ≤ b ⇒ |e(x)| ≤ P (b) holds for error functione.

Fig. 4. Rules to calculate Upper Bound U(Q(δ), ∆)

Evaluate(P(x),[x0, xn)) {
S := {[x0, x1), [x1, x2), . . . , [xn−1, xn)}
While ( S 6= ∅ ) {

Pick a segment[xi, xj) ∈ S, andS := S/[xi, xj).
(Qi ≤ Ci) := Simplify(P(x), [xi, xj)).
If Ci < 0, then return fail withxi as a failure point.
If U(Q i, xj − xi) > Ci, thenS := S ∪ {[xi, xk), [xk, xj)}
for some newk.

}
return success

}

Fig. 5. Algorithm to verifyP (x) over [x0, xn]

+, and combining monomials of the same kind. Finally,
constants are moved to the right of≤ symbol, and non-
constant monomials are moved to the left. The simplification
algorithm Simplify(P(x), [xi, xj)) preserves the semantics in
the sense that the original formulaP (x) holds if the final
formula Qi(δ) ≤ Ci does.

In the final product of simplification,Qi(δ) ≤ Ci, the left-
hand side is a PBF without any constant terms or duplicate
monomials. Note thatQi(0) = 0 if we assume all error
functions appearing inQi take zero values. Thus the proof
of P (x) fails if Ci < 0. For Qi(δ) ≤ Ci to hold regardless of
the values of the error functions,Ci must be a non-negative
number.

If Ci is indeed a non-negative number, we compute an
upper bound U(Qi,∆ij) of Qi(δ) for |δ| < ∆ij , and compare
it against Ci. Fig. 4 shows the recursive rules to compute
U(Qi,∆ij). If U(Qi,∆ij) ≤ Ci, Qi(δ) ≤ Ci holds for all δ
such that|δ| < ∆ij .

The entire algorithm to verifyP (x) over the domain
[x0, xn) is given in Fig. 5. Evaluate(P(x),[x0, xn)) starts by
splitting the entire domain inton segments[xi, xj). We require
that P (x) is a PBF in each segment. For each segment,
it applies the simplification algorithm in Fig. 3 toP (x),
obtaining Qi ≤ Ci. If Ci < 0, it fails and returnsxi as a
failure point. Otherwise it computes the upper bound ofQi.
If the upper bound is less than or equal toCi, P (x) holds for
the segment and we continue. Otherwise, it splits the segment
[xi, xj) into [xi, xk) and[xk, xj), adds them to S, and repeats
the analysis on the refined segments. The choice ofxk is
arbitrary, but we thinkxk = (xi + xj)/2 would work in most
cases.

If the algorithm returns withS = ∅, then all segments are
verified, thusP (x) holds for [x0, xn). There is no general
guarantee that the algorithm terminates because the bound
of the error functions may not be strong enough to either

compete the proof or refute it. In general, we should define
error functions appearing inP (x) so that error functions take
relatively small magnitude compared to the main computation.
If it is done properly, the smaller the segment gets, the more
likely the evaluation succeeds or reports a failure point.

D. An Example of Verifying a Reciprocal Estimate Function

In this Section, we discuss a simple example of reciprocal
estimate functions that illustrates the use of our algorithm.
Instructionsfre in the POWER processor returns a reciprocal
estimate of a given number. Precisely speaking, for a given
double-precision floating point numberx, it returns a double-
precision number fre(x) that is an approximation of1/x. The
architectural definition of the POWER processor requires the
following formula to be met:∣∣∣∣1/x− fre(x)

1/x

∣∣∣∣ ≤ 1/256. (2)

Similarly thefrsqrte instruction returns a reciprocal square
root estimate frsqrte(x), an approximation of1/

√
x. It must

satisfy the following relative error requirement.∣∣∣∣1/
√

x− frsqrte(x)
1/
√

x

∣∣∣∣ ≤ 1/32.

Depending on the processor implementation, it may be re-
quired that the upper bound of the relative errors should be
2−14, not 1/256 or 1/32.

The result of the estimate instructions are considered correct
as long as it satisfies the formula above, and there is no
single correct answer. The idea is that these numbers are later
used for software divide and square root routines based on an
iterative algorithm. Such an algorithm is self-correcting and is
not sensitive to minor differences of the initial estimate values.

Let us consider a reciprocal estimate function fre(x) that
is implemented by a piecewise linear approximation. For the
input 1 ≤ x < 2, fre(x) first computes an indexi by taking
the most significant several bits of the fraction ofx, looks
up tables to obtainai and bi, and returnsaix + bi as the
answer. Once fre(x) is defined for1 ≤ x < 2, then we can
extend it to the entire non-zero domain by using equations
fre(x× 2) = fre(x)/2 and fre(−x) = −fre(x). Furthermore,
these equations can be used to extend the proof of Equation 2
for x ∈ [1, 2) to the the entire domain ofx. Thus, we focus
on the domainx ∈ [1, 2) in the following discussion.

Now let us consider a piecewise linear approximation that
uses eight linear functions for segment [1,2):

F (x)=



967
512 −

455
512 × x for x ∈

[
1, 9

8

)
1729
1024 −

91
128 × x for x ∈

[
9
8 , 10

8

)
...

8463
8192 −

273
1024 × x for x ∈

[
15
8 , 2

)
It is easy to prove by analysis that the relative error of
F (x) is less than 1/256. However,F (x) is not what can be
implemented as hardware, because hardware can implement
only finite precision operations. A realistic implementation
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of fre(x) should take the finite bits ofx and compute the
approximation of the linear function. Following definition
fre(x) is one such example:

fre(x)=



967
512−

455
512×

(
1+FracFld4,10(x)

210

)
for x ∈

[
1, 9

8

)
1729
1024−

91
128×

(
9
8+FracFld4,10(x)

210

)
for x ∈

[
9
8 , 10

8

)
...

8463
8192−

273
1024×

(
15
8 +FracFld4,10(x)

210

)
for x ∈

[
15
8 , 2

)
Whenx is in [1, 9/8), the binary representation ofx looks like
1.000b4b5 · · ·. FunctionFracFld4,10(x) returnsb4b5 · · · b10 as
a 7-bit integer. This fre(x) function can be implemented using
a tiny multiply-adder. Mathematical analysis cannot be used
for fre(x) because fre(x) is not a continuous function with
a derivative. We illustrate how our algorithm can prove the
relative error requirement of fre(x).

First, we convert the requirement formula|(fre(x) −
1/x)/1/x| < 1/256 to its equivalent formula255/256 ≤
F (x)×x ≤ 257/256, as our algorithm can take only a formula
of PBF. SinceF (x) is almost always larger than1/x, we
will focus on the second≤ comparison for the rest of the
arguments.

Our algorithm first divides the target domain ofx into sub-
segments. Let us assume that the domain ofx is divided
into the segment of size 1/128, and we will explain how the
algorithm works for the sub-segment [1,129/128).

The Simplify algorithm in Fig. 3 first substitutes1 + δ for
x in the original formula:

fre(x)× x ≤ 257/256 (3)

resulting in:

fre(1 + δ)× (1 + δ) ≤ 257/256

Second, it replaces fre andFracFld4,10 using the definition of
fre and Equation 1.

(−455
512

×(1+δ+EFracFld 4,10(δ)×2−10)+
967
512

)×(1+δ) ≤ 257
256

Now we expand, combine same monomials, and move con-
stants to the right of≤ and non-constant monomials to the
left, putting into the format ofQi ≤ Ci

57
512

δ−455
219

EFracFld 4,10(δ)−
455
512

δ2−455
219

δEFracFld 4,10(δ) ≤
1

256
Since the right-hand side is a positive number, we compute
the upper bound of the left-hand side, by the rules in Fig. 4.

U
(

57

512
δ − 455

219
EFracFld 4,10

(δ)− 455

512
δ2 − 455

219
δEFracFld 4,10

(δ)
)

=
57

512
× 1

128
+

455

219
× 1 +

455

512
× 1

1282
+

455

219
× 1

128
× 1

=
120703

226
<

1

256

This shows that the upper bound of the left-hand side is
less than 1/256, finishing the proof the original equation 3 for
[1,129/128).

Similarly we can apply the same simplification and upper-
bound calculation to other sub-segments. It turns out that, for
the segment [33/32,133/128), the upper bound is larger than
the right-hand side constant. However, in this case, dividing
the segment into 4 sub-segments of size 1/512 and repeating
the process will successfully prove the inequation.

The evaluation attempt also fails for the sub-segment
[133/128,67/64). However, this time, further refining the sub-
segment to smaller segments does not work. The proof attempt
of a refined segment [4283/4096,1071/1024) will produce a
Ci less than 0. In fact, the relative error of fre(4283/4096)is
larger than 1/256. In order to correct it, fre(x)must use 9 bits
instead of 7 bits of the fraction ofx for the linear function
calculation. With this fix, our algorithm can successfully verify
that fre(x)’s relative error is less than 1/256 over the entire
domain.

III. ACL2 I MPLEMENTATION OF ALGORITHM

We implemented our verification algorithm on the ACL2
theorem prover [16]. The ACL2 theorem prover is a widely-
used open-source theorem prover, that has been used for
hardware and software verification in both academia and
industry [17]. This section assumes some knowledge of the
ACL2 theorem prover. Readers who are not interested in
implementation details may skip to the next section.

There are a number of advantages for us to implement
the algorithm on the ACL2 theorem prover. First, the results
of our verification algorithm of the high-level design can
be augmented with other mechanical proofs. For example,
the verification of fre(x) in the previous section in segment
[1,2) can be extended to all non-zero domain ofx with
interactive theorem proving. Second, we can use the theorem
prover’s rewriting engine to manipulate polynomials, instead
of writing a polynomial simplifier from scratch. Third, the
ACL2 theorem prover provides an interface named clause-
processor [18] to call external formal verification tools such
as a bit-level equivalence checker. We can use this feature to
run an equivalence checker between the high-level model of
an algorithm and its hardware implementation.

One disadvantage of the implementation using ACL2 is
speed. Especially, our implementation of the verification algo-
rithm is not optimized for speed. It is possible to implement
our algorithm in a typical programming language, and call
it from the ACL2 theorem prover using the clause-processor
mechanism. However, the clause-processor mechanism does
not guarantee the soundness of the newly integrated system,
because the called program may contain flaws.

We used an approach to implement the algorithm using
computed-hints [19] and a set of rewriting rules. A computed-
hint is a user-defined functions that is used to steer the
direction of a proof, but the proof itself is carried out by the
pure ACL2 proof engine. It is somewhat like “strategy” [20] in
the PVS theorem prover [21], or “tactics” in the HOL theorem
prover [22], although ACL2 computed-hints may not be able
to specify the proof step-by-step. Unlike clause processors,
computed-hints do not introduce unsoundness to the ACL2
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(defthm fre-error-1-2
(implies (and (rationalp b) (<= 1 b) (< b 2))

(and (<= 255/256 (* b (fre b)))
(<= (* b (fre b)) 257/256)))

:hints
((case-split-segment ’b 1 2 (expt 2 -7))

(when-pattern
(if (not (< B (@ low))) (< B (@ high)) ’nil)
:use (:instance xd-decomp (x b) (x0 (@ low)))
:in-theory (enable fre))

(bound-poly-prover id clause world)))

Fig. 6. An ACL2 command to verify fre(x).

prover. If a computed-hint is not implemented correctly, the
proof using the hint may fail, but it never proves an untrue
statement as a theorem.

In our implementation, a single ACL2 command shown
in Fig. 6 proves the error requirement for fre(x)from the
previous section. A typical ACL2 command(defthm name
expr :hints hints) attempts to proveexpr with the guid-
ance provided byhints, and, if successful, stores the theorem
with the name. In Fig. 6, three computational hints are
provided after:hints. Briefly speaking, the first computed-
hint starting with case-split-segment splits the do-
main of x into tiny segments. The second computed-hint
namedwhen-pattern applies the simplification algorithm
in Fig. 3, and the last computed-hintbound-poly-prover
builds a proof based on the upper bound computed as in Fig. 4.

The first computed-hints usingcase-split-segment
splits the domain [1, 2) ofb into small sub-segments of size
2−7. This generates 128 independent sub-goals. The rest of
the computed hints are applied to each sub-goal.

The second computed-hint(when-pattern pattern .
hints) attempts to pattern match sub-terms of the target to
pattern, and if there is a match,hintsare applied to the ACL2
proof. This computed-hint is an extension described in [23].
Expressions starting with an@sign is a pattern variable, and
can be matched to any expression. Then the pattern variables
in hints are substituted accordingly.

In our example in Fig. 6, computed-hintwhen-pattern
looks for an if-expression that matches the pattern. The
previous case-splitting hint must have produced a term(and
(<= xi x) (< x xj)), and its internal representation is
an if-expression that looks exactly like the pattern. As a
result, (@ low) and (@ high) are matched toxi and xj

respectively.
Then the :use hint instantiates a theorem named

xd-decomp given as follows:

(defthmd xd-decomp
(implies (and (rationalp x)

(rationalp x0))
(and (rationalp (xd x x0))

(equal x (+ x0 (xd x x0))))))

wherexd is a function defined as:

(defund xd (x x0) (rfix (- x x0)))

The definition ofxd is disabled and the ACL2 theorem prover
treats it as an uninterpreted function. This effectively has the

same effect as replacingx with xi+δ, with term(xd x x0)
serving the role of variableδ.

Thewhen-pattern hint also calls an:in-theory hint,
which opens up the definition offre. By setting up proper
rewriting rules, the ACL2 term rewriter applies the same
simplification as the simplification algorithm in Fig. 3. For
this purpose, we need to disable all the built-in rewrite rules of
ACL2, and enable specific rules that mimic the simplification
algorithm, using a script that is not shown here.

There are two sets of rewriting rules needed for the task.
First is to normalize polynomials. This includes typical rewrite
rules for the commutativity, associativity, and distributivity
of + and×, unicity, and rules to combine coefficients. For
example, we need a rewriting rule(+ (* c0 x) (* c1
x)) → (* (+ c0 c1) x)) that is applied only ifc0 and
c1 are constants. In addition to that, we need a few tricky
rewriting rules which combine monomial of the same kind
located far apart in a polynomial. Such rewriting rules can be
written using thesyntaxp heuristic filter of ACL2.

The other set of rules are used to bring constants to the
right of ≤, and non-constant terms to the left. All rules have
to be carefully coded and ordered so that it works well with
the ACL2’s rewriting algorithm.

The final computed-hintbound-poly-prover in Fig. 6
computes U(Q)of the left-hand side of≤ after the previous
step producesQ ≤ C. If the U(Q) is less than the right-
hand side constant C, then it constructs a proof ofQ ≤ C.
This is done by instantiating theorems stating|a× b| = |a||b|,
|a+b| ≤ |a|+ |b|, and the inequality bounding error functions,
for each step of the bounding proof.

For example, supposeEf (x) is an error function that
satisfies|Ef (x)| ≤ 1 + ∆ for |x| ≤ ∆, and we want to prove
|δ| ≤ 1 => δ + δEf (δ) ≤ 3. The proof can be given by the
following three inequations:

|δ| ≤ 1 => |Ef (δ)| ≤ 2

|δ| ≤ 1 ∧ |Ef (δ)| ≤ 2 => |δEf (δ)| ≤ 2

|δ| ≤ 1 ∧ |δEf (δ)| ≤ 2 => |δ + δEf (δ)| ≤ 3

When bound-poly-prover is called, it adds these three
instantiated theorems to the target goal as assumptions. In
essence, bound-poly-prover elaborately provides the proof
steps to ACL2, so that ACL2 only needs to perform proposi-
tional logic inference to finish.

We did not implement dynamic adjustment of the segment
size. Currently we manually adjust the segment size as an
argument to thecase-split-segment computed-hint.

IV. A PPLICATIONS

We applied the ACL2 implementation of our verification
algorithm to a couple of industrial examples. The first example
is a reciprocal estimate instruction of one of the POWER
processors. This particular algorithm uses a piecewise linear
approximation with segment size of2−6 for the input between
1 and 2. It uses 22 bits of the fraction of an input to
compute a reciprocal estimate. The relative error must be
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less than2−14. It is implemented using a look-up table, a
small multiplier, adders, bit field extractions, and shifters. It
is more complicated than our toy example in Subsection II-D,
but the principle remains the same and it can be modeled
as a PBF function. One notable point is that the algorithm
uses one’s complement to negate intermediate results, not 2’s
complement. Since this is just an estimate instruction, the
difference in the last 1 bit should not matter, but our high-
level description models precisely such behavior.

Our algorithm successfully verifies this high-level model of
the reciprocal estimate function in the segment [1,2), dividing
it to 4048 sub-segments of size2−12. If the segment size
gets bigger than2−11, proof failed for some segments. The
verification took 3652 seconds using a 2.93GHz processor
with the ACL2 version 3.6 running on Clozure Common Lisp.
We minimized printing by ACL2 intermediate proof goals, as
it would have printed out huge expressions and consumed a
sizable amount of CPU time. No interactive human inputs are
required during this proof.

After proving that the estimate function meets its require-
ment in [1,2), an interactive theorem proving extends the
domain from [1,2) to the entire non-zero values, by proving
the theorem:

(defthm fre-correct
(implies (and (rationalp b)

(not (equal b 0)))
(<= (abs (/ (- (fre b) (/ 1 b)) (/ 1 b)))

1/16384)))

In this theorem,fre represents the verified reciprocal
estimate instruction. Also we used ourACL2SIX framework
[24] and IBM verification toolSixthSense[25] to check that
the algorithm matches the hardware implementation. Briefly
speaking, ACL2SIX translates an ACL2 expression to VHDL,
and runs SixthSense to verify whether the property holds for
DUT. If the verification fails, a waveform is produced to assist
debugging. If successful, the ACL2 theorem prover continues
the proof with the fact that the expression is true.

We also applied the same algorithm to the reciprocal square
root estimate instruction of the same processor. This particular
implementation should have less than2−14 relative errors,
meaning reciprocal estimates(x) should satisfy:∣∣∣∣s(x)− 1/

√
x

1/
√

x

∣∣∣∣ ≤ 2−14.

This is equivalent to proving(1 − 2−14)2 ≤ s(x)2 × x ≤
(1 + 2−14)2.

The verification required the input domain [1,4) divided
into 3072 segments of size2−10. The algorithm successfully
verified this algorithm, taking 13953 seconds to complete.
Although the number of sub-segments are smaller than that of
the reciprocal estimate instruction, evaluation of each segment
generates far more complex polynomials, thus taking more
time to finish.

In the verification of both estimate instructions, the segment
has been split into a fixed size at the beginning of the
evaluation, and we did not dynamically sub-divide segments.

Such improvements will certainly speed up the verification
algorithm.

V. DISCUSSION

Our verification algorithm has been successfully applied
to verify two estimate instructions in an industrial processor.
Unlike many theorem-proving based methods, our algorithm
runs automatic and can be applied to different examples with
minimum human effort.

The current implementation of the verification algorithm
is given as a set of ACL2 computed hints, and it has not
been optimized for performance. Especially the segment size
is fixed at the beginning of the verification, and it does not
automatically adjust the size. Our investigation shows that
adjusting the sub-segment size is likely to improve the verifi-
cation speed significantly. For example, the frsqrte verification
used the segments of2−10 for the entire domain of inputs, but
segment size of2−8 is sufficient to verify most of the segments
except a few.

More improvements can be implemented for the
bound-poly-prover computed hint. The current
implementation adds a large number of irrelevant and
duplicated inequalities to the target, by instantiating lemmas
for each proof step. A smarter implementation can, for
example, avoid repeating the same proof steps for common
sub-expressions.

We relied on the ACL2 theorem prover for most of the
heavy work. Majority of the time is spent on the simplification
of polynomials and propositional reasoning of the bounding
proof, both of which are performed by ACL2. It is possible to
implement a standalone program to accelerate our verification
algorithm.

It is interesting to compare our approach to MetiTarski
[26], which applied series’s of upper and lower bounds of
polynomials given by Daumas et. al. [27] to a resolution
theorem prover, and proved many inequalities with analytical
functions such as trigonometric functions and logarithm. It
does not split input domains to smaller segments explicitly
like our algorithm. We think their system is more suitable
for verifying inequalities used for the control system of, for
example, avionics, than hardware implementation of arithmetic
circuits. One reason is that it may not handle non-continuous
functions such as rounding and bit-extractions. However, we
can combined their techniques to ours for the verification of
trigonometric functions.

One may ask whether our automatic verification algorithm
scales to other problems. Next natural targets of our algorithm
are divide and square root algorithms using an iterative algo-
rithm such as Newton-Raphson procedure. Their correctness
can be stated that the error of the final approximation before
rounding is less than a quarter or a half of theunit of the last
position(ULP), especially if the algorithm uses a special hard-
ware rounding mechanism. The ULP of 1 is2−23 for single
precision and2−52 for double precision operations. Since our
reciprocal estimate verification required210 or 212 segment-
wise analysis to prove the2−14 relative error requirement,
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one may wonder that our procedure never scales for double-
precision algorithms. Certainly, if we need to analyze, for
example,250 individual segments, the verification algorithm
never finishes in a reasonable amount of time.

Fortunately, our preliminary analysis shows that we do not
need that many segments to be evaluated. In this analysis,
we plugged in our reciprocal square root estimate function in
Section IV to double-precision Goldschmidt’s algorithm[28],
and saw what kind of polynomialQ(δ) ≤ C is generated
from ((x0 +δ)−s(x0 +δ)2) ≤ 2−53 at x0 = 1, wheres(x) is
the square root approximation before the final rounding. We
found thatQ(δ) is a polynomial with very small coefficients
for low-degree monomials. For example, the coefficient ofδ
in Q is close to2−48 and that ofδ2 is close to2−40, while C
is about2−53. This suggests that we need to evaluate at least
27 segments, but a similar number of segmentation used for
the estimate instructions is likely to be sufficient to complete
the square root verification.

The real challenge in verifying the square root algorithm
is the size of the polynomial. If we naively expand all the
terms to obtain simplified inequationQ ≤ C, thenQ will be a
polynomial with millions or more monomials. This is because
the algorithm uses about 10 instructions, and each instruction
inserts an error function, which is essentially a new variable of
the polynomial. As a result, the size ofQ grows exponentially
as the number of instruction increases.

In order to mitigate the growth of polynomialQ, we
must implement a better polynomial simplification approach.
One approach is using sub-expression sharing using unique
pointers. Another approach is improving our polynomial sim-
plification and evaluation process, so that we do not require
full expansion of the polynomial. If none of these approaches
work, we can still use theorem proving to finish the proof while
using our verification algorithm to check intermediate results.
In any case, full or semi-automatic validation of the high-level
model is critical to enhance the use of formal techniques in
the industrial setting.
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Abstract—Arguing formally about the correctness of on-
chip communication protocols is an acknowledged verification
challenge. We present a generic framework that tackles this
problem using an incremental approach that interleaves model
construction and verification.

Our protocol models are based on abstract state machines
formalized in Isabelle/HOL. We provide abstract building blocks
and generic composition rules to support incremental addition
of protocol features to a parameterized endpoint model. This
structured approach controls model complexity. We can refine
data structures and develop control independently, to create a
concrete instantiation.

To make the verification effort feasible, we combine interactive
theorem proving with symbolic model checking using NuSMV.
The theorem prover is used to reason about generic correctness
properties of the abstract models given some local assumptions.
We can use model checking to discharge these assumptions for
a specific instantiation. We show the utility and breadth of
the framework by sketching two case studies: modelling a bus
protocol, and modelling the PCI Express point-to-point protocol.

I. INTRODUCTION

Formal verification of high-performance on-chip communica-
tion protocols is widely acknowledged to be hard. Modern
multi- or many-core architectures require highly complex
protocols to handle the performance bottleneck due to com-
munication. These protocols implement sophisticated features
to provide the needed performance.

Traditionally, monolithic models are created and proven
correct using post-hoc verification. Given the complexity of the
features and the size of the distributed system, this approach
became often infeasible in time and effort.

We propose a new methodology based on incremental
modelling and step-wise verification to tackle this challenge.
The idea is to encapsulate the complexity of the features into
independent modelling steps and add these features incremen-
tally to the model, starting with a very simple model. At the
same time, we reduce the verification effort with two main
strategies: first the verification process can be spread over the
modelling process such that in each step we only need to verify
the parts added to the model that implement the new feature.
Second we use generic building blocks for which we have
shown correctness results. The verification can be restricted to
discharging local assumptions on the building blocks.

In previous contributions [1], [2], we have illustrated the ap-
proach on two case studies. To explore the utility and breadth
of the approach, we chose two rather different examples: first

the ARM AMBA Advanced High-performance Bus (AHB)
protocol [3], an arbiter-based master-slave bus protocol. As
a second protocol, we picked the PCI Express protocol [4],
a modern point-to-point protocol. We will briefly summarize
the application of the general framework to these protocols in
Section VI.

The development of the framework was driven by these case
studies. After completing the work on both protocols, we were
able to create a protocol independent formalization of a mature
framework which we present here. All the models have been
formalized in higher order logic using the Isabelle theorem
prover [5].

For the case studies, we realized the modelling and verifi-
cation idea using interactive theorem proving only. However,
our final aim was to reduce the theorem proving part to further
increase the feasibility of the approach. Here, we show how
to integrate automatic tools into the verification workflow.
On the one hand, we use automatic theorem provers for
subgoals in first-order logic using the sledgehammer interface
of Isabelle/HOL (Isabelle 2009-1). Sledgehammer invokes the
provers E, SPASS, and Vampire and, if successful, returns a
proof script for the Metis theorem prover.

On the other hand, we integrate the NuSMV symbolic
model checker in the workflow. To use the model checker,
we adapt the oracle-based IHaVeIt interface [6] to Isabelle
2009. We can invoke NuSMV to prove LTL and CTL formulas
from Isabelle. This is especially useful when we instantiate
generic composition operators and need to discharge local
assumptions, such as fairness constraints. We will detail the
integration of automated tools in Section V.
Our main contributions can be summarized as follows:
• A framework based on (abstract) state machines for

modelling and verification of on-chip protocols.
• Generic building blocks and composition rules to create

models incrementally covering basic components such as
buffers to specialised composition schemes.

• A verification methodology that handles the complexity
by restricting the effort to local constraints and global,
generic correctness results.

• Integration of the NuSMV model checker in the verifica-
tion process to further reduce the verification effort with
focus on automatically discharging the local constraints.

These contributions result in a promising prototype system that
has been successfully applied to a variety of protocol features.
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A. Related Work

Modelling systems with automata in general is a well studied
field and can be found, for example, in the widely-cited
book by Robert Kurshan [7]. Formalizing state machines in
Isabelle/HOL goes back to at least Nipkow and Slind [8].
They formalized I/O automata and developed a meta-theory
to represent them as objects in the logic. We restrict our
state machine framework to a simpler formalization specialised
to our requirements. Formal verification of protocols using
I/O automata in theorem provers has a long history, e.g. [9],
[10]. Our goal is not to provide yet another specific protocol
verification using I/O automata and a theorem prover, but the
formalization of a methodology.

Suhaib et al. [11] propose an incremental methodology for
developing formal models called XFM. An extendable set
of LTL properties is used to incrementally create a model
that satisfies the set of properties. Their approach focuses on
building prescriptive formal models that capture the behaviour
of natural language specifications. Our methodology tries to
capture specific features in independent models.

Another related approach is the B Method [12], an event-
based method for a refinement-based specification, design and
implementation of software components. Abrial et al. [13]
apply the method to the incremental development of the
IEEE 1394 tree identify protocol. Cansell et al. present an
incremental proof of the producer/consumer property for the
PCI protocol using the approach. Besides being tailored to
software and being event-based, our approach is not only
restricted to refinement steps.

Schmaltz et al. [14] present a generic network on chip
model as a framework for correct on-chip communication.
They identify key constraints on architectures and show pro-
tocol correctness given these constraints. However, their work
focuses on the topologies in general, whereas this work aims
at the verification of sophisticated endpoints.

Chen et al. [15] propose a modular, refinement based
approach to verify transaction-based hardware implementa-
tions against their specification models and illustrate their
methodology using a cache coherency protocol. Their ap-
proach is tailored to a different application area: verifying
implementations against specifications.

Müffke [16] presents a framework for the design of com-
munication protocols. He provides a dataflow-based language
for protocol specification and decomposition rules for inter-
face generation relating dataflow algebra and process algebra.
Aside from noting that correct and verified protocol design
is still an unsolved problem, Müffke does not address the
verification aspect in general.

General hardware verification based on refinement checking
or simulation relations has a long history. Finn and Four-
man [17] present the toolset LAMBDA, a refinement based
general-purpose design assistant using mathematical logic to
represent and manipulate system behaviour. Abadi and Lam-
port [18] show the existence of refinement mappings in their
widely-cited article. McMillan [19] proposes a compositional

rule for hardware verification based on local refinements which
can be efficiently model checked.

The combination of Isabelle/HOL and NuSMV using the
IHaVeIt tool has been applied to a variety of hardware
verification instances. Schmaltz [20] applies it to the area
of clock domain crossing and the time-triggered hardware
implementing it. Alkassar et al. [21] use the tool to show
the correctness of a fault-tolerant real-time scheduler and its
hardware implementation. In both cases, the authors apply a
similar strategy: they use theorem proving to argue about real-
time, asynchronous properties of the system, and the model
checker to prove properties of finite state machines which are
used to model the hardware implementation. A more general
overview of hybrid verification approaches can be found in
the survey from Bhadra et al. [22]

An overview of existing work on specific protocol verifica-
tion such as PCI Express or the AMBA protocol can be found
in our previous contributions covering the case studies [1],
[2]. As this work focuses on the protocol independent, general
methodology, we omit the protocol specific work here.

II. BASICS

A. Notation
To represent data, we often use the option datatype and records
which we introduce in the following. Moreover, we define
discrete time signals and introduce correctness properties.

a) Option Type: To specify a possibly undefined value,
we use the option datatype that is well known from functional
programming languages. For an element of type (α)option,
we write Some x for x ∈ α and None for the two construc-
tors. The selection operator the is used to access a value:
the(Some x) = x and the(None) is left unspecified.

b) Records: We use the Isabelle notation for records.
Let S1, . . . ,Sn be sets and l1, . . . , ln be labels. The record
R = (| l1 : S1, . . . , ln : Sn |) yields the set of all tuples (l1 =
s1, . . . , ln = sn) where si ∈ Si. For r ∈ R, we refer to the
field li with r.li. An update to a field li by a value si ∈ Si
is denoted r(| li := si |). If the context is obvious, we write
li for r.li. For i ∈ [1, n], the domain of field li is given by
dom(li,R) = Si. For a label l, we define the element operator
l∈̃R as ∃j ∈ [1, n]. l = lj .

Given the usual Cartesian product for sets,
∏
i∈[1,n] Si =

S1 × . . .× Sn, we define an analogous operation for records:∏̃
i∈[1,n],LRi = (| l1 :R1, . . . , ln :Rn |) where L : [1 : n] →
{li | i ∈ [1, n]} is a labelling function that assigns a label to
each index. This labelling function can be given as an explicit
function or a set of pairs. We also use this operator for sets
as arguments, i. e. to create a record from sets. A disjoint
union operator over records is given by the set of record
fields:

⊎̃
i∈[1,n]Ri = {li,j | lj∈̃Ri}. Finally, we define the

concatenation of records: Ri = (| li,0 :Si,0, . . . , li,mi
:Si,mi

|):⊙̃
i∈[0,n]Ri = (| l0,0 :S0,0, l0,1 :S0,1, . . . , ln,mn

:Sn,mn
|). We

use R0]̃R1, R0×̃LR1, and R0�̃R1 for the binary variants.
c) Signals: A signal sig is a function from discrete time

to a signal data type α, i.e. sig : N→ α. We denote the value
of a signal sig at time t with sigt.
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d) Correctness Properties: In the context of this paper, a
correctness property P is either a propositional logic formula,
an LTL formula, or a CTL formula given a state machine
model M , an external input signal i, and a set of assumptions
A. If the model and the input signal satisfies the correctness
property given the assumptions, we write 〈M , i〉 |=A P .

B. Communicating Abstract State Machines

We use standard Mealy machines to represent components in
the framework. A state machine is specified by an initial state,
a transition function, and an output function together with sets
for the state space, the input space, and the output space.

Definition 1 (Mealy Machine): A Mealy machine is given
by a 6-tuple (S , I ,O , s0 , δ, ω) with domains S , I , O , initial
state s0 ∈ S , transition function δ : S × I → S , and output
function ω : S × I → O . We denote the next state s′ =
δ(s, i) ∈ S and the current output is ω(s, i) ∈ O .

If not stated otherwise, we assume that the domain spaces
are given as records. Given a state machine and an input signal,
we can define the execution trace and the output signal.

Definition 2 (Execution Trace and Output Signal): Given
a state machine M = (S , I ,O , s0 , δ, ω) and an input signal
in : N → I , we define the execution trace τ as τ0M ,in = s0

and τ tM ,in = δ(τ t−1M ,in , in
t−1) for t > 0. The output signal,

outM ,in : N→ O , is given by outtM ,in = ω(τ tM ,in , in
t).

To define composition operators in Section IV, we intro-
duce a model of synchronous communication among state
machines. We model uni-directional communication from a
source to a destination by connecting an output of the source
to an input of the destination. This ‘connection’ is modelled
by defining the input component using the output function of
source state machine. To illustrate the general approach, as-
sume we want to model a communication from output x∈̃Os to
input y∈̃Id. Given an input signal itd ∈ Id, we use the following
definition for its record component y instead of considering
it as an environment input: itd.y = (ωs(τ

t
Ms,ins

, ints)).x.
We can generalize this approach by introducing a global
communication function for a set of abstract state machines.

Definition 3 (Communication Function): Given a set of
state machines M = {M0, . . . ,Mn}. We define communi-
cation as a partial function comM :

⊎̃
iIi →

⊎̃
iOi such that

comM(yi) = xj if output x of Mj is connected to y of Mi

and undef otherwise. We call an input y of Mi external with
respect to M iff comM(yi) = undef and internal otherwise.

C. Standard Interface

We use a simple handshake protocol to realise a uni-directional
communication between two state machines using three sig-
nals: a valid and a data signal provided by the sender, and a
busy from the receiver. The basic idea is that a sender provides
data on the data signal and raises the valid signal to indicate so.
If the receiver’s busy signal is low, it is an acknowledgement
that the receiver samples the data in the same time step. If the
busy signal is active, the receiver cannot sample the data yet
and the sender has to keep its signals stable. We refer to the
three signals with bt ∈ B, vt ∈ B, and dt ∈ D where D is the

set of data elements to be communicated. We use a suffix o
to refer to an output, and a suffix i for an input.

We formalise the protocol in terms of two assumptions: one
that defines valid outputs provided by a sender and one that
specifies the correct sampling behaviour of a receiver.

Assumption 1 (valid outputs): M provides valid output at
time t iff vot =⇒ (dot = x)∧

(
bit =⇒ vot+1 ∧ (dot+1 = x)

)
for some data element x ∈ O .

Assumption 2 (correct sampling): M has to sample input
data x = dit at time t iff vit ∧ ¬bot.

We use the option datatype to model the data signal and
omit the valid signal. The interface consists of two signals:
a busy signal bt ∈ B and a data signal dt ∈ D option. The
valid signal can be obtained by vt ≡ (dt 6= None). Next, we
generalize the concept to specify the input and output records
of a state machine implementing n input interfaces—the data
signal is an input—and m output interfaces—the data signal
is an output. We use the following labelling convention for
the signal names: the k-th data input is dik together with the
k-th busy output bok; analogously for the output interface.
Thus, we restrict the input and output records to the following
generalised constructs:

I =
(∏̃

m,ρbi,m
B
)
�̃
(∏̃

i∈[1,n],ρdi,nDi option
)

= BIm �̃DIn

O =
(∏̃

n,ρbo,n
B
)
�̃
(∏̃

j∈[1,m],ρdo,m
Dj option

)
= BOn �̃DOm

where the labelling ρl,k is given by ρl,k(i) = li for i ∈ [1, k].
Given an element i ∈ I , we use BIm(i) to refer to the m busy
inputs and DIn(i) to refer to the n data inputs. For o ∈ O ,
we use BOn(o) and DOm(o).

Since we use Mealy machines to model abstract compo-
nents, it is possible to create combinatorial loops when we
compose state machines using this handshaking protocol. We
define two interface properties which prevent this. When we
introduce operators for state machine composition, we will use
these properties as local constraints.

Assumption 3 (busy-independent data): Given a state ma-
chine M and an input signal i . M provides busy-independent
data output signals iff ω satisfies for all k ∈ [1,m]:
ω (τ tM ,i, i

t).dok = ω (τ tM ,i, i
t(|bik := T |)).dok

Assumption 4 (data-independent busy): Given a state ma-
chine M and an input signal i . M provides data-independent
busy signals iff ω satisfies for all k ∈ [1, n]: ω (τ tM ,i, i

t).bok =
ω (τ tM ,i, i

t(|dik := None |)).bok

III. ABSTRACT COMPONENTS

In this section, we introduce basic building blocks: a polymor-
phic buffer of finite size for arbitrary data elements that obeys
the standard interface, a component for data modification, and
one for signal routing.

A. Buffer

We model a buffer using a list and specify the basic operations
for buffers or queues: an enqueue operation enq to add a
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new element, a dequeue operation deq to remove the oldest
element, and a top operation top to obtain the oldest element.
We use predicates empty and full for corresponding buffer
states. Using lists, all these operations are straightforward. We
put the buffer in a state machine wrapper implementing the
standard interface.

Definition 4 ((α)buffer of finite size): A generic buffer for
datatype α and finite size s ∈ N is given by:

S =(|buf :α list, size :N |), s0 = (|buf =Nil, size=s |)
I =(|bi :B, di :α option |), O = (|bo :B, do :α option |)
δ =λs ∈ S . λi ∈ I . let

s′ = if ¬(i.bi ∨ empty s) then deq s else s
in if (i.di = Some x ∧ ¬full s′) then enq s′ x

else s′

ω=λs ∈ S . λi ∈ I . let
d = if ¬(i.bi ∨ empty s) then Some (top s)

else None
in (|bo = full s, do = d |)

We refer to such a buffer with (α, s)Buf .

B. Data Modification
The data modification component is a minimalistic state ma-
chine implementing modifications to the data element. We
abstract from the modification and model it as a function
f : S×α→ β. A typical use of the component is the extension
of a data element with a sequence number or a check sum.
An optional element opt is added to provide required data;
together with an initial state opt0 and an update function δopt.

Definition 5 (Data Modification): Given a function f : S ×
α→ β, a data modification is a simple state machine with:

S =(|opt :Opt |), s0 = (|opt =opt0 |)
I =(|bi :B, di :α option |), O = (|bo :B, do :β option |)
δ =λs ∈ S . λi ∈ I . (|opt=(δopt (s, i)) |)
ω=λs ∈ S . λi ∈ I . let

d = if (i.di = Some x) then Some (f (s, x))
else None

in (|bo= i.bi, do=d |)
C. Routing
The goal of the routing component is to distribute control
or data flow. Typical applications are the arbitration among
data elements or the generation of messages while stalling
incoming data. We also use an optional state component opt
with initial state opt0 and update function δopt. The core of
the building block are two functions fb and fd which represent
the modification of the busy and data signals.

Definition 6 (Routing Component): Let fb : S → I →∏̃
n,ρbo,n

B and fd : S → I →
∏̃
j∈[1,m],ρdo,m

Dj option be
routing functions. A routing component is given by:

S =(|opt :Opt |), s0 = (|opt =opt0 |)
I =

(∏̃
m,Lbi

B
)
�̃
(∏̃

i∈[1,n],Ldi
Di option

)
O =

(∏̃
n,Lbo

B
)
�̃
(∏̃

j∈[1,m],Ldo
Dj option

)
δ =λs ∈ S . λi ∈ I . (|opt=(δopt (s, i)) |)
ω =λs ∈ S . λi ∈ I . (fb s i)�̃(fd s i)

IV. COMPOSITION OF ABSTRACT COMPONENTS

In this section, we detail ways to compose state machines in
order to incrementally build complex systems. We introduce
two standard operations: parallel and sequential composition.
Parallel composition can be used to combine send and receive
parts of an endpoint model, for example. A typical application
for sequential composition is the modelling of interconnects
or the composition of stack layer models. An overview of the
sequential composition is shown in Fig. 1(a).

Definition 7 (Parallel Composition): The parallel composi-
tion M1parM2 with Mi=(Si, Ii,Oi, s0 i, δi, ωi) is given by:

S =S1×̃LS2, s0 = (|m1=s0 1, m2=s0 2 |)
I = I1×̃LI2, O = O1×̃LO2

δ =λs. λi. (|m1=δ1 (s.m1, i.m1), m2=δ2 (s.m2, i.m2) |)
ω=λs. λi. (|m1=ω1 (s.m1, i.m1), m2=ω2 (s.m2, i.m2) |)

where L = {(1,m1), (2,m2)} is the labelling.
To define the sequential composition in a compact way,
we need to define some internal signals. Assume we want
to compose M1 sequentially with M2, i. e. M1 seqM2. As
illustrated in Fig. 1(a), the busy signals of M1 are connected
to the busy outputs of M2, and vice versa for the data signals.
Since there is a cyclical dependency, we need that either M1

provides busy-independent data outputs (Assumption 3) or M2

provides data-independent busy outputs (Assumption 4). We
first define the sequential composition in Definition 8 assuming
the internal signals bint and dint as depicted. We define these
signals in Definition 9.

Definition 8 (Sequential Composition): Given M1 , M2

with Mi = (Si, Ii,Oi, s0 i, δi, ωi) where I1 = BIm�̃DIn,
O1 = BOn�̃DOm and I2 = BIp�̃DIm, O2 = BOm�̃DOp.
Then, the sequential composition M1 seqM2 is defined as:

S =S1×̃LS2, s0 = (|m1=s0 1, m2=s0 2 |)
I =BIp �̃DIn, O = BOn �̃DOp
δ =λs. λi. (|m1=δ1 (s.m1, bint�̃DIn(i)),

m2=δ2 (s.m2,BIp(i)�̃dint) |)
ω=λs. λi.BOn(ω1 (s.m1, bint�̃DIn(i))) �̃

DOp(ω2 (s.m2,BIp(i)�̃dint))

where the labelling L is {(1,m1), (2,m2)}.
Definition 9 (Internal Signals): Let M = M1 seqM2 be

the sequential composition of M1 and M2 , and it ∈ I be an
input signal. Moreover, let nod =

∏̃
m,ρm,di

None and allb =∏̃
n,ρ(n,bi)T. Then, bint = BOm(ω2 (s.m2, int2)) and dint =
DOm(ω1 (s.m1, allb�̃DIn(i))) if Assumption 3 holds. In
case of Assumption 4, bint = BOm(ω2 (s.m2,BIp(i) �̃nod)
and dint = DOn(ω1 (s.m1, int1)).

A. Replication

The replication operator is the first non-standard composition
that we introduce. The goal is the controlled, parallel execution
of r copies of a component while maintaining the external
input and output interfaces. When we summarise the case
studies in Section VI, we present examples how this operation
is applied. The basic schematics is depicted in Fig. 1(b).
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Fig. 1. Overviews of Composition Operators and PCI Express Case Study

The four main components are a multiplex function mux, an
arbitration function arb, the state machine M to be replicated,
and and additional component opt with initial state opt0 and
step function δopt. An instance of the operator for a state
machine M is given by rep(r,OPT ,mux, arb) where
• r is the number of replications,
• OPT = (Opt, opt0 ∈ Opt, δopt) is the optional part,
• mux : Opt × DIn → ([1, r] → DIn) is the multiplex

function, and
• arb : Opt × ([1, r] → DOm) → (|w : [1, r], do :DOm |)

is the arbitration function.
Definition 10: Let M be the state machine to be replicated.

Then, Mr = rep(n,OPT ,mux, arb)M , is given by:

Sr =(|ms : [1, n]→ S , opt :Opt |), Ir = I , Or = O
s0 r =(|ms=(λw ∈ [1, n].s0 ), opt=opt0 |)
δr =λs. λi. let

dii = (mux(s.opt,DIn(i)))
doi = λw. ω(s.ms w, (

∏̃
m,ρm,bi

T)�̃dii w)
arbo = arb (s.opt, λw.DOm(doi w))
bii = sela (BIm(i), arbo.w)
ms′ = λw. δ(s.ms w, (bii w)�̃(dii w))

in (ms=ms′, opt=δopt(s.opt))
ωr =λs. λi. let

dii = (mux(s.opt,DIn(i))
doi = λw. ω(s.ms w, (

∏̃
m,ρ(m,bi)T)�̃dii w)

bo = selm (λw.BOn(doi w), dii.w))
in bo �̃ arb (s.opt, λw.DOm(doi w))

where selm : ([1, n]→ BOn× [1, n])→ BOn, sela : (BIm×
[1,m])→ ([1,m]→ BIm) are the busy select functions. Note
that the construction requires M to satisfy Assumption 3.
We conclude the specification of the replication operator by
stating two assumptions which ensures that the construction
makes sense. The first one states that the multiplex function
selects a unique internal component for a given data element.

Assumption 5 (Valid Multiplex Function): Let
id=mux (opt, i). A valid multiplex function mux satisfies:

∃! w ∈ [1 : r]. (id w = i)∧
∀k 6= w. (id k =

∏̃
n,ρ(n,di)None)

The second assumption states similarly that the output of the
arbitration function is coherent.

Assumption 6 (Coherent Arbitration Function): Let
(w, do) = arb (opt, idos). A valid arbitration function
arb satisfies:

∀idos ∈ [1, r]→ DOm. (do = idos w)

B. Multiplex/Arbitrate

The multiplex/arbitrate composition is a similar, but more
general, construct as the replicate operator. The goal is to
parallelise n arbitrary components in a structured way. Thus
we are not restricted to an instantiation with n copies of a
state machine. In order to define a generic construction and
allow arbitrary components, the input and output interface
have to change. We only allow components with the same
number of input and output interfaces. We also assume some
logical relation between the i-th data component of each state
machine. Then, the i-th external input or output interface
provides data elements from the union of the all the i-th
internal interfaces.

Moreover, the multiplex component does not have to be
unique anymore and can select more than one internal state
machine. For example, it might split a data element and
input the two parts to two internal state machines. Similarly,
the arbitration function may select more than one internal
component, but is still only allowed to produce a single output,
of course. Again, an idea may be the data elements that
have been split by the multiplex function are combined again.
Because of space restrictions, we omit the formal definition
here as it is analogous to Definition 10.

C. Communication Channels

To conclude the section on component composition, we in-
troduce models of communication channels. Having modelled
the endpoints, we need to be able to interconnect them. We
introduce both: a model for point-to-point topologies, and a
model for communication busses.

The goal is to specify interconnects with a transmission
delay d ∈ N and a capacity of c ≤ d ∈ N data elements. To
define such a point-to-point channel, we can use previously
specified components: sequential composition, a buffer, a data
modification, and a routing component. The idea is as follows:
we use a buffer of size c to provide the capacity. To model
the delay, we first use a data modification to add a sequence
number seq ∈ [0, d) to a data element. After the buffer, we use
a routing component to check if a counter value cnt ∈ [0, d) is
equal to the sequence number and only in case it is equal, the
data is passed on. Both the sequence number and the counter
are increased in every time step, whether there is a new data
element or not. Note that this works because a buffer generates
a delay of at least one and we ensure that at all times the
sequence number is equal to the counter value.

Definition 11 (Point-to-Point Channel): Let Mseq be the
state machine obtained from instantiating a data modification
unit with Opt = [0, d), opt0 = (| opt = 0 |)), δopt =
λs, i. s.opt + 1, and f = λs, x. (x, s.opt). Moreover, let
Mbuf = (D × [0, d), c)Buf . Finally, let Mdel be a routing
unit with n = m = 1, Opt = [0, d), opt0 = (| opt = 0 |),
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and δopt = λs, i. s(| opt := s.opt + 1 |)). The routing
functions are fb = λs, i. s.opt 6= snd(i.di) and fd =
λs, i. if ¬fb (s, i) then Some (fst (i.di)) else None. Then,
(d, c,D)Chan = (Mseq seqMbuf seqMdel ).
In order to define a communication bus, we use the channel
and simply compose it with two more routing units to generate
the inputs and outputs to the channel.

Definition 12 (Communication Bus): Let g : I v → I be an
arbitration function to select among v bus inputs the one that
is allowed to use the bus. A bus with delay d, capacity c ≤ d,
inputs v, and outputs w, (d, c, v, w, g)Bus , is constructed as
Marb seq (d, c) Chan seqMmux . Marb is a routing instance
with (n,m) = (v, 1) using g to select an input. Mmux is a
routing instance with (n.m) = (1, w) that forwards the input
to all w outputs.

V. VERIFICATION AND AUTOMATIC TOOL SUPPORT

In this section, we detail our verification approach and the
generic correctness properties of the framework components.
By integrating a model checker and using automated theorem
prover, we react to concerns regarding the feasibility of the
theorem proving approach. The support for automated verifi-
cation tools aims mainly at simplifying the discharging of the
local assumptions. But we were also able to apply them to
parts of the generic correctness argumentation.

Here, we focus on the integration and use of the model
checker. Since our modelling approach is based on state
machines, we can use NuSMV to reason about LTL and CTL
properties. The main use of the model checker is to discharge
the local assumptions when applying one of the specific
composition operators. A good example for the merits of the
model checker is the arbitration function in the replication
composition. As we will see in Section V-B, we require the
arbitration function to be fair with respect to the data signals.
Instead of a tedious induction proof using interactive theorem
proving, we can use the model checker: in the simplest case
we can check whether a given arbitration function satisfies

G(i.dik = Some x) =⇒ F (arb.w = i)

where G and F are the standard LTL operators for globally
and finally.

A proven LTL or CTL property can easily be translated to
the execution trace semantic from Definition 2. This way, we
can integrate model checking in the theorem proving workflow.
Since we use NuSMV mainly to discharge local assumptions
when we apply the framework to a specific protocol, the ‘end-
user’ verification part benefits from the integration. It is a
very promising first step to the final goal of reducing the
theorem prover to a knowledge management system only and
large parts of the framework application steps can already be
automated using NuSMV.

A. Basic Components

In order to argue about correctness in a reasonable way,
we have to introduce an environment assumption first. We
assume in the following that the busy signal provided by

the environment, i. e. by the host system, is fair in the sense
that it is not constantly active. Thus, the environment allows
progress. Assumption 7 formulates this by stating that a busy
signal is only constantly active for a finite time interval.

Assumption 7 (Fair busy Signals): For all external busy
signals b holds: ∀t.∃k.¬bt+k
Note that this is a common assumption for inputs with a
semantics similar to the busy signal. We can easily see that
the definition of the buffer satisfies Assumptions 1, 2, 3,
and 4. Here, we show that the buffer provides stable output
signals as long as the busy input is active. It is basically a
conclusion from Assumption 1. Then, we state the two main
buffer theorems: a liveness and an ordering (FIFO) property.

Lemma 1 (Stable Buffer Outputs): Given a generic buffer
B = (S , I ,O , s0 , δ, ω) and an input signal it ∈ I , B satisfies:

∀x ∈ dom(do,O). bit ∧ (dot = Some x)

=⇒ ∃k. ¬bit+k ∧ (∀k′ ≤ k. dot+k′ = Some x)

Proof: With the integration of the NuSMV model checker,
the lemma is automatically shown by re-stating it as an
LTL formula ((do = Some x)Until (¬bi)). It is then easily
translated to our execution trace semantics in HOL.

Theorem 1 (Buffer Liveness): Given a fair busy signal, a
buffer satisfies the following liveness property:

∀x ∈ dom(di, I ). ¬bot ∧ (dit = Some x)
=⇒ ∃k. (dot+k = Some x)

Proof: This theorem can be automatically shown with
NuSMV using the assumption of a fair environment. We show
that ¬bo∧(di = Some x) =⇒ F(do = Some x) and translate
it to the execution trace semantics.
Note that for a simple buffer, dom(di, I ) = dom(do,O)
holds since the basic buffer construct does not implement
any data modification. Therefore, we can quantify over
dom(di, I ) and argue about the data output.

Theorem 2 (Buffer FIFO Property): A buffer preserves the
ordering of its input data. Let t < t′ such that ¬bot and ¬bot′ ,
then it holds that:

∀x, y ∈ dom(di, I ). (dit = Some x) ∧ (dit
′
= Some y)

=⇒ ∃k, k′. (dot+k = Some x) ∧ (dt+k+k
′

o = Some y)

where the delay values k, k′ are given by Theorem 1.
Proof: The liveness part of the statement is shown with

Theorem 1. Since buffers are modelled using lists, the ordering
property is shown using the ordering property of lists.

B. Composition Operators

Given the correctness of the basic building blocks, we need
to argue about the composition operators. Our main goal is
to show that the properties for the basic components are
preserved by the compositions. Informally, the idea is that
if a component satisfies a correctness property P , we aim
at showing that a composed system satisfies a correctness
property P ′ that can be derived from P only using the
construction of the composition.

For the parallel composition, the correctness property is
straightforward: the composed system satisfies the conjunction

164



of the individual correctness properties. Since parallel compo-
sition only executes the two state machines simultaneously
without any control or data modification, one can easily see
that this is the case.

Lemma 2 (Parallel Composition Correctness): Given state
machines M1 , M2 and corresponding input signals it1 ∈ I1
and it2 ∈ I2. Moreover, let i = λt ∈ N. (|m1 = it1, m2 = it2 |)
be the input signal for the parallel composition M1parM2.
Then, the following holds:

〈M1, i1〉 |=A1
P1 ∧ 〈M2, i2〉 |=A2

P2

=⇒ 〈M1parM2, i〉 |=A1∪A2 P1 ∧ P2

Proof: The proof is straightforward by applying the
definition of parallel composition (Definition 7).
The corresponding lemma for the sequential composition is
slightly more complicated since not every input or output of
the individual system is still an external input or output in
the composed system (cf. Fig. 1(a)). Thus, we need to make
the respective substitutions in the correctness statements. To
describe a substitution of x by y in a formula P in the
following, we use the common notation P [x/y].

Lemma 3 (Sequential Composition Correctness): Given
M1 , M2 and corresponding input signals it1 ∈ I1, it2 ∈ I2.
Let bint and dint be the internal signals from Definition 9,
and let i = λt ∈ N. BIp(it2)�̃DI

nit1 be the input signal to
the sequential composition M = M1seqM2. Then, it holds:

〈M1, i1〉 |=A1
P1 ∧ 〈M2, i2〉 |=A2

P2

=⇒ 〈M , i〉 |=A P1[BI(it1)/bint] ∧ P2[DI(it2)/dint]

where A is the union of A1 and A2 with the respective input
signal substitutions.

Proof: Similar to the proof of Lemma 2, the proof
is basically an application of the definition of sequential
composition (Definition 8). The proof can be obtained using
automatic theorem proving via sledgehammer.
Next, we will provide generic correctness results for the
replication operator. We will state assumptions that have to
be discharged when the composition is instantiated. Given
these assumptions, we can show a generic correctness theorem.
Since the replication operation is more restrictive than the mul-
tiplex/arbitrate composition, we can derive more correctness
properties for the former. Therefore, we also give the former
preference over the latter in the case studies wherever possible.

The assumptions for the replication operator can be sum-
marized as: (i) the inner components are correct and ensure
liveness, (ii) the multiplex function is correct, i.e. it multi-
plexes valid inputs to some inner component (Assumption 5),
and (iii) the arbitration is fair with respect to an active data
signal from an inner component. The following assumption
states the first point. We omit the fairness of the arbitration
function here due to space limitations.

Assumption 8 (Inner Component): Let M be the state ma-
chine to be replicated using the replication operator. Then,
M has to satisfy the busy-independent output assumption and
has to provide stable output signals, i. e. ∀i ∈ I . 〈M , i〉 |=A

Assumptions 1 and 3, where A is the fair environment as-
sumption. Moreover, M has to satisfy liveness:

∀i ∈ [1, n]. ∀x ∈ dom(dii, I ). ¬bto ∧ (diti = Some x)

=⇒ (∃j ∈ [1,m], k ∈ N. dot+kj = Some fi,j(x))

where fi,j : dom(dii, I )→ dom(doj ,O) is a potential data
transformation applied by the inner component.
The following theorem states that given Assumption 8 and
the assumptions on the multiplex and arbitration functions,
the derived system satisfies liveness

Theorem 3 (Correctness of Replication): If the inner state
machine satisfies Assumption 8, the system obtained using
the replication operator satisfies this assumption again if
the multiplex and arbitration functions ensure the previously
mentioned assumptions.

Proof: The Isabelle proof of Theorem 3 is mainly ob-
tained by unfolding definitions and assumptions. An induction
is needed to conclude the stable input signals for the time
interval from Assumption 8 and the fairness of the arbitration
function.

VI. CASE STUDIES

The development of the framework was driven by the work
on two case studies covering rather different protocols: first,
the ARM AMBA High-performance Bus (AHB) protocol, an
arbiter-based master-slave bus protocol for system on chips.
Second, the PCI Express protocol, an off-chip point-to-point
high-performance protocol implementing many sophisticated
features of current and future on-chip communication proto-
cols. By choosing two case studies covering a wide range of
protocol features as well as bus and point-to-point network
topologies, we show the utility and breadth of the framework.

A. AMBA High-performance Bus

The AHB protocol is a bus protocol where masters access
data stored in slaves, all connected to a bus. Bus access is
regulated by an arbiter. The bus itself consists of an address
and data bus. Each transfer is split into two, in the simple
case, consecutive phases: an address and a data phase. In two
steps, we add pipelined transfers and burst support.

Pipelined bus transfers are realised using the replication
operator and executing two copies of the sequential master
in parallel. The address and data bus outputs of the sequential
masters are arbitrated such that address and data phases on
the bus are pipelined. Burst transfers are added to either a
sequential or pipelined master by the sequential composition of
a control flow instance and the master. The idea is to generate
a sequence of transfers with an incrementing address counter.

We were able to model two crucial and widely-used features
of bus protocols with only two framework components.

B. PCI Express

The PCI Express case study was more extensive than the initial
AHB study. Our goal was to investigate the approach using an
industrial-sized protocol which implements a series of features
that are used in modern multi- and many-core communication
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architectures. The protocol is specified using three stack layers,
each implementing an abstraction layer: a transaction layer
(TL), a data-link layer (DLL), and a physical layer. Our case
study considered the two upper layers with a focus on the TL.
An overview of the case study is shown in Fig. 1(c).

As an example of reducing a complex feature to a small
set of framework operations, we outline the receiver part of
the flow control system. Using simple buffer, a small instance
of the multiplex/arbitrate composition, and finally an instance
of the replication operator, we are able to construct a receiver
model supporting flow control. It is a very nice example of
constructing a complex system incrementally starting with
a very simple one in structured way, applying the generic
correctness results to verify each modelling step.

With the small set of composition operators and basic build-
ing blocks presented here, we were able to model almost all
of the features mentioned in Fig. 1(c). Only for the ACKNAK
protocol we used an ad-hoc modelling approach. But we were
still able to encapsulate the feature in a transformation and
use sequential composition to integrate it in the DLL model.

VII. CONCLUSION

We have formalized a framework for the modelling and
verification of on-chip communication protocols in the Is-
abelle/HOL theorem prover. Our modelling approach is based
on abstract state machines and we specify initial, basic build-
ing blocks. Using composition rules, especially the replica-
tion and multiplex/arbitrate operators, we can incrementally
compose more complex systems. In previous contributions, we
have shown how to apply these principles to model protocol
features independently. With a small set of basic building
blocks and composition rules, we were able to model a broad
variety of protocol features. The framework is flexible enough
so that it is applicable to two very different protocol types
covered by the case studies.

We managed to reduce the verification effort by spreading
it over the modelling process and integrating automated tools
into the methodology such as the NuSMV model checker. We
also prove generic correctness properties for the composition
rules so that we can restrict the verification to discharging local
assumptions when we use the framework to model concrete
feature extensions. By reducing the manual theorem proving
parts compared to out previous case studies, we tackled
frequent concerns regarding the usability of our approach.
Future work includes an even further reduction of the theorem
proving, ideally to a point where automated tools are sufficient
to apply the framework to a specific case study.

Future work in the short-term focuses around two points: in-
tegrating even more automatic tools and linking the models to
hardware descriptions. For the former, we plan on investigating
the integration of an SMT Solver in the approach, for example
the current Isabelle version provides a link to the Z3 SMT
solver. Also the integration of a SAT solver will be considered.
To link actual hardware descriptions to the models, we aim at
further integrating the IHaVeIt interface in Isabelle 2009 as it
also provides generators for Verilog and VHDL code.

Our larger-scale, long-term aim is to provide a feasible
approach to modelling and verification of complex on-chip
protocols as an alternative to monolithic, ad-hoc modelling
and post-hoc verification. We aim at increasing the efficiency
of the model building process, and providing a final model
that has significant merits against ad-hoc models. The merits
of our models is that they are already functionally verified
and independent from the actual implementation or design
architecture which can act as a longer-term reference model.
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Abstract—The usual goal in implementing IPC is to make
a cross-thread procedure call look like a local procedure call.
However, formal specifications of IPC typically talk only about
data transfer, forcing IPC clients to use additional global in-
variants to recover the sequential function call semantics. We
propose a more powerful specification in which IPC clients
exchange knowledge and permissions in addition to data. The
resulting specification is polymorphic in the specification of
the service provided, yet allows a client to use IPC without
additional global invariants. We verify our approach using VCC,
an automatic verifier for (suitably annotated) concurrent C
code, and demonstrate its expressiveness by applying it to the
verification of a multiprocessor flush algorithm.

I. INTRODUCTION

Procedural abstraction—the ability for the caller of a pro-
cedure to abstract a procedure call to a relation between its
pre- and poststates—is one of the most important structuring
mechanisms in all of programming methodology. The central
role of procedural abstraction is reflected in the fact that it
is built into not only all modern imperative languages, but
also into most program logics and verifiers for such languages.
However, in a concurrent or distributed system, procedure calls
between threads are provided only indirectly through system
calls or libraries for interprocess communication (IPC). This
begs the question of how such libraries might be specified so as
to provide procedural abstraction to their clients, and how such
libraries can be verified to meet these specifications. In this
paper, we consider the problem in the context of multithreaded
C software, with threads executing in a single shared address
space.

To see why this problem is nontrivial, consider a simple im-
plementation where all data is passed through shared memory,
and where each ordered pair of caller-callee threads share a
mailbox at a fixed address. The caller makes a call by creating
a suitable call record in memory (including identification of
which procedure to execute, values of the call parameters,
and a place to put the return value), writes the address of
this record into the mailbox going to the callee, and calls an
IPC function to signal the callee. The callee, on receiving the
signal, reads the address of the call record from the mailbox,
reads the memory to get the call parameters, executes the
call, and signals the caller. Note that all memory accesses are
sequential; the only synchronization necessary is provided by
the IPC layer.

Now, it’s not hard to see that the IPC layer is providing
functionality similar to a split binary semaphore, with the call
records playing the role of the lock-protected data, and the
data invariant given by the semantics of the various procedure
calls. Thus, a specification for semaphores would provide a
natural starting point for a specification for IPC. However,
in classical program verification, semaphore operations are
specified by their effect on global ghost state; making use
of such a specification requires additional global invariants to
capture how the clients use each semaphore. Using this kind
of specification for IPC would force the client of the remote
procedure call to use these global invariants on both call and
return. This fails to faithfully capture the local character of
procedural abstraction.

A second possibility is to encapsulate these global invariants
inside the IPC layer. For example, the IPC specification could
be strengthened to include the pre- and post-conditions of the
procedure call. This is the sort of specification one would find
in a local logic, such as concurrent separation logic (CSL).
But such logics typically cannot specify generic semaphores,
because the semaphore code has to be polymorphic in both the
encapsulated data and the data invariant.1 Similarly, taking this
approach with the IPC code requires the specification of the
code to be polymorphic in the specification of the material
being passed between caller and callee.

We propose a different approach to specifying and verifying
IPC that allows the recovery of procedural abstraction. The
key idea is that IPC routines transfer ghost objects that own
the call records, and whose invariants capture the pre- and
post-conditions of the procedures. (This is possible because
we allow object invariants to mention arbitrary parts of the
state, with a semantic consistency check that guarantees the
stability of each object invariant while the object exists.) The
“contract” between caller and callee is expressed in ghost
data as a binary relation between call objects and return
objects. The IPC routines can transfer ownership of the ghost
objects without knowing their types, making the transport
suitably polymorphic. This ghost scaffolding, combined with
the (fixed) specification of the IPC routines, yields for the
client the sequential procedural abstraction provided by the

1A recent proposal [7] extends CSL with a facility similar to VCC ghost
objects, which should allow to do constructions similar to the one in this
paper.
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application function.
We have used this approach to specify and verify an

IPC layer, and illustrate its application to a multiprocessor
flush algorithm. The implementation was derived from a real
verification target, the inter-processor interrupt (IPI) routines
of Microsoft’s Hyper-VTM hypervisor. All specification and
proofs given here have been carried out using VCC, an
automatic verifier for (suitably annotated) concurrent C.2 VCC
provides the first-class ghost objects needed to carry out our
approach, while allowing the approach to be applied to real
implementation code.

A. Related Work

The correctness of IPC has been tackled in the context
of microkernel verification. For example, the IPC imple-
mentations of the seL4 [9] and VAMOS [6] kernels have
been formally verified against their respective ABIs. These
projects focused on implementation correctness rather than
client usability, and specify solely data transfer.

The application of VAMOS IPC provided in [1] shows the
shortcomings of this approach: there, correctness statements of
the remote procedure calling (RPC) library argue simultane-
ously on the sender/receiver pair instead of using thread-local
reasoning.

A number of formalisms were applied to specification
and verification of interprocess communication in the context
of the RPC-Memory Specification Case Study [3]. None of
the submitted solutions attempted to provide general-purpose
sequential procedural abstraction.

In [8] a verification framework for threads and interrupt
handlers based on CSL is described. This work is similar
to ours, as both the implementation of (thread-switching)
primitives and clients using them, are verified. When threads
switch, ownership is transfered and some global invariant on
shared data is checked. In contrast to our work the client code
is interactively verified in two different logics, whereas in our
approach both are verified seamlessly and automatically in the
same proof context.

B. Overview

The paper is structured as follows. In Section II we out-
line main VCC concepts. In Section III we present an IPC
algorithm with polymorphic specification, which we use in
Section IV to implement and verify a TLB flush protocol.
In Section V we extend these results to multiple senders and
receivers as required for the implementation of interprocessor
interrupt (IPI) protocols used in real, multiprocessor hypervi-
sors. In Section VI we conclude.

II. VCC OVERVIEW

In this section, we give a brief overview of VCC. More
detailed information and references can be found through the
VCC homepage [10]. To understand the VCC view of the
world, it is helpful to think of verification in a pure object
model, which is used to interpret the C memory state. Thus,

2Sources are available at http://www.verisoftxt.de/PublicationPage.html.

we first describe VCC concepts in terms of objects, and then
describe how this is applied to C.

Table I shows a syntax overview of the constructs required
for our IPC design presented in the following sections.

A. Objects

In VCC, the state is partitioned into a collection of objects,
each with a number of fields. Objects have addresses, so
fields can be (typed) object references. Each object has a
2-state invariant, which is expected to hold over any state
transition. These invariants can mention arbitrary parts of the
state. However, when checking an atomic update to the state,
instead of checking the invariants of all objects we want to
check the invariants of only the updated objects. We justify
this by checking, for each object type, that starting from a state
in which all object invariants hold, a transition that breaks the
invariant of an object of that type must break the invariant
of some modified object (not necessarily of that type); such
invariants are said to be admissible. (In addition, we have to
check that stuttering from the poststate of a transition preserves
all invariants of all objects.) Both requirements are checked for
each object type when the type is defined; this check makes
use of type definitions, but not of program code. Details can
be found in [5].

Within an object invariant, the (2-state) invariant of other
objects can be referred to.3 A commonly used form of this is
approval: we say that an object o approves changes to another
object’s field p→f, if p has a 2-state invariant stating that
p→f stays unchanged or the invariant of o holds. In other
words, any change to p→f requires checking the invariant
of o. Approval is used to express object dependencies or build
object hierarchies, e.g., VCC’s ownership model.

Since it is unrealistic to expect objects to satisfy interesting
invariants always (e.g., before initialization or during destruc-
tion), we add to each object a Boolean ghost field closed
indicating whether the object is in a “valid” state. Implicitly,
the 2-state invariants declared with an object type are meant
to hold only across state transitions in which the object is
closed in the prestate and/or the poststate. Each object field
is classified as either sequential or volatile. Volatile fields
can change while the object is closed, while sequential fields
cannot. (That is, for each sequential field, there is an implicit
object invariant that says that the field does not change while
the object is closed.)

Each object has an owner, which is itself an object. It is a
global system invariant that open objects are owned only by
threads, which are regular objects. In the context of a thread t, a
closed object owned by t is said to be wrapped, while an open
object owned by t is said to be mutable. Threads themselves
have invariants; essentially, the invariant of a thread t says
that any transition that does not change the state of t leaves
unchanged (i) the set of objects owned by t, (ii) the fields of
its mutable objects, (iii) the sequential fields of its wrapped

3This implicitly makes object invariants recursive; to guarantee that all
object invariants have a consistent interpretation, we allow such references to
occur only with positive polarity.
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VCC Keyword Description

Basics
this self-reference to object (used in

type invariants)
invariant(p) type invariant with property p
old(e) evaluates e in prestate (of function,

loop, or 2-state invariant)
closed(o) object o closed; invariants of o

guaranteed to hold
inv(o) evaluates to (2-state) invariant of o
approves(o, f1, . . . ,fn) changes of fields f1,...,fn require

check of o’s invariant:
(
∨

iold(fi)6= fi) =⇒ inv(o)
atomic(o1, . . . ,on){s;} marks atomic execution of s;

updates only volatile fields of
o1, . . . ,on

ref cnt(o) number of claims that depend on o
claims(c,p) invariant of claim c implies p
spec(. . .) wraps ghost code and parameters
∀(T t;. . .) universal quantification
∃(T t;. . .) existential quantification

(a) Basic Keywords

VCC Keyword Description

Ownership
owner(o) owner of object o
owns(o) set of objects owned by object o
wrapped(o) o closed and owned by current

thread
mutable(o) o not closed and owned by current

thread
set closed owner(o,o’) sets owner of o to o’ and extends

ownership of o’ by o
giveup closed owner(o,o’) make o wrapped and remove it

from the ownership of o’
Function Contracts

requires(p) precondition
ensures(p) postcondition
writes(o1, . . . ,on) function writes to objects oi

Spec Types
mathint mathematical integers
claim t claim pointers
T2 map[T1] map from T1 to T2
λ(T1 t1;. . .) lambda expression over t1

(b) Ownership, Function Contracts, Spec Types

TABLE I: VCC Keywords

objects, and (iv) the (volatile) fields of closed objects approved
by t (we call such fields thread-approved). Each object o
implicitly contains an invariant that says that its owner (as
well as its owner in the prestate) approves any change to the
field o→closed and to the set of objects owned by o.4

The sequential domain of a closed object is the smallest set
of object fields that includes the sequential fields of the object
and, if its set of owned objects is declared as nonvolatile, the
elements of the sequential domains of the objects that it owns.
Intuitively, the values of fields in the sequential domain of o
are guaranteed not to change as long as o remains closed.

Within program code, each memory access is classified
as ordinary or atomic. An ordinary write is allowed only to
fields of mutable objects; an ordinary read is allowed only
to fields of mutable objects, to nonvolatile fields of in the
sequential domain of a wrapped object, and to volatile fields
of objects that are closed if changes to the field are approved
by the reading thread. In an atomic operation, all of the objects
accessed have to be known to be mutable or closed (i.e., not
open and owned by some other thread), only volatile fields
of closed objects may be written, and the update must be
shown to preserve the invariants of all updated objects. Before
each atomic operation, VCC simulates running other threads
by forgetting everything it knows about the state outside of its
sequential domain; standard reduction techniques [4] can be
used to show that we can soundly ignore scheduler boundaries
at other locations.

B. Ghost Objects

VCC verifications make heavy use of ghost data and code
(surrounded by spec()), used for reasoning about the program
but omitted from concrete implementation. VCC provides

4By default, the set of objects owned by o is nonvolatile, and so
cannot change while o is closed. This can be overridden by declaring
vcc(volatile owns) in the type definition of o.

ghost objects, ghost fields of structured data types, local ghost
variables, ghost function parameters, and ghost code. C data
types are limited to those that can be implemented with bit
strings of fixed length, but ghost data can use additional
mathematical data types, e.g., mathematical integers (mathint)
and maps. VCC checks that information cannot flow from
ghost data or code to non-ghost state, and that all ghost code
terminates; these checks guarantee that program execution
including ghost code simulates the program with the ghost
data and ghost code removed.

C. Claims

A ghost object can be used as a first-class chunk of
knowledge about the state, because the invariant of the object is
guaranteed to hold as long as the object is closed. In particular,
the owner of the object does not have to worry about the object
being opened by the actions of others, so it can make use of
the object invariant whenever it needs it. Being a first-class
object, the chunk can be stored in data structures, passed in
and out of functions, transfered from thread to thread, etc.
Because they are so useful, VCC provides syntactic support
for these chunks of knowledge, in the form of claims. Claims
are similar to counting read permissions in separation logic
[2], but are first-class objects; this allows claims to approve
changes, be claimed, or even claim things about themselves.

Typically, a claim depends on certain other objects being
closed; it is said to “claim” these objects. Since objects are
usually designed to be opened up eventually, these “claimed”
objects must be prevented from opening up as long as the
claim is closed. Concretely, this can be implemented in various
ways, the most obvious being for the dependee to track the
count ref cnt(o) of claims that claim o, and allowing o to be
opened only when ref cnt(o) is zero, cf. [5]. In constructing a
claim, the user provides the set of claimed objects and invariant
of the claim; VCC checks that this invariant holds and is
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preserved by transitions under the assumption that the claimed
objects are closed (this check corresponds to the admissibility
check if the claim was declared with an explicit type). Any
predicate implied by this invariant is said to be “claimed” by
the claim; this allows a client needing a claim guaranteeing a
particular fact to use any claim that claims this fact (without
having to know the type of the claim); to make this convenient,
VCC gives all claims the same type (claim t); we can think of
an additional “subtype” field as indicating the precise invariant.

D. Function Contracts and Framing

Verification in VCC is function-modular; when reasoning
about a function call, VCC uses the specification of the
function, rather than the function body. A function specifi-
cation consists of preconditions (of the form requires(p)),
postconditions (of the form ensures(p), where p is a 2-state
predicate, the prestate referring to the state on function entry),
and writes clauses (of the form writes(o), where o is an
object reference or a set of object references). VCC generates
appropriate verification conditions to make sure that the writes
clauses are not violated.

E. Binding to C

The discussion above assumed that we are in a world of
unaliased objects. To deal with the real C memory state, VCC
maintains in ghost state a global variable called the typestate
that keeps track of where the “real” objects are; these objects
correspond to instances of C aggregate types (structs and
unions). (Variables of primitive types that are not fields of such
objects are put into artificial ghost objects or ghost arrays.)
There are system invariants that (i) each memory cell is part
of exactly one object in the typestate, (ii) if a struct is in the
typestate, then each of its subobjects (e.g., fields of aggregate
type) are in the typestate, and (iii) if a union is in the typestate,
then exactly one of its subobjects is in the typestate. These
invariants guarantee that if two objects overlap, then they are
either identical or one object is a descendant of the other in the
object hierarchy. When an object reference is used (other than
as the target of an assignment), it is asserted that reference
points to an object in the typestate. Thus, the typestate gets
rid of all of the “uninteresting” aliasing (like objects of the
same type partially overlapping).

III. A POLYMORPHIC SPECIFICATION OF IPC

In this section we verify the implementation of a simple
communication algorithm between two threads. The threads
exchange data over a shared but sequentially accessed message
box to which they synchronize access with a Boolean volatile
notification flag. To verify the implementation’s memory
safety, an ownership discipline must be realized in which the
ownership of the message box is transferred back and forth
between the two threads. We extend this pattern by passing
claims between the two threads, which we store in the message
box. The properties of these claims can be configured by the
clients, thus providing the desired polymorphic procedure call
semantics for IPC.

spec(typedef struct vcc(record) InOut {
unsigned val; mathint gval; claim t cl; } InOut;)

typedef struct MsgBox {
unsigned in, out;
spec(InOut input, output;)
invariant(input.val≡ in ∧ output.val≡ out)
invariant(input.cl6= output.cl ∧

input.cl ∈ owns(this) ∧ ref cnt(input.cl)≡ 0 ∧
output.cl ∈ owns(this) ∧ ref cnt(output.cl)≡ 0) } MsgBox;

Listing 1: Message Box Type with Invariants

There are various ways to structure annotations and, in
particular, the definitions of ghost objects and invariants. At
their core, all of these share information via volatile fields, pass
on knowledge via claims or object invariants, and make use
of thread-approved state for the two communication partners.
We chose here a way that is easy to present but also extends
cleanly to multiple senders and receivers (cf. Section V).

A. Scenario

We consider the scenario of two threads (0 and 1) exchang-
ing data over a shared message box (of type MsgBox). The
message box contains two fields (in and out) which are used
for sending a request to the other thread and receiving back
a response, respectively. The fields of the message box are
nonvolatile and accessed sequentially. The message box is con-
tained in another structure (of type Mgr), which additionally
holds a volatile Boolean notification flag n used to synchronize
access to the message box. Given the canonical conversion
of Booleans to integers (where 0 and 1 are mapped to false
and true, respectively), this flag identifies the currently acting
thread. If set, thread 1 is acting, i.e., preparing a response for
thread 0 and posting a new request, and thread 0 may not
access the message box. Otherwise, thread 0 is acting and
thread 1 may not access the message box. Thread 0 may not
clear the flag, and thread 1 may not set it.

The implementation has two functions. Both take a Mgr
pointer and a thread identifier a. The function snd() is meant
to be called by thread a when the notification flag equals a.
It negates the notification flag, thus sending the response and
a new request contained in the message box at that time to
the other thread. The function rcv() waits in a busy loop until
the notification flag equals a again, thus receiving the other
thread’s response (to a preceding snd() call) and a new request.

B. Message Box

Listing 1 shows the annotated definition of the message box
type. As outlined above, we want to generalize information
exchange to beyond the mere transferral of data (the fields
in and out in the message box). We therefore define an
abstract I/O type (InOut) that carries a ghost value gval of
unbounded integer type, and a claim pointer cl in addition to
the implementation data value val being transmitted.

An abstract input and output each are an invariant stored in
ghost fields of the message box. We maintain an invariant that
the input’s and output’s val fields match their implementation
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spec(typedef struct vcc(volatile owns) Actor {
struct Mgr ∗mgr;
volatile bool w;
volatile InOut l input, r input;
invariant(closed(this) ∨ ¬closed(mgr))
invariant(approves(owner(this), w, l input, r input))
invariant(approves(mgr, owns(this), w, l input, r input)) } Actor;)

Listing 2: Actor Type and Invariants

counterpart. We also require that the claims pointed to by the
input’s and output’s cl fields do not alias and are owned by
the message box with a zero reference count.

The latter fact is particularly important. Whoever owns the
message box also controls the contained claims, and may make
use of the knowledge / property they hold or destroy them.
The main functionality of the verified algorithm is thus the
transferal of ownership of the message box between the two
threads, making sure that the contained data has the desired
properties, as instantiated by the client.

C. Actors

The Actor type keeps track of the protocol state of a protocol
participant. Listing 2 shows the annotated definition of this
type. The actor has a nonvolatile pointer mgr to the manager,
which will hold all protocol invariants. For admissibility
reasons, the actor must promise to stay closed longer than mgr.
All others fields are volatile and may be atomically updated
while the actor remains closed. Such updates, however, must
be approved by two parties: the manager mgr, which checks
all the protocol invariants, and the owner of the actor, which is
one of the communicating threads and exclusive writer of the
fields. The actor is also used as an intermediate owner of the
message box during ownership transferral. For this purpose, its
owns set is also declared volatile as well as approved by mgr
but not thread-approved, to enable foreign updates by other
threads.

The three regular fields of the actor are used as follows.
The wait flag w is active when the thread owning the actor is
waiting for a response from the other thread. The fields l input
and r input buffer (abstract) local and remote inputs, i.e., input
to the last request sent to or received from the other thread
(or, in other words: the evaluation of the call parameters from
the caller’s and callee’s perspective, respectively). In contrast
to the input fields of the message box itself, which may be
opened and updated sequentially by the owning thread, these
buffers can be admissibly referred to all the time and used in
the protocol invariants.

D. Manager

Listing 3 shows the annotated declaration of the Mgr type.
In addition to the implementation fields, we also add some
ghost components for the verification: the maps InP and OutP
encoding pre- and postconditions for the message exchange,
and a two-element array A of actors.

The predicates are declared nonvolatile, which allows clients
to deduce that they remain unchanged as long as the manager

typedef struct Mgr {
volatile bool n;
MsgBox msgBox;
spec(Actor A[2];

bool InP[bool][InOut];
bool OutP[bool][InOut][InOut];)

invariant(∀(unsigned a; a < 2 =⇒ closed(&A[a]) ∧ A[a].mgr≡ this))
invariant(A[¬n].w)
invariant(A[n].w

? &msgBox ∈ owns(&A[n]) ∧ OutP[n][A[n].l input][msgBox.output]
∧
A[¬n].l input≡ msgBox.input ∧ InP[n][msgBox.input]

: A[n].r input≡ A[¬n].l input) } Mgr;

Listing 3: Manager Type and Invariants

&A[0] &A[1]

c1c0

claims

approves

ownsmgr

msg

Thread 1Thread 0

2. 3.4.1.

Fig. 1: Object Structure and Ownership Transfer

object is closed. They take a Boolean parameter identifying
the actor and one resp. two abstract input-output values. The
intention is that InP[a][i] is true iff i is a valid request for
thread a (i.e., if the request meets the precondition of the
service), and OutP[a][i][o] is true iff o is a valid response
to a (valid) request i made by thread a (i.e., if the response
meets the postcondition corresponding to the call). The IPI
transport code is polymorphic with respect to these predicates,
the concrete definition of which can be provided by the client
at initialization.

We now describe the manager’s invariants. As described
above, each protocol partner a owns its corresponding actor
&A[a]. The first invariant states that both actors remain closed
and point back to the manager, which (in combination with
the actor’s approval invariants) allows us to admissibly talk
about the actors in invariants here.

The remaining invariants define the protocol behavior. For
an overview, refer to Fig. 1 depicting object structure and a
protocol run starting from thread 0. In addition to the objects
already introduced, each (client) thread i owns a claim ci that
guarantees the manager structure to be closed. In phase 1,
thread 0 owns the message box and may prepare its response
and new request. In phase 2, ownership of the message box
has passed from thread 0 to the actor of thread 1, waiting to be
processed. Phases 3 and 4 are symmetrical: in phase 3 thread 1
prepares its response, which is then waiting to be processed
in phase 4.

In addition to ownership, the protocol invariants restrict
values for the actor fields. The second invariant states the non-
acting thread, identified by the negated notification flag, must
be waiting, i.e., have the wait flag of its actor set.

The third invariant refers to the acting thread, given by the
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void snd(struct Mgr ∗mgr, bool a spec(claim t c))
requires(wrapped(c))
requires(claims(c,closed(mgr)))
requires(wrapped(&mgr→A[a]))
ensures(wrapped(&mgr→A[a]))
requires(¬mgr→A[a].w)
requires(wrapped(&mgr→msgBox))
requires(mgr→OutP[¬a][mgr→A[a].r input][mgr→msgBox.output])
requires(mgr→InP[¬a][mgr→msgBox.input])
writes(&mgr→msgBox,&mgr→A[a])
ensures(mgr→A[a].l input≡ old(mgr→msgBox.input))
ensures(mgr→A[a].w)
{

atomic (c, mgr, &mgr→A[0], &mgr→A[1]) {
assert(¬mgr→A[a].w ∧ mgr→A[¬a].w ∧ mgr→n≡ a);
mgr→n = ¬a;
spec(mgr→A[a].l input = mgr→msgBox.input;

mgr→A[a].w = true;
set closed owner(&mgr→msgBox, &mgr→A[¬a]);
bump vv(&mgr→A[a]); /∗ technicality ∗/

)
}
}

Listing 4: Send function with contract

notification flag. The fact that the acting thread is waiting
indicates that the message box is still waiting to be processed
by the acting thread. It holds a response to the acting thread’s
last request in the output field and a new request in the
input field. In the corresponding invariant we state that (i) the
message box is owned by the current actor, (ii) its output is
valid with respect to the acting thread’s last / locally-stored
request, and (iii) the new input equals the local input buffer
of the other thread and is valid for the acting thread. If the
acting thread is not waiting, we require local and remote input
buffers of the current and non-current actors, respectively, to
match. Note that these input buffers are approved by the acting
and non-acting threads, respectively. Thus, this condition states
that request inputs may not be changed while the request has
not yet been processed.

E. Operations

The (annotated) implementation and the contracts for the
send and receive function are given in Listings 4 and 5. Both
functions take a manager pointer mgr, an actor identifier a,
and a claim c supplied as a ghost parameter stating that the
manager is closed. They maintain that the identified actor is
wrapped. To send to the other thread, the current thread’s
actor must be flagged as non-waiting, the message box must
be wrapped and hold valid outputs and inputs to the other
thread, just as we have seen in the manager invariant for the
acting thread. Afterwards, the message box is unknown to be
wrapped (the writes clause on &mgr→msgBox destroys that
knowledge), but the input sent to the other thread is buffered
in the local input field of the actor (and the current thread’s
actor is flagged as waiting).

Given a waiting actor, the receive function is guaranteed to
return a wrapped message box, that contains a valid response
for the old local request and a new valid request.

As a verification example consider the snd() function from

void rcv(struct Mgr ∗mgr, bool a spec(claim t c))
requires(wrapped(c))
requires(claims(c,closed(mgr)))
requires(wrapped(&mgr→A[a]))
ensures(wrapped(&mgr→A[a]))
requires(mgr→A[a].w)
writes(&mgr→A[a])
ensures(¬mgr→A[a].w)
ensures(wrapped(&mgr→msgBox))
ensures(mgr→OutP[a][old(mgr→A[a].l input))][mgr→msgBox.output])
ensures(mgr→A[a].r input≡ mgr→msgBox.input)
ensures(mgr→InP[a][mgr→msgBox.input])
{

unsigned tmp;
do

invariant(mgr→A[a].w)
invariant(wrapped(&mgr→A[a]))
invariant(mgr→A[a].l input≡ old(mgr→A[a].l input))
atomic (c, mgr, &mgr→A[0], &mgr→A[1]) {

tmp = mgr→n;
spec(if (tmp≡ a) {

mgr→A[a].r input = mgr→A[¬a].l input;
mgr→A[a].w = false;
giveup closed owner(&mgr→msgBox, &mgr→A[a]);
bump vv(&mgr→A[a]); /∗ technicality ∗/
})
}

while (tmp6= a);
}

Listing 5: Receive function with contract

Listing 4. VCC automatically verifies that its implementation
fulfills the contract. The code consists of a single atomic
update on the actors and the manager (where the closedness
of the manager and the foreign actor is guaranteed by the
claim c). The precondition on the wait flag, its thread-approval,
and the manager’s invariant allow to derive that the current
thread is still not waiting, the other thread is waiting, and the
notification flag equals a just before the atomic operation.5

Also, the message box, which is in the sequential domain
of the thread, must still be wrapped and continues to satisfy
the communication preconditions. The notification flag is then
flipped (changing the ‘acting’ thread) and the ghost updates
ensure that the atomic update satisfies the manager’s invariant
(e.g., by transferring ownership of the message box from the
current thread to the other thread’s actor).

The verification of the rcv() function is similar. In addition
to the atomic statement, appropriate invariants have to speci-
fied for the loop that polls on the notification flag.

IV. TLB FLUSH EXAMPLE

We implement and verify a protocol for flushing transla-
tion look-aside buffers (TLBs) based on the communication
algorithm from the previous section, demonstrating the ex-
pressiveness of its polymorphic specification.

TLBs are per-processor hardware caches for translations
from virtual to physical addresses. These translations are
defined by page tables stored in memory, which are asyn-
chronously and non-atomically gathered by the TLBs (requir-
ing multiple reads and writes to traverse the page tables). Since

5The assertion is for illustration only; VCC deduces it automatically.
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spec(typedef struct Tlb {
volatile mathint invalid, current;
invariant(invalid ≤ current ∧

old(invalid) ≤ invalid ∧ old(current) ≤ current)
} Tlb;)

Listing 6: TLB Model

typedef struct FlushMgr {
struct Mgr mgr;
spec(struct Tlb tlb;)
invariant(&tlb ∈ owns(&mgr)))
invariant(mgr.InP≡ λ(bool a; InOut i;

a =⇒ claims(i.cl, i.gval ≤ tlb.current)))
invariant(mgr.OutP≡ λ(bool a; InOut i, o;

a ∨ claims(o.cl, i.gval ≤ tlb.invalid)))
} FlushMgr;

Listing 7: Flush Manager Type and Annotations

translations are not automatically flushed in response to edits
to page tables, operating systems must implement procedures
to initiate such flushes on their own.

We think of page-table reads being marked with unique (in-
creasing) identifiers and model each TLB as an object with two
volatile counters,6 cf. Listing 6. The current counter increases
as the TLB gathers new translations. The invalid counter is
a watermark for invalidated translations and is bumped (i.e.,
copied from the current field) when the associated processor
issues a TLB flush.

Consider the scenario of two threads, the caller (thread 0)
requesting the flush and the callee (thread 1) performing the
flush. We implement this as follows: the caller sends a flush
request by invoking the send primitive and subsequently polls
for the answer by calling the receive primitive. On callee side,
the thread polls via receive for new flush requests. When a
flush request has been received, the callee issues a TLB flush
operation, and signals back that the flush has been performed
using the send primitive. After a completed flush operation, the
flush client (e.g., the memory manager) wants to derive that
the callee TLB’s current invalid counter is larger or equal than
the callee’s current counter at the time of the flush operations.

We realize this scenario by embedding the IPC manager
(and callee’s TLB) into a flush manager, as shown in Listing 7.
Apart from ownership, the invariants give meaning to the input
and output predicates of the communication manager. The
ghost value i.gval transmitted from the caller to the callee
encodes which translations are meant to be flushed. For the
callee (a≡ true), the input predicate states that this value is
less or equal than the current field of its TLB (since the callee
could not possibly flush translation ‘from the future’, i.e., such
a request could not be handled by the TLB flush semantics).
For the caller (a≡ false), the output predicate then states that
the invalid field of the callee’s TLB is greater or equal than
the value, i.e., the requested flush has been performed. For the
other cases the input and output predicates are trivially true.

6While this model is sufficiently detailed to express the semantics of (full)
TLB flushes, extensions are needed for applications that go beyond that.

Based on this definition, the correctness of the functions
sendFlush() and receiveFlush() at caller and callee side, re-
spectively, can be proven. The main postcondition that is
established by sendFlush() for the flush manager fmgr then
is old(fmgr→tlb.current)≤ fmgr→tlb.invalid.

V. INTERPROCESSOR INTERRUPTS

Interprocessor interrupts (IPI) are used in multicore operat-
ing systems or hypervisors to implement different synchroniza-
tion and communication protocols. Via IPIs a thread executing
on one processor can trigger the execution of interrupt handlers
(here: NMI handlers) on other processors. Using IPIs, a
communication protocol can be implemented, in which a caller
thread sends work requests to other processors, the callees.
Such an IPI protocol is part of the Verisoft XT academic
hypervisor, where it may be used for different work types,
e.g., for TLB flushing. Thus a polymorphic specification is
desirable.

By expanding the simple communication pattern introduced
previously, we specified and verified the IPI protocol (and on
top of it a TLB flushing protocol) for the academic hypervisor.
There are several differences between the previous version of
the algorithm and the IPI protocol:

• More communication partners. In the simple case we
had a single sender and a single receiver. Now we have
multiple communication partners, where one sender may
invoke an IPC call on many receivers, and where each
receiver may be invoked by many senders at the same
time.

• No receiver polling. The callees in the IPI scenario do
not poll for messages. Rather the caller invokes the callee
by triggering an IPI. This is done by writing registers of
the advanced programmable interrupt controller (APIC),
which delivers the interrupts to other processors. In the
work at hand we do not yet model this hardware device.

• More concurrency. In the new setting we have another
source of concurrency, NMI handlers which may interrupt
the execution of ordinary threads. Basically, the NMI
handler code always acts as receiver or callee and the
thread code as sender or caller.

• Interlocked hardware operations. Interlocked bit oper-
ations are required to atomically access bit vectors which
may be written and read concurrently by many threads/
handlers.

A. Implementation

Since multiple senders can send requests to multiple re-
ceivers, we need a notification bit for each sender/receiver pair.
This is implemented by introducing one notification mask per
processor. Each bit of such a mask is associated with a specific
sending processor. Thus, a sender signals a request by setting
its bit in the receiver’s notification mask. When finishing the
work, the receiver clears that bit. Many senders and receivers
can write the same notification mask in parallel, requiring the
use of interlocked bit operations.

173



Similarly, we need one mailbox for each sender/receiver
pair. Note, that for each processor pair we need two mailboxes,
since both may send messages to each other simultaneously.

In the sending code a while-loop iterates over the set of
intended receivers (encoded in a bit mask). In each iteration,
first the mailbox is prepared, and then by using an interlocked
OR-operation, atomically, the corresponding bit in the receiver
mask is set to 1 and the mask is compared with 0. If this check
evaluates to true, an IPI for the receiving processor is triggered
via the APIC. Otherwise, nothing has to be done, since some
other sender already triggered the interrupt, and the handler
has not returned yet.

In the receiving code (implemented as an NMI handler) a
while-loop iterates on (possibly multiple) sender requests as
long as the receiver’s notification mask is not 0. Once the work
for one sender is done, the corresponding bit in the notification
mask is cleared by an interlocked AND-operation.

B. Specification

The specification pattern of Section III can be straight-
forwardly applied to the IPI protocol. The number of ghost
objects scales linearly with the number of processors. The
structure and the invariants of message boxes (with their ghost
fields encoding input/output claims) and actors introduced in
the simple protocol can be reused almost identically in the
new setting.

If n is the number of processors, 2 · n actor objects are
required, since each processor may act both as sender—
when running thread-code—or as receiver—when running
NMI handler code. Though executed on the same processor,
both code portions are two logically different entities, possibly
residing in different protocol states, and owning different sets
of mailboxes. That is also how we deal with thread and NMI
handler concurrency: each of the NMI handler and the thread
code own (and thus approve) separate actors. Note that in
the IPI case, a single actor may communicate with many
other partners, requiring it to maintain protocol state (the wait
flag, and the remote and local input fields) per processor. The
invariants of the manager are similar to those from the simple
protocol.

C. Multiprocessor TLB Flush

The TLB abstraction and specification is similar to the
previous section, but with a separate TLB for each processor.

D. IPIs in Microsoft’s Hyper-VTM Hypervisor

In the context of the Verisoft project we also studied the
correctness of the IPI mechanism implemented in Microsoft’s
Hyper-V hypervisor. Though comparable in complexity to
the IPI routine of the academic hypervisor, there are several
differences:

• Efficiency. By introducing additional protocol variables
sequential access to some of the shared data can be
ensured, and thus fewer (costly) interlocked operations
are required.

• Lazy work. The interrupt handler signals the receipt of
the request and the accomplishing of the work separately.
This allows for implementing less blocking caller code.

We have verified the implementation against a non-generic
specification in VCC and are confident that this effort can be
easily adapted to the generic specification used here.

VI. CONCLUSION

The verification presented here achieves the desired goal—
it allows IPC clients to reason about IPCs like local procedure
calls. As future work, the structure presented in Section III
can be made modular even with respect to the set of functions
provided via IPC. We can improve the structure slightly by
changing the Mgr type; instead of the maps InP and OutP, the
Mgr could hold a mapping of function tags to function objects,
where each function object has its own InP and OutP maps.
This would allow function objects to be reused in different
managers, or even dynamically registered for IPC.

In principle, the technique presented here could also be
applied to RPC, where the caller and callee execute in different
address spaces. This requires translating the claims represent-
ing the pre- and post-conditions from one address space to the
other. One possible way to achieve this effect would be to take
the claim in the caller space, couple this to a second state in a
way that captures the guarantees of the RPC, and existentially
quantify away the caller space.
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Abstract—Formal verification has matured considerably as a
verification discipline in the past couple of decades, becoming
a mainstream technology in industrial design and verification
methodologies and processes. In this paper we chronicle the
evolution of formal verification at IBM from being a specialized
side activity with a narrow focus, to achieving a broad-based
usage as a core verification technology helping to significantly
improve design and verification productivity. We showcase what
is possible in the application of formal verification in a com-
mercial/industrial setting by highlighting the success we had
in leveraging the technology extensively on IBM’s POWER7TM

microprocessor and systems. We touch upon the methodology and
execution aspects of the unprecedented use of formal verification
on the POWER7 program, and depict ways in which the
technology positively impacted pre-silicon design quality and
facilitated root causing of bug escapes to silicon. Furthermore, we
outline where we see applied formal verification evolving towards
at IBM, and the challenges thereof.

I. INTRODUCTION

IBM has a rich history developing robust formal and semi-
formal verification technologies, and applying those effectively
to the verification of microprocessor designs and systems.
Since its advent almost a decade and a half ago Formal
Verification (FV), inclusive of functional formal verification
and sequential equivalence checking, has evolved from being
a specialized technology in the hands of experts, to a widely
deployed technology with a broadened user base to include
design and functional verification engineers.

Functional Formal Verification (FFV) at IBM dates back
to the POWER3 (1996) microprocessor where it was ap-
plied on an experimental basis, followed by a larger and
more defined effort on the POWER4 [13] program. On both
of these projects the application was limited to small-sized
logic partitions requiring the creation of intricate testbenches
comprising complex “environmental assumptions”. Dramatic
improvements to the FFV toolset, and the debut of semi-
formal technologies, allowed for increased application and
leverage on subsequent programs such as POWER5 [21] and
POWER6. The mode of application in all of these programs
was similar with FFV being a standalone side activity driven
by skilled formal verification engineers - albeit with scaling to
bigger logic partitions, and greater portions of the chip logic
subjected to FFV analysis. Sequential Equivalence Checking
(SEC) technology [4] became available around the 2004 time
frame and quickly became a huge productivity advantage. It
facilitated proving non-functional design changes (e.g., timing,
power) without the need to rerun (lengthy) regression buckets,

and enabled key new methodologies (e.g., sequential synthesis,
infer clock-gating opportunities).

The mandate coming into the POWER7 program, based on
analysis of bugs on past projects, was to apply formal verifica-
tion technology more extensively to improve pre-silicon design
quality and minimize bug escapes into silicon. The result was
a step function of integrated and broader usage resulting in
the largest and most successful ever application of FV on any
project at IBM. FV assumed a central role in the verification of
large parts of the design culminating in flushing out hundreds
of bugs, many of which would have been extremely difficult
to find using traditional verification methods, and ensuring
correctness of the logic by way of obtaining proofs. FV was
exploited at all levels of the design hierarchy encompassing
all areas of the chip. Such a widespread use of the technology
has been enabled by IBM’s suite of state-of-the-art formal and
semi-formal verification tools, SixthSense [18] and RuleBase
PE [5], [22], which are fully integrated into the methodology.

In this paper we describe large-scale application of func-
tional formal and semi-formal verification and sequential
equivalence checking with experiences from leveraging the
technologies on the POWER7 microprocessor and systems.
POWER7 [11] is a complex high-end eight-core processor
chip with four-way Simultaneous Multi-Threading (SMT4) per
core, scalability to 32 sockets, and an aggressive memory sub-
system design. It implements a modular structure with heavy
use of asynchronous interfaces, and new power-management
and RAS (Reliability, Availability, and Serviceability) mecha-
nisms across the chip and system.

FFV and SEC application on the project can be best sum-
marized as a combination of an up-front defined methodology,
and results from deploying the methodology during project
execution. We start with a brief description of the verification
methodology as it relates to FV in the next section. We then
outline aspects of FFV and SEC application on POWER7 and
the benefits realized in sections 3 through 6. We conclude with
glimpses into our strategy for further leveraging FV to address
future challenges.

II. VERIFICATION METHODOLOGY

The base of all verification disciplines inclusive of simu-
lation, hardware accelerated simulation and formal and semi-
formal verification is a cycle-based execution model of the
design under test (Figure 1). Having one single, consistent
interpretation model of the RTL specification, regardless of
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which tool or technology is used for a particular verification
task enables reuse of verification objects (assertions, cover-
age events) and results (e.g., waveform signatures) across
disciplines. Such a tight integration coupled with dramati-
cally increased model capacity of the formal and semi-formal
toolset has allowed the application of the technology to span
designer-level verification, deep verification of design blocks,
sequential equivalence checking and formal verification of
large design partitions like the complete Floating-Point Unit
(FPU) dataflow.

Internally IBM uses an extension of VHDL for functional
coverage and assertion instrumentation, called BugSpray.
BugSpray is used by the design and verification teams alike
to efficiently annotate the RTL with assertion and coverage
events. BugSpray enables verification objects to be portable
across verification disciplines and across hierarchies, and al-
lows for their reuse with design. For example, majority of
the coverage events are provided by the design team with the
goal of grading the verification effort given their knowledge of
the design implementation. In addition, Property Specification
Language (PSL) [9], standardized as IEEE 1850, may be used
for the purposes of design instrumentation.

Extensive verification is undertaken at all levels of the
design hierarchy [13], depicted in Figure 2. Verification at the
lower levels of the hierarchy tends to be more productive due
to the smaller size of the design under test, and greater con-
trollability of the interfaces yielding higher state coverage and
exploration of corner cases/boundary conditions. Verification
objects from lower levels are selectively enabled at the higher
levels. Formal methods are leveraged at various levels of the
design/verification hierarchy to achieve different goals.

At the block level FFV is applied widely to prove design
components. This may be driven in part by the designers
themselves by way of assertion-based verification, and FFV
environments inherit all of the designer assertions and cov-
erage events. The downside of verifying logic at the block
level is the need to model complex interface interactions
between logic blocks requiring intricate testbenches (envi-
ronment assumptions and properties), and coping with churn
at those interfaces as the design evolves. Clear and precise
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documentation at this level may be somewhat lacking, making
verification a more laborious process.

Increased speed and capacity of formal and semi-formal
verification toolset has allowed FFV to scale to the unit
level selectively. This enables taking advantage of relatively
stable and well-documented interfaces, creation of simpler
constraint-based [20], [16] drivers, and focus on more en-
compassing micro-architectural properties. The checking may
entail creation of a reference model to equivalence check
the implementation against, such as the IEEE floating point
specification to verify the FPU, or specify a rich set of
properties to constitute a specification of the unit as a whole.

The element level comprises design elements such as the
processor core, cache and memory sub-system. FFV is pri-
marily employed to verify multi-unit interactions and archi-
tectural aspects at this level, for instance hangs and stalls,
starvation, bus protocols. We endeavor to reuse simulation
RTL models by exposing only the logic of interest and
effectively deleting logic not pertaining to the verification task
at hand. Portions of the logic may need to be abstracted,
and replaced with behavioral models to reduce logic size and
complexity. The chip level incorporates multiple processor
cores along with interconnect and storage sub-system, and
the system level consists of multiple chips, memory and I/O
chips per actual machine configurations. At these levels high
level mathematical reasoning, manual proof techniques, and
specialized models (e.g. Murphi model [8]) are used to verify
features such as chip/system deadlock/livelock, cache and
memory coherence, message routing and traffic flows across
(asynchronous) interfaces.

“Pervasive” logic (e.g., initialization, scan/debug, RAS,
power-management) which may span block, unit, element and
chip boundaries poses numerous challenges to verification as
it can be sequentially very deep, and may have large numbers
of inputs to be verified effectively with simulation. FFV has
demonstrated strength in this domain [12], and is applied at
all levels of the hierarchy to verify complex pervasive logic.

Because the cost of finding a bug is lower at lower levels of
the hierarchy every major bug found at a higher level is treated
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as an escape of the lower levels, and every attempt is made
to reproduce it at the lower levels. This helps to “harden” the
lower level environments and make them more resilient. This
translates into formulating design assertions at the block level
to expose the flaw with FFV wherever applicable, and prove
conclusively that the logic fix fixes it.

In a similar fashion, FFV is extensively applied to recreate
post-silicon test floor failures at the block level, and verify
fixes thereof. Typical fails on the test floor require many events
to line up (as otherwise the problems would have been caught
in pre-silicon verification), and it is non-trivial to produce
the sequence of events leading up to the fail with higher
level environments as those don’t have direct control over
the interfaces coming into a logic block. FFV has unique
strengths to quickly root cause a defect once it is understood
and the general area of the logic exhibiting the failure has
been localized.

III. INTEGRATED APPROACH

The cornerstone of large-scale application of formal and
semi-formal verification is the pursuit of an integrated ap-
proach with design and simulation.

In the past FFV was a side activity with an execution plan
owned and managed solely by the FFV team working closely
with the designers to infer correctness properties, and to obtain
interface specs to facilitate creation of FFV environments. The
apparent disconnect with simulation-based verification can be
attributed to a focus on verification at the block level with FFV,
and at higher levels of the design hierarchy with simulation.
This permitted a limited interaction with simulation teams,
and coordination of the overall verification process across
disciplines.

We changed all that on POWER7 by positioning FFV syn-
ergistically alongside simulation and making unit verification
teams responsible for defining and owning (project managing)
FFV plans based on their respective needs. This allowed
for the plan to be dynamically altered, addressing specific
requirements and deficiencies in real time, to make FFV
application more effective. It was our endeavor to apply FFV
early on complex logic blocks identified for formal checking
in an attempt to provide value-add upfront to complement
simulation-based verification. The widespread application of
FFV at various levels of the hierarchy furthered this interlock.
A rigorous process was instituted whereby FFV environments
were reviewed closely with designers, architects, FV experts
and functional verification engineers to ensure completeness
of the checking and correctness of the assumptions.

The portability of synthesizable coverage and assertion
specification between simulation, hardware accelerated sim-
ulation and formal and semi-formal verification was critical
to our approach to cross-link the different verification efforts
more effectively (Figure 3). It enabled us to aggressively
drive an assertion-based verification paradigm which brought
together designer-level verification, formal verification and
simulation in a unified integrated methodology. For exam-
ple, designer assertions and coverage events used to grade
simulation environments were utilized in formal verification
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Figure 3. Integrated (with Design) Approach

environments. In turn, formal environment checkers (prop-
erties) and assumptions were added to the simulation envi-
ronment to be cross-checked and cross-leveraged. Artifacts of
simulation-based verification, such as biases to specify relative
probabilities of inputs switching (e.g., a reset line should
not be active frequently as it would restart the simulation
effectively), or initializations based on machine configurations,
are taken advantage of in formal and semi-formal verification
(as applicable) to make it more productive.

We have been pushing for a broad adoption of FFV natively
by design and verification teams and achieved significant
progress on POWER7. FFV was leveraged extensively by
designers as an assertion-based verification vehicle to check
their designs before making them available to verification
teams. This helped to improve productivity significantly by
breaking the costly cycle of: designer checks RTL code into
the repository, simulation runs with the design and uncovers
errors and logs issues, the designer fixes the design and again
makes it available. In a number of cases designers developed
comprehensive block level FFV environments to prove the de-
sign. For others the designers inherited the environments from
FFV experts and took ownership to continue to regress with
those, and enhance the environments as needed. Simulation
verification teams, for their part, took advantage of FFV to fill
gaps in their verification testplans - e.g. chip-wide networks
to transmit debug information which require large numbers of
patterns to verify with simulation are easy for FFV to handle.

IV. DEMONSTRATED BEST PRACTICES

We continue to leverage and extend successful applications
of FFV from past projects. The POWER7 program saw
substantial deployment of these proven engagements.

Complex logic blocks on the different units were identified
and prioritized for a targeted “deep dive” verification by FV
experts [13], [21]. The core strengths of block level verification
are the small size of the design under test, and direct control
on testing as the driving stimulus is applied directly to the
interfaces of the block with no “filtering” effect of upstream
logic. The former translates into proofs to ensure correctness
of the aspects verified. The latter facilitates exploring all areas
of the interface’s state space equally easily, whereas some of
those areas would have been exercised rarely in the larger
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Combinational Equivalence Checking (CEC) Sequential Equivalence Checking (SEC)

� Requires 1:1 state elements mapping
� Cannot handle sequential behavior

• Validates next-state functions and outputs  
w/r/t cutpoints – possible false mismatches

� Well-established technology

� Supports arbitrary design changes (I/O equivalent)
• Obviates need for 1:1 latch/hierarchy corresp
• Retiming, power saving, redundant logic…

� Explores sequential behavior of the designs
• Computationally more complex than CEC
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Figure 4. Combinational and Sequential Equivalence Checking

context - e.g., with the block connected in the unit. This
is invaluable to exercise low level interactions and window
conditions given challenging micro-architecture features (e.g.,
simultaneous multi-threading, out-of-order execution).

The blocks are chosen in consultation with design and
verification teams based on their complexity, difficulty in
verifying them with other verification disciplines, and logics
that have exhibited late bugs on previous projects. Block level
verification ranges from white-box checking of the logic by
FFV experts based on a deep understanding of the micro-
architecture (e.g., instruction prefetch/fetch, memory manage-
ment unit), to end-to-end checking to verify conformance
of the function against a specification (e.g., queues, error
correcting codes), to verification of the algorithmic correctness
of the logic (e.g., least recently used cache replacement).
Our endeavor is to make the verification high level to the
extent possible by formulating properties that are concep-
tual/architectural, hence independent of the implementation.
Application areas include all areas of the chip (core units,
caches, pervasive) and hierarchies (blocks, unit, element, chip).

POWER7 saw more blocks verified on more functional units
than on any previous project.

Proven and established methodologies were utilized to ver-
ify (complete) function of logics such as FPU dataflow [14]
and arithmetic functions (e.g., adder, multiplier, divider), by
comparing the high performance implementation against a
high level reference model. We expanded the list of pervasive
logics verified with FFV building atop past successes [12] to
include additional areas (e.g., chip-wide sensor networks), and
created automated methodologies to improve productivity –
e.g., Debug Bus verification via automated testbench creation
given a specification in a custom language.

In a number of cases FFV was the technology of choice to
be relied upon heavily/solely to ensure correctness of, often
times critical, logic (e.g., arithmetic dataflow, arbitration, least
recently used). The environments created to verify blocks
proved very useful later to quickly root cause post-silicon
problems seen on the laboratory floor. FFV has assumed a
central role over the years in triaging bugs in silicon, and
assuring the correctness of the logic fixes.

V. SEQUENTIAL EQUIVALENCE CHECKING

Sequential transformations are widespread in hardware de-
sign flows to address needs such as performance, power, area,
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debug and test. Established frameworks such as Combina-
tional Equivalence Checking (CEC) are unable to handle such
sequential changes as it requires a 1:1 pairings of the state
elements. Industrial demand for robust Sequential Equiva-
lence Checking (SEC) solutions is thus becoming increasingly
prevalent. SEC is a paradigm to help offset the limitations
of CEC (Figure 4). SEC performs a true sequential check of
input/output equivalence, hence is not limited to operation on
designs with 1:1 state element pairings.

SEC [4] is widely deployed at different stages of the project
to achieve various goals, such as verify non-functional design
changes (e.g., power, timing, area), verify external IP conver-
sion over to IBM’s clocking and latching methodology, ensure
mode latches indeed revert the design back to a previous
function. SEC has also been key to several new methodologies
which leverage the power of sequential transformations [25],
[10], [4].

With POWER7 we made this easy-to-use yet powerful
technology available in the hands of the designers to improve
productivity substantially by obviating the need to rerun costly
regressions to verify non-functional changes to the design. In
later stages of the project when all function was completed,
we instituted a rigorous end-to-end SEC process (Figure 6)
starting at the macros and working its way up to the chip level
(with black-boxing lower levels of the hierarchy) to establish
that inadvertent functional changes did not get introduced in
subsequent releases of the RTL. This facilitated avoiding (tools
and technology) capacity issues with running large partitions,
and enabled designers to run SEC on interfaces/design sections
they are the most familiar with. It helped to improve the
debug cycle by way of producing short, precise and localized
mismatch traces, as opposed to needing large numbers of
cycles before mismatches propagate to an observable outputs.

The process is flexible enough to permit definition of
hierarchies to run SEC at, which may or may not align
with the design hierarchy. This allows to verify behavior-
preservation of changes across design entities, such as moving
logic between entities with bundling the entities together in a
custom wrapper, which is then equivalence checked and black-
boxed at higher levels.

Any assumptions required to get the equivalence check
to succeed at any level of the hierarchy are independently
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validated with functional verification by converting the con-
straints into assertions (Figure 5) which are then pulled into
the simulation/FFV environments.

This end-to-end SEC process has proved to be an invaluable
tool on multiple projects to verify remaps of the design to a
newer technology without the need to set-up functional veri-
fication environments yielding huge resource savings, produc-
tivity improvement and fast turnaround. Low level functional
verification environments are done away with completely and
a few higher level ones are used for the purposes of a quick
sanity check and to verify SEC assumptions – the portability of
assertions across design hierarchies allows those to be carried
to higher level verification environments.

VI. NEW EXPLORATION AREAS

We continue to push the envelope to scale FV application
to areas which hitherto have been beyond the scope of FV. We
endeavored to push the (capacity) limits of FV application by
exploring several new areas on the POWER7.

We pursued creation of (constraint-based) environments at
higher levels of abstraction, for example (sub-) unit level,
to take advantage of well-defined interfaces, and increase
interplay with simulation. The latter is achieved by leveraging
FFV to weed out unreachable coverage events, or obtain hints
to hit tough coverage events to help enhance simulation test
buckets, and dramatically increase state-space coverage via
semi-formal verification.

We investigated verification of system level aspects in
several contexts. These were, for example, timing protection
windows to ensure coherence by enumerating system topolo-
gies and studying multi-chip interactions, and deadlock free
operation of the system using direct mathematical analysis
on dedicated high level models. These efforts helped flush
out architectural issues early on, and assisted in setting-up
effective simulation testbenches to check for violations. As
another example, asynchronous interfaces are a formidable
challenge to functional verification due to the fact that they
are not exercised adequately at the system level. We attempted
to reason about the effect of asynchronous interfaces (e.g.,
unpredictable traffic flow across the interface may manifest as
buffer overflows) by modeling these interfaces using system
level models with design details suitably abstracted.

We pioneered various innovative and reusable tech-
niques/methodologies by way of creating “off-the-shelf” ver-

ification IP which can be applied out-of-the-box for similar
logics on other parts of the chip, or on future products.
Examples include a method to expose starvation in complex
arbitration logics using successive property strengthening and
underapproximations [1], and to verify correctness and per-
formance of such arbiters by accurately computing request-
to-delay bounds and ascertaining the fairness requirements
of the arbitration scheme [15]; systematic methods to verify
complex 64Byte error correcting codes, least recently used
replacement and hardware data structures such as linked lists,
queues, buffers, etc.

Block level FFV testbenches may require modeling complex
interfaces which can make them non-trivial and error prone.
Specifying those at higher levels of abstraction can help alle-
viate this to a great extent. Towards this goal we undertook the
creation of a rich library of functions (implemented as VHDL
packages) to enable specifying testbenches at higher levels.
The parameterized functions encapsulate commonly used logic
constructs (such as counters, zero/one-hot detectors/generators,
oscillators, biased non-deterministic generators, to list a few)
and synthesize correct-by-construction logic implementing the
functionality. While it is desirable to raise the level of abstrac-
tion of the design logic itself, it is not-so-easy for optimized
custom logic used in high-end microprocessors, more so
given the interwining with “non-mainline” functions such as
pervasive logic. We are selectively applying the concept of
functions pursued in the context of testbenches to the design
domain by creating a library of functions optimized with
respect to desired features such as area, timing, logic depth.

VII. FUTURE DIRECTIONS

With having established FFV and SEC firmly as a main-
stream verification discipline integrated in the design and ver-
ification methodology, we expect to derive increasing leverage
from its application on future projects. Following are example
areas where we foresee investments.

We plan to build upon the integrated approach further and
position formal and semi-formal platform as the technology
of choice for Designer-level Verification (DLV). Towards this
goal we have enhanced the technology and the supporting
infrastructure to cover the entire spectrum of DLV from block
level simulation with applying deterministic patterns to study
input-output behavior, to selectively randomizing signals, to
creating comprehensive FFV environments to reason conclu-
sively about assertions and coverage events.

Given the successes and the mind share FFV has to be
an effective verification paradigm, we will continue down
the path of “booking” the verification of more logics in
FFV, and take those off the simulation plate altogether. This
allows to maximize productivity across the various disciplines
by avoiding duplicate work. We have undertaken a detailed
analysis of testplans across FFV, simulation and performance
verification to optimize them by making trade-offs with regard
to what aspects of the logic get checked where, with the intent
of taking maximal advantage of the strengths of the various
technologies.

We expect to build upon the theme of “off-the-shelf” check-
ers to verify logics in an implementation agnostic manner. We

179



have created a persistent compendium of verification IP and we
plan to generalize it to verify the logics end-to-end with high
level micro-architectural and architectural checkers. In some
cases we are attempting to package the IP as a parameterized
library which can be applied easily and productively to logics
implementing the same function. We will continue to evolve
reusable and automated methodologies to make verification of
certain logics push-button.

More and more verification transcends checking for func-
tional correctness of the logic to include aspects such as perfor-
mance, throughput, power, etc. FFV has unique strengths to be
able to provide insights into the various aspects by approaching
the verification task in a unified manner. An example is
the combined verification of performance and correctness of
arbiters as described in [15] by establishing an upper bound
on the request-to-grant delay. Another example is examining
traffic throughput across an (asynchronous) interface to decide
on machine configurations/settings such as to not clog buffers
on the receive side and queue up traffic in the system. Our
goal is to leverage FFV and SEC to provide value add beyond
checking for correctness of the logic, including as a general
purpose reasoning engines to enable new methodologies.

It is our endeavor to pursue a “formal design” paradigm,
especially for newly designed logics, to evolve methods to
guarantee its correctness. This can be achieved by formally
verifying a high level model independently, and ensuring the
implementation conforms to the verified model by virtue of
an equivalence check. The high performance RTL may be
derived from the high level model via automated (iterative)
transformations which are verified with SEC. Alternatively,
we may decompose the design into smaller modular pieces
in a manner such that each piece can be reasoned about
exhaustively standalone, and the proofs of the individual pieces
imply correctness of the logic.

We continue to expect to innovate and evolve methods to
scale to the complex logics showing up on the next generations
of our systems, e.g., wide operand non-linear arithmetic such
as used in cryptography accelerators. The power of theorem
proving augmented with model checking [24] is a key ally in
scaling to such tough problems, as demonstrated in [23].

System level issues such as deadlocks/livelocks are a par-
ticular concern on large multi-processor systems as simulation
methods cannot produce the kinds of traffic the hardware
would experience, and the kinds of interactions between the
various traffic sources as a consequence. High level analysis
and ways to model traffic in such multi-chip systems, espe-
cially given asynchronous interfaces, to study traffic flows or
lack of forward progress is an effective method to uncover
problems, and will be a focus area.

Significant improvements to the speed and capacity of the
formal and semi-formal toolset in the form of improvements to
the core engines [17], [3], [19], addition of new algorithms [7],
[6] and significant features (e.g., native array support [2]), has
enabled FV to address the outlined applications. We continue
to expect to see rapid advances to scale to future challenges.
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Abstract—This paper presents an efficient, combined formulation
of two widely used abstraction methods for bit-level verification:
counterexample-based abstraction (CBA) and proof-based abstrac-
tion (PBA). Unlike previous work, this new method is formulated
as a single, incremental SAT-problem, interleaving CBA and PBA
to develop the abstraction in a bottom-up fashion. It is argued
that the new method is simpler conceptually and implementation-
wise than previous approaches. As an added bonus, proof-logging
is not required for the PBA part, which allows for a wider set
of SAT-solvers to be used.

I. INTRODUCTION

Abstraction techniques have long been a crucial part of suc-
cessful verification flows. Indeed, the success of SAT-solving
can largely be attributed to its inherent ability to perform
localization abstraction as part of its operations. For this reason
so called bug-hunting, or BMC, methods can often be applied
on a full design directly, thereby deferring the abstraction
work to the SAT-solver. However, computing an abstraction
explicitly is often more useful for hard properties that require
a mixture of different transformation and proof-engines to
complete the verification.

In our formulation, both CBA and PBA compute a local-
ization in the form of a set of flops. An abstracted flop is in
essence replaced by a primary input (PI), thus giving more
behaviors to the circuit. Both methods work by analyzing,
through the use of SAT, a k-unrolling of the circuit. However,
they differ as follows:

– CBA works in a bottom-up fashion, starting with an
empty abstraction (all flops are replaced by PIs) and
adding flops to refute the counterexamples as they are
enumerated for successively larger k.

– PBA, in contrast, considers the full design and a complete
refutation of all counterexamples of depth k (in the form
of an UNSAT proof). Any flop not syntactically present
in the proof of UNSAT is abstracted.

The two methods have complementary strengths: CBA by
virtue of being bottom-up is very fast, but may include more
flops than necessary. PBA on the other hand does a more
thorough analysis and almost always gives a tighter abstraction
than CBA, but at the cost of longer runtime.

In this work, it is shown how the two methods can be
seamlessly combined by applying PBA, not on the full design,
but on the latest abstraction produced by CBA. This solution

has a very elegant incremental SAT formulation, which results
in a simple, scalable algorithm that has the strength of both
methods.

In the experimental section it is shown how a design with
40,000 flops and 860,000 AND-gates is localized to a handful
of flops in just 4 seconds (much faster than any previous
method), and how this abstraction is instantaneously solved by
the interpolation-based proof-engine [10], whilst the original
unabstracted design took 2 minutes to verify, despite the
inherent localization ability of interpolation.

II. RELATED WORK

Counterexample-based abstraction was first introduced by
Kurshan in [8] and further developed by Clarke et. al. in [3].
Proof-based abstraction was coined by McMillan [11], and
independently proposed by Gupta et. al in [7].

The work most closely related to ours is Gupta’s work of [7]
and McMillan et. al’s work of [1]. In both approaches, abstract
counterexamples are concretized using a SAT-solver. When
concretization fails, the UNSAT proof guides the abstraction
refinement. Our work does not rely on a SAT-solver to refute
counterexamples, but instead uses a simpler and more scalable
method based on ternary simulation (section IV-A).

Gupta’s approach does not rely on BDD reachability to
produce abstractions; although BDDs are used to form a
complete proof-procedure. Like our method, it tries to limit the
amount of logic that is put into the SAT-solver when unrolling
the circuit, thereby improving scalability. It differs, though, in
that the initial unrolling is done on the concrete design (our
method starts with an empty abstraction), and that PBA is used
to shrink the abstract model in a more conservative manner,
requiring the PBA result to stabilize over several iterations.

The work of McMillan et. al. mixes PBA for refuting all
counterexamples of length k with proof-analysis of counterex-
amples from the BDD engine, refuting individual (or small
sets of) counterexamples. Unlike Gupta’s work, BDDs are an
integral part of the abstraction computation.

The approach proposed in this paper differs further from
previous work in that it does not constitute a complete proof-
procedure. There are many different ways of using an abstrac-
tion method as part of a verification flow. A simple use-model
would be: Run the abstraction computation until some resource
limit is reached, then output the best abstraction found so far
and put the method on hold. If the abstraction turns out not to
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be good enough for the downstream flow, resume abstraction
computation with a higher resource limit, and produce a more
refined abstraction. Obviously, this use-model can be further
improved by multi-threading on a multi-core machine.

In the experimental evaluation, we choose to pass abstrac-
tions to an interpolation-based proof-engine. This particular
setup relates to the work of [9] and [2].

III. ASSUMPTIONS AND NOTATION

In the presentation, the following is assumed:
– The design is given as a set of next-state functions

expressed in terms of current state variables (flops) and
primary inputs (PIs).

– The design has only one property, which is a safety
property.

– All flops are initialized to zero, and are running on the
same clock (hence acting as unit delays).

It is further assumed that the logic of the next-state functions
is represented as a combined And-Inverter-graph, with the
single property being the output of a particular AND-gate. As
customary, the negation of the property is referred to as the
bad signal.

An “abstraction” is identified with a set of flops. If a flop is
not part of the abstraction, it is treated as a PI in the abstract
model of the design. By this semantics, adding a flop to the
current abstraction means concretizing it in the abstract model:
replace the PI by a flop and connect it to the appropriate input
signal.

IV. ALGORITHM

How does the proposed algorithm work? It starts by assuming
the empty abstraction, treating all flops as PIs. It then inserts
one time-frame of the design into the SAT-solver, and asks for
a satisfying assignment that produces TRUE at the bad signal.
The SAT-solver will come back SAT1 and the counterexample
is used to concretize some of the flops (= CBA). When
enough flops have been concretized, the SAT-problem becomes
UNSAT, which means that all counterexamples of length 0
have been refuted (unless there is a true counterexample of
length zero). The algorithm can now move on to depth 1, but
before doing so, any flop that did not occur in the UNSAT
proof is first removed from the abstraction (= PBA). The
procedure is repeated for increasing depths, resulting in an
incremental sequence of SAT calls that looks something like

depth 0: SAT, SAT, SAT, SAT, UNSAT
depth 1: SAT, UNSAT
depth 2: SAT, SAT, SAT, UNSAT
...

with each sequence of calls at a given depth ending in
an “UNSAT” result that prunes the abstraction built up by
analyzing the preceding “SAT” counterexamples.

1The very first query only comes back “UNSAT” if the property holds
combinationally, a corner case we ignore here.

The algorithm terminates in one of two ways: either (i) CBA
comes back with the same set of flops as were given to it,
which means we have found a true, justified counterexample,
or (ii) it runs out of resources for doing abstraction and stops.
The resulting abstraction is then returned to the caller to be
used in the next step of the verification process.

A. Counterexample-based refinement

Assume that for the current abstraction A the last call to SAT
returned a counterexample of length k. The counterexample is
then analyzed and refined by the following simple procedure2

in order to refute it:

CBA refinement. Loop through all flops not in A.
Replace the current value of the counterexample with
an X (the undefined value) and do a three-valued
simulation. If the X does not reach the bad signal,
its value is unimportant for the justification of the
counterexample, and the corresponding flop is kept as
a PI. If, on the other hand, X propagates all the way
to bad, we undo the changes made by that particular
X-propagation and add the corresponding flop to A.

The order in which flops are inspected does matter for the end
result. It seems like a good idea to consider multiple orders
and pick the one producing the smallest abstraction. But in
our experience it does not improve the overall algorithm. The
extra runtime may save a few flops temporarily, but they are
typically added back in a later iteration, or removed by PBA
anyway, resulting in the same abstraction in the end.

B. Incremental SAT

Incremental SAT is not a uniquely defined concept. The
interpretation used here is a solver with the following two
methods:

– addClause(literals): This method adds a clausal con-
straint, i.e. (p0 ∨ p1 ∨ . . . ∨ pn−1) where pi ∈ literals,
to the SAT-solver. The incremental interface allows for
more clauses to be added later.

– solveSat(assumps): This method searches for an assign-
ment that satisfies the current set of clauses under the unit
assumptions assumps = a0∧a1∧ . . .∧an−1. If there is an
assignment that satisfies all the clauses added so far by
calls to addClause(), as well as the unit literals ai, that
model is returned. If, on the other hand, the problem is
UNSAT under the given assumptions, the subset of those
assumptions used in the proof of UNSAT is returned in
the form of a final conflict clause.

The extension of solveSat() to accept a set of unit literals as
assumptions, and to produce the subset of those that were part

2This procedure (implemented by Alan Mishchenko in ABC [6]), has been
independently discovered by one of our industrial collaborators, and probably
by others too. A similar procedure is described in [13].
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of the UNSAT proof, can easily be added to any modern SAT-
solver.3 This is in contrast to adding proof-logging, which is a
non-trivial endeavor. For that reason, the proposed algorithm
is stated entirely in terms of this interface and does not rely
on generating UNSAT proofs.

C. Refinement using activation literals

Unlike the typical implementation of PBA, this work uses
activation literals, rather than a syntactic analysis of resolution
proofs, to determine the set of flops used for proving UNSAT.
For each flop f that is concretized, a literal a is introduced in
the SAT-instance. As the flop input fin at time-frame k is tied
to the flop output at time-frame k + 1, the literal is used to
activate or deactivate propagation through the flop by inserting
two clauses stating:

a→ (f [k + 1]↔ fin[k])

The set of activation literals is passed as assumptions to
solveSat(), and for UNSAT results, the current abstraction can
immediately be pruned of flops missing from the final conflict
clause returned by the solver.

This PBA phase is very affordable. The same SAT-problem
would have to be solved in a pure CBA based method anyway.
The cost we pay is only that of propagating the assumption
literals. Because abstractions are derived in a bottom-up fash-
ion, with the final abstraction typically containing just a few
hundred flops, the overhead is small.

V. IMPLEMENTATION

This section describes the combined abstraction method in
enough detail for the reader to easily and accurately reproduce
the experimental results of the final section. The pseudo-code
uses the following conventions:

– Symbol & indicates pass-by-reference.
– The type Vec〈T〉 is a dynamic vector whose elements are

of type T.
– The type Netlist is an extended And-Inverter-graph. It

has the following gate types: AND, PI, FLOP, CONST.
Inverters are represented as complemented edges. Flops
act as unit delays. Every netlist N, has a special gate
N.True of type CONST.

– The type Wire represents an edge in the netlist. Think
of it as a pointer to a gate plus a “sign” bit. It serves
the same function as a literal w.r.t. a variable in SAT.
Function sign(w) will return TRUE if the edge is com-
plemented, FALSE otherwise. By w0 and w1 we refer to
the left and right child of an AND-gate. By win we refer
to the input of a flop.

– The type WSet is a set of wires.
3Two simple things should be done: (i) the decision heuristic has to be

changed so that the first n decisions are made on the assumption literals;
and (ii) if a conflict clause is derived that contradicts the set of assumptions,
that clause has to be further analyzed back to the decision literals rather than
the first UIP. For more details, please review the analyzeFinal() method of
MiniSAT [5].

class Trace {
– Private variables:

Netlist& N;
Netlist F;
SatSolver S;
WSetN abstr; – publicly read-only

Vec〈WMapN〈WireF〉〉 n2f ;
WMapF〈Lit〉 f2s;
WMapN〈Lit〉 act lits;

– Private functions:
Lit clausify (WireF f );
void insertFlop (int frame, WireN w flop, WireF f );

– Constructor:
Trace(Netlist& N);

– Public functions:
WireF insert (int frame, WireN w);
void extendAbs (WireN w flop);
bool solve (WSetF f disj);
Cex getCex (int depth);

};

class Cex { . . . }; – stores a counter-example

Figure 1. Interface of the “Trace” class. The class handles the BMC
unrolling of the design N. Netlist F will store the structurally hashed
unrolling of N. SAT-solver S will store a CNF representation of the
logic in F.

– The type WMap〈T〉 maps wires to elements of type T.
For practical reasons, the sign bit of the wire is not used.
For map m, m[w] is equivalent to m[¬w]. Unmapped
elements of m are assumed to go to a distinct element
T UNDEF (e.g. LIT UNDEF for literals, or WIRE UNDEF
for wires).

– The type lbool is a three-valued boolean that is either
true, false, or undefined, represented in the code by:
LBOOL 0, LBOOL 1, LBOOL X.

– Every SAT-instance S (of type SatSolver) has a special
literal S.True which is bound to true. Method S.newLit()
creates a new variable and returns it as a literal with
positive polarity. Clauses are added by S.addClause()
and method S.satSolve() commences the search for a
satisfying assignment.

Because the pseudo-code deals with two netlists N and F,
wire-types are subscripted WireN and WireF to make clear
which netlist the wire belongs to. The same holds for WSet
and WMap.

A. BMC Traces

To succinctly express the SAT analysis of the unrolled design,
the class Trace is introduced (see Figure 1). It allows for
incrementally extending the abstraction, as well as lengthening
the unrolled trace. Its machinery needs the following:

– A reference N to the input design (read-only).
– A set of flops abstr, storing the current abstraction.

Calling extendAbs() will grow this set. Calling solve()
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may shrink it through its built-in PBA.
– A netlist F to store the unrolling of N under the current

abstraction. Gates are put into F by calling insert(frame,
w). Only the logic reachable from gate w of time-
frame frame is inserted. For efficiency, netlist F is kept
structurally hashed.

– A SAT-instance S to analyze the logic of F. Calling
solve(f disj) will incrementally add the necessary clauses
to model the logic of F reachable from the set of
wires f disj. The user of the class does not have to
worry about how clauses are added; hence clausify() is
a private method. The SAT-solving will take place under
the assumption f 0 ∨ f 1 ∨ . . .∨ f n−1. The method solve()
has two important side-effects:

- For satisfiable runs, the satisfying assignment is
stored so that getCex() can later retrieve it.

- For unsatisfiable runs, the flops not participating in
the proof are removed from the current abstraction.

– Maps n2f and f2s. Expression “n2f [d][w]” gives the wire
in F corresponding to gate w of N in frame d. Expression
“f2s[f ]” gives the literal in S corresponding to gate f of
F.

– Map act lits. Expression “act lits[w flop] gives the ac-
tivation literal for flop w flop, or WIRE UNDEF if none
has been introduced.

B. The main procedure

The main loop of the abstraction procedure is given in Fig-
ure 2. Trace instance T is created with an empty abstraction.
For increasing depths, the following is done:

– If the SAT-solver produces a counterexample, it is ana-
lyzed (by refineAbstraction()) and flops are added to the
abstraction to rule out this particular counterexample.

– If UNSAT is returned, the depth is increased. The solve()
method will have performed proof-based abstraction in-
ternally and may have removed some flops from the
abstraction.

For each new depth explored, a new bad signal is added
to bad disj. This disjunction is passed as an assumption to
the solve method of T, which means we are looking for a
counterexample where the property fail in at least one time
frame. It is not enough to just check the last time frame
because of PBA.

C. Unrolling and SAT solving

Figure 3 details how insert() produces an unrolling of N inside
F, and Figure 4 describes how solve() translates the logic of
F into clauses and calls SAT. Great care is taken to describe
accurately what is implemented, as the precise incremental
SAT formulation is important for the performance and quality.
For the casual reader who may not want to delve into details,
the following paragraph summarizes some properties of the
implementation:

As the procedure works its way up to greater and greater
depth, only the logic reachable from the bad signal is in-
troduced into the SAT-solver, and only flops that have been
concretized bring in logic from the preceding time-frames.
Constant propagation and structural hashing is performed on
the design, although constants are not propagated across time-
frames due to proof-based abstraction (PBA). Concrete flops
are guarded by activation literals, which are used to implement
PBA. One literal guards all occurrences of one flop in the
unrolling. Flops that are removed by PBA will not be unrolled
in future time-frames. However, fanin-logic from removed
flops will remain in F and in the SAT-solver, but is disabled
using the same activation literals.

VI. EVALUATION AND CONCLUSIONS

The method of this paper was evaluated along two dimensions:
(i) how does the new abstraction procedure fare in the simplest
possible verification flow, where a complete proof-engine (in
this case interpolation [10]) is applied to its result versus ap-
plying the same proof-engine without any abstraction; and (ii)
how does it compare to previous hybrid abstraction methods—
in our experiments, the implementation of CBA and PBA
inside ABC [6], and the hybrid method of McMillan et. al.
[1].

The examples used were drawn from a large set of commer-
cial benchmarks by focusing on designs with local properties
containing more than 1000 flops.4 Experiments were run on
an 2 GHz AMD Opteron, with a timeout of 500 seconds. The
results are presented in Table I.

For all methods, the depth was increased until an abstraction
good enough to prove the property was found. ABC has
a similar CBA implementation to the one presented in this
work (based on ternary simulation), but restarts the SAT-solver
after each refinement. ABC’s PBA procedure is separate from
CBA, so we opted for applying it once at the end to trim the
model returned by CBA. This flow was also simulated in our
new algorithm by delaying the PBA filtering until the final
iteration (reported in column New’). This approach is often
faster due to the fewer CBA refinement steps required, but
there seems to be a quality/effort trade-off between applying
PBA at every step, or only once at the end. In particular for
the S series, interleaved CBA/PBA resulted in significantly
smaller abstractions. We have observed this behavior on other
benchmarks as well.

The McMillan hybrid technique was improved by replacing
BDDs with interpolation, which led to a significant and
consistent speedup. However, our new method, and the similar
techniques of ABC, still appear to be superior in terms of
scalability. This is most likely explained by the expensive
concretization phase of the older method, which requires the
full design to be unrolled for the length of the counterexample.

The effect of an incremental implementation can be seen by
comparing columns New’ and ABC. We have observed that the

4In other words, we’ve picked examples for which abstraction should work
well. There are many verification problems where abstraction is not a useful
technique, but here we investigate cases where it is.
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WSetN ] Cex combinedAbstraction(Netlist N) {
Trace T(N);
WireN bad = ¬N.getProperty();
WSetF bad disj = ∅;

for (int depth = 0;;) {
if (〈reached resource limit〉)

return T.abstr;
bad disj = bad disj ∪ {T.insert(depth, bad)};
if (T.solve(bad disj)) { – Found counter-example; refine abstraction:

int n flops = T.abstr.size();
refineAbstraction(T, depth, bad);
if (T.abstr.size() == n flops) – Abstraction stable ⇒ counter-example is valid:

return T.getCex(depth);
}else

depth++;
}

}

void refineAbstraction(Trace& T, int depth, WireN bad) {
Cex cex = T.getCex(depth);
Vec〈WMapN〈lbool〉〉 sim = simulateCex(T.N, T.abstr, cex); – ’sim[d][w]’ = value if gate ’w’ at frame ’d’

WSetN to add;
for all flops w not in T.abstr {

for (int frame = 0; frame ≤ depth; frame++) {
simPropagate(sim, T.abstr, frame, w, LBOOL X);
if (sim[depth][bad] == LBOOL X) {

– ’X’ propagated all the way to the output; undo simulation and add flop to abstraction:
for (; frame ≥ 0; frame−−)

simPropagate(sim, T.abstr, frame, w, cex.flops[frame][w]);
to add = to add ∪ {w};
break;

}

}

}

for w ∈ to add
T.extendAbs(w);

}

Vec〈WMapN〉〉 simulateCex(Netlist N, WSetN abstr, Cex cex) {
return 〈ternary simulate counter-example ’cex’ on ’N’ under abstraction ’abstr’〉

}

void simPropagate(Vec〈WMapN〈lbool〉〉& sim, WSetN abstr, int frame, WireN w, lbool value) {
〈incrementally propagate effect of changing gate ’w’ at time-frame ’frame’ to ’value’〉

}

Figure 2. Main procedure. Function combinedAbstraction() takes a netlist and returns either (i) a counter-example (if the property fails)
or (ii) the best abstraction produced at the point where resources were exhausted. We leave it unspecified what precise limits to use, but
examples include a bound on the depth of the unrolling, the CPU time, or the number of propagations performed by the SAT solver. Function
refineAbstraction() will use the latest counterexample stored in T (by solve(), if the last call was SAT) to grow the abstraction. Ternary (or
X-valued) simulation is used to shrink the support of the counterexample. Abstract flops that could be removed from the support (i.e. putting
in an X did not invalidate the counterexample) are kept abstract; all other flops are concretized. When simulating under an abstraction,
abstract flops don’t use the value of their input signal, but instead the value of the counterexample produced by the SAT solver (where the
flop is a free variable).
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Abstr. Size (flops) Abstr. Time (sec) Proof Time (sec)
Bench. #Ands #Flops New New’ ABC Hyb. New New’ ABC Hyb. New New’ ABC Hyb. No Abs.

T0 57,560 1,549 2 4 2 6 0.1 0.1 0.3 0.5 0.1 0.1 0.1 0.2 0.4
T1 57,570 1,548 15 15 15 15 1.1 0.7 2.3 9.7 0.9 0.9 0.9 2.8 3.5
S0 2,351 1,376 112 157 174 – 0.1 0.3 2.0 – 8.7 129.7 5.3 – 21.2
S1 2,371 1,379 136 170 167 – 0.1 0.1 0.6 – 57.8 162.9 104.9 – 188.1
S2 3,740 1,526 83 123 113 187 0.3 0.1 0.6 26.0 1.1 37.1 11.8 106.7 4.3
D0 8,061 1,026 107 112 106 – 3.0 3.3 15.9 – 6.9 19.6 4.9 – 7.9
D1 7,262 1,020 139 139 139 139 1.2 1.2 4.4 0.9 0.3 0.3 0.3 2.9 0.6
M0 17,135 1,367 179 179 180 178 6.8 6.3 18.5 206.5 0.2 0.2 0.2 6.3 0.7
I0 1,241 1,104 59 57 50 – 0.5 0.1 0.6 – 2.0 1.9 0.7 – 5.8
I1 395,150 25,480 24 21 21 33 5.5 1.3 1.1 16.3 0.0 0.0 0.0 0.3 22.1
I2 5,589 1,259 45 44 51 – 1.5 0.5 1.5 – 6.2 5.7 6.8 – 18.0
I3 5,616 1,259 49 47 52 – 1.2 0.4 1.5 – 5.9 6.5 6.2 – 19.1
I4 394,907 25,451 79 72 100 – 64.3 19.3 30.9 – 5.1 15.0 17.9 – –
I5 5,131 1,227 49 44 38 59 0.5 0.1 0.4 202.2 2.2 0.2 0.4 20.2 1.6
A0 35,248 2,704 61 68 95 81 1.8 1.6 6.3 6.9 18.9 12.0 35.7 18.3 43.2
A1 35,391 2,738 56 56 62 83 2.3 1.7 4.9 11.6 15.7 13.1 31.1 6.9 29.5
A2 35,261 2,707 8 8 18 24 0.1 0.1 0.2 0.8 0.0 0.0 0.0 0.2 0.6
A3 35,416 2,741 59 70 79 83 2.2 2.4 7.9 104.0 21.2 11.5 79.0 12.3 52.2
A4 35,400 2,741 63 65 67 101 2.5 2.1 4.4 34.4 11.9 20.0 36.2 12.1 34.6
F0 863,248 40,849 3 3 3 – 1.0 2.0 3.5 – 0.0 0.0 0.0 – 48.2
F1 863,251 40,850 4 8 4 – 1.5 4.7 7.0 – 0.0 2.2 0.0 – 100.6
F2 863,254 40,851 5 9 5 – 3.9 6.1 9.4 – 0.0 2.4 0.0 – 110.1

Table I. Evaluation of abstraction techniques. Four implementations of hybrid counterexample- and proof-based abstraction were applied
to 22 benchmarks of more than 1000 flops, all for which the property holds. In New’, PBA was only applied to the final iteration (to
be closer to the ABC implementation). The first section of the table shows the size of the designs. The second section shows, for each
implementation, the size of the smallest abstraction it produced that was good enough to prove the property. The third and fourth sections
show the time to compute the abstraction, and the time to prove the property using interpolation based modelchecking, with the very last
column showing interpolation on the original unabstracted design. Benchmarks with the same first letter denote different properties of the
same design. Timeout was set to 500 seconds.

speedup tends to be more significant for harder problems with
higher timeouts.

The overall conclusion is that small abstractions help the
proof-engine. However, there are cases where a tighter ab-
straction led to significantly longer runtimes than a looser
one (although that effect did not manifested itself in this
benchmark set). This can partly be explained by the under-
lying random nature of interpolant-based model checking, but
it should also be recognized that replacing flops with PIs
introduces more behaviors, which means the SAT-solver has
to prove a more general theorem. Occasionally this can be
detrimental, and offset the benefit of the reduced amount of
logic that needs to be analyzed. Altogether, it emphasizes that
abstraction should be used in good orchestration with other
verification techniques.
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Trace::Trace(Netlist& N0) {
N = N0;
f2s[F.True] = S.True;

}

WireF Trace::insert(int frame, WireN w) {
WireF ret = n2f [frame][w];
if (ret == WIRE UNDEF) {

if (w == N.True) { ret = F.True; }
else if (type(w) == PI) { ret = F.add PI(); }
else if (type(w) == AND) { ret = F.add And(insert(frame, w0), insert(frame, w1)); }
else if (type(w) == FLOP) { ret = F.add PI(); if (w ∈ abstr) insertFlop(frame, w, ret); }
n2f [frame][w] = ret;

}

return ret ˆ sign(w); – interpretation: (w ˆ b) ≡ (b ? ¬w : w)
}

void Trace::insertFlop(int frame, WireN w flop, WireF f ) {
WireF f in = (frame == 0) ? ¬F.True : insert(frame−1, win);
Lit p = clausify(f in);
Lit q = clausify(f );
Lit a = act lits[w flop];
if (a == LIT UNDEF) {

a = S.newLit();
act lits[w flop] = a; }

S.addClause({¬a, ¬p, q});
S.addClause({¬a, p, ¬q}); – we’ve now added: a → (p ↔ q)

}

void Trace::extendAbs(WireN w flop) {
abstr = abstr ∪ {w flop};
for (int frame = 0; frame < n2f.size(); frame++) {

WireF f = n2f [frame][w flop];
if (f != WIRE UNDEF) – f is either undefined or a PI

insertFlop(frame, w flop, f );
}

}

Figure 3. Unrolling the netlist. Method insert() will recursively add the logic feeding w to netlist F. Flops that are concrete will be traversed
across time-frames, but not abstract flops. Each flop that is introduced to F is given an activation literal. If this literal is set to TRUE, the
flop will connect to its input; if it is set to FALSE, the flop acts as a PI. Activation literals are used to implement the proof-based abstraction,
and to disable flops when the abstraction shrinks. At frame 0, flops are assumed to be initialized to zero. The purpose of extendAbs() is to
grow the abstraction by one flop, adding the missing logic for all time frames.
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Lit Trace::clausify(WireF f ) {
Lit ret = f2s[f ]; – map ignores the sign of ’f’
if (ret == LIT UNDEF) {

if (type(f ) == PI)
ret = S.newLit();

else if (type(f ) == AND) {
– Standard Tseitin clausification
Lit x = clausify(f 0);
Lit y = clausify(f 1);
ret = S.newLit();
S.addClause({x, ¬ret});
S.addClause({y, ¬ret});
S.addClause({¬x, ¬y, ret});

}

f2s[f ] = ret;
}

return ret ˆ sign(f );
}

bool Trace::solve(WSetF f disj) {
Lit q = S.newLit();
S.addClause({¬q} ∪ {clausify(f ) | f ∈ f disj});
assumps = {q} ∪ {act lits[w] | act lits[w] != LIT UNDEF && w ∈ abstr};
bool result = S.solve(assumps);
if (result) 〈store SAT model〉
else abstr = abstr \ {w | type(w) == FLOP && w /∈ S.conflict}; – this line does PBA

S.addClause({¬q}); – forever disable temporary clause
return result;

}

Cex Trace::getCex(int depth) {
return 〈use maps ’n2f’ and ’f2s’ to translate the last SAT model

into 0/1/X values for the PIs and Flops of frames 0..depth〉
}

Figure 4. SAT-Solving. Method clausify() translates the logic of F into CNF for the SAT-solver using the Tseitin transformation. The above
procedure can be improved, e.g., by the techniques of [4], [12]. Method solve() takes a disjunction of wires in F and searches for a satisfying
assignment to that disjunction. Because only unit assumptions can be passed to solveSat(), a literal q is introduced to represent the disjunction,
and a temporary clause is added. Disabling the clause afterwards will in effect remove it. The activation literals of the current abstraction
are passed together with q as assumptions to solveSat(). The SAT-solver will give back either a satisfying assignment (stored for later use
by getCex()), or a conflict clause expressing which of the assumptions were used for proving UNSAT. This set is used to perform PBA. In
computing assumps, we note that “&& w ∈ abstr” is necessary if PBA has shrunken the abstraction. In the experimental section, a variant
(column New’ in Table I) is evaluated where PBA is not applied inside solve(). The set of redundant flops is still computed as above, and
remembered. When the resource limit is reached, those flops that were redundant in the final UNSAT call are removed. In essence, the
variant corresponds to an incremental CBA implementation with a final trimming of the absraction by PBA.
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Abstract—Several successful software model checkers are
based on a technique called single-block encoding (SBE), which
computes costly predicate abstractions after every single program
operation. Large-block encoding (LBE) computes abstractions
only after a large number of operations, and it was shown that
this significantly improves the verification performance. In this
work, we present adjustable-block encoding (ABE), a unifying
framework that allows to express both previous approaches.
In addition, it provides the flexibility to specify any block
size between SBE and LBE, and also beyond LBE, through
the adjustment of one single parameter. Such a unification of
different concepts makes it easier to understand the fundamental
properties of the analysis, and makes the differences of the
variants more explicit. We evaluate different configurations on
example C programs, and identify one that is currently the best.

I. Introduction
Software model checking has been proven successful for
increasing the quality of computer programs [2]. Several
fundamental concepts were invented in the last decade which
made it possible to scale the technology from tiny examples to
real programs, e.g., device drivers [4], and to significantly im-
prove the analysis precision, compared to traditional data-flow
analyses. Predicate abstraction was introduced as an appropri-
ate abstract domain [17], counterexample-guided abstraction
refinement (CEGAR) makes it possible to automatically learn
new facts to track [12], lazy abstraction performs expensive
refinements only on relevant program paths [19], and interpo-
lation is a sucessful technique to identify a small number of
predicates that suffice to eliminate imprecise paths [15], [18].

The software model checker BLAST is an example of a
tool that implements all of the above-mentioned concepts [7].
Such a tool implementation performs a reachability analysis
along the edges of the control-flow automaton (CFA). The
program counter is explicitly represented, and the data state
is symbolically represented using predicates. The intermediate
results are stored in an abstract reachability graph (ARG). Ab-
stract successor states are obtained by computing the predicate
abstraction of the strongest postcondition for a program opera-
tion, which involves querying a theorem prover. This category
of implementing predicate abstraction can be characterized as
single-block encoding (SBE), because every single control-
flow edge of the program is transformed into a formula that
is used for computing the abstract successor state. For a more
detailed illustration of the general SBE approach on a concrete
example, we refer the reader to the overview article [7].
∗ This research was supported in part by the Canadian NSERC grant RGPIN

341819-07.

Recently, a new approach was introduced which encodes
many CFA edges into one formula, for computing the ab-
stract successor. This approach is called large-block encoding
(LBE) [6], and transforms the original CFA into a new,
summarized CFA in which every edge represents a large
subgraph (of the original CFA) that is free of loops. Solvers
for satisfiability modulo theories (SMT) had continuously
improved their expressiveness and performance, but the SBE
approach did not take advantage of this additional power.
Therefore, it was time to explore LBE, where a large part
of the computational burden of the reachability analysis is
delegated to an SMT solver. The experiments showed that
LBE not only has a much better performance, but even a
better precision (because it is feasible to use boolean instead
of cartesian predicate abstraction). However, LBE has two
drawbacks: First, it operates on a modified CFA which makes
combinations with other abstract domains that operate on
single edges impossible. Second, LBE is just one particular
choice for how much of the program is encoded in one block
and this choice is hard-coded into the verifier and cannot be
changed. Our work addresses the need to explore the large
space of choices from SBE to LBE, and also beyond LBE.

This article contributes a new approach that is called
adjustable-block encoding (ABE), which unifies SBE and
LBE in one single formalism and fills the gap of missing
configurations. This new formalism, together with the corre-
sponding tool implementation, makes it possible to perform
experiments which were not possible before, i.e., in which
the block encoding is adjustable as a parameter. ABE works
on the original CFA and constructs the formulas for large
blocks on-the-fly during the analysis, and in parallel to other
domains (product domains). The number of operations that are
encoded in one formula per abstraction step is freely adjustable
using a so called block-adjustment operator. By modifying this
parameter, ABE can not only operate like SBE or LBE, but
can also express configurations with block encodings between
SBE and LBE, as well as block encodings larger than LBE.

In our predicate analysis with adjustable-block encoding,
every abstract state has two formulas to store the abstract
data state: an abstraction formula and a path formula. The
successor computation can operate in two different modes,
either in abstraction mode or in non-abstraction mode. In a
first step (same for both modes) the strongest postcondition
for the path formula of the predecessor and the program
operation is (syntactically) constructed as formula. In non-
abstraction mode, this formula is stored as the path formula
in the new state, and the abstraction formula is just copied.
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1 int main() {
2 int i = 0;
3 while (i < 2) {
4 i++;
5 }
6 if (i != 2) {
7 ERROR: return 1;
8 }
9 }

Fig. 1. Simple example program
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Fig. 2. Corresponding CFA

In abstraction mode, the boolean predicate abstraction of the
formula is computed and stored as abstraction formula in the
new state, and the path formula is set to true. At meet points
in the control flow, and if the analysis is in non-abstraction
mode, the path formulas of the two branches are combined
via disjunction (resulting in a disjunctive path formula). In
other words, as long as the analysis operates in non-abstraction
mode, a disjunctive path formula is constructed that represents
all program operations since the last abstraction formula was
computed in abstraction mode. The mode is determined by the
block-adjustment operator (analysis parameter).

Availability. Our experiments (implementation, benchmarks,
logs) are available at http://www.sosy-lab.org/∼dbeyer/cpa-abe.
The archive includes an executable copy of the CPACHECKER

system. For the complete system, cf. the CPACHECKER website.

Example. We illustrate ABE on the simple program in Fig. 1.
Figure 2 shows the corresponding CFA (assume(p) is repre-
sented by [p]; we removed irrelevant parts from which the
error location is not reachable). Nodes represent program lo-
cations and arrows represent program operations. We consider
a predicate precision (the set of predicates that are tracked)
that contains the predicates i = 0, i = 1, and i = 2. First we
consider a block-adjustment operator that implements LBE
on-the-fly, i.e., abstracting at loop heads and at the error
location. The abstract reachability graph (ARG) is shown in
Fig. 3. Nodes represent abstract states, and the numbers in
the node are the CFA program location (top) and the unique
state identifier (bottom). Nodes that are filled in grey represent
abstraction states, and their abstraction formula is shown in
the box attached to the abstraction state. Nodes with dashed
circles represent abstract states that the analysis determines as
unreachable (i.e., the result of the abstraction compuation is
f alse). Such states are not added to the set of reachable states,
therefore they do not have a unique state identifier. Note that
the number of grey nodes shows exactly how many (costly)
abstraction computations were necessary.

The analysis starts in non-abstraction mode, and is initial-
ized with the formula true for both the abstraction formula ψ

and the path formula ϕ . The analysis explores the path from
location 2 to 3, creating abstract state 3

2. Since location 3 is
a loop head, state 3

2 is an abstraction state and the computed
abstraction formula is i = 0, the path formula ϕ is re-set to
true. Locations 4 and 5 are no loop heads, so no abstraction
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Fig. 3. ARG after analysis with
large-block encoding (LBE)
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Fig. 4. ARG after analysis with
blocks of length 7

is computed and instead only the path formula is extended by
the operations on the edges to states 4

3 and 5
4. The abstraction

formula is copied from their respective predecessor. When the
analysis re-encounters location 3, an abstraction is computed
again, this time with i = 1 as the result (state 3

5). This process
continues until the result of the abstraction computation is false
(for the successor of 5

10), which means that the new abstract
state is not reachable and analysis can stop exploring this path.
Note that 4

9 and 5
10 are already unreachable, but the analysis

does not detect this, because the abstraction formula is not
computed for such non-abstraction states. However, this does
not cause a problem because all computations needed for the
construction of non-abstraction states like 5

10 are inexpensive
compared with the cost of abstraction computations. The
exploration of the remaining paths (those through location 6)
is similar. At location 7, an abstraction is always computed
because it is the error location, and thus the analysis checks
the reachability of abstract states at this location. No such
abstraction state is reachable, thus the program is safe.

Now we consider a block-adjustment operator that forces
an abstraction computation if the longest path represented by
the current path formula has length 7. The ARG is shown in
Fig. 4. The analysis starts similarly to the previous example.
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However, when it first encounters location 3 it does not
compute an abstraction because the condition of the block-
adjustment operator (length 7) is not yet fulfilled. Instead, it
creates a non-abstraction state 3

2 (which does not occur in
the figure because it is later subsumed by the result of a
merge). The same holds for 4

3 and 5
4. When the analysis reaches

location 3 again, it creates state 3
5 and immediately merges it

with the existing state 3
2, because both share the same location

and the same abstraction formula (which is still the initial
one). Therefore, abstract state 3

2 is removed. The path formula
of the new (merged) abstract state is the disjunction of the path
formulas of both states, i.e., representing both the paths 2-3
and 2-3-4-5-3. The same happens at locations 4 and 6, creating
states 4

6 and 5
7. But when the analysis encounters location 3 for

the third time, the path formula represents the paths 2-3-4-5-
3 and 2-3-4-5-3-4-5-3. The latter path contains 7 edges, thus
an abstraction is computed. At this abstraction state, either
the predicate i = 1 or the predicate i = 2 is true. Continuing,
the analysis constructs the non-abstraction states 4

9, 5
10, 3

11, 4
12,

5
13 and 3

14. Again, the former three states are removed from
the set of reached states because they are merged into the
latter three states. All these six states are not merged with
the previous states although some of them share a common
program location, because the abstraction formula of the new
states differs from the abstraction formula of the previous
states. Also, abstraction states like 3

8 are never changed by
merge operations. The path formula of 3

14 represents the paths
3-4-5-3 and 3-4-5-3-4-5-3. Thus, when the successors of this
state are created, the length of the longest path represented by
the path formula reaches 7 and an abstraction is computed. The
successor at location 4 has the abstraction formula false, thus
it is not added to the reached states. The abstraction formula
of 6

17 is i = 2. The analysis continues with the remaining paths,
correctly determining that all paths leading to the error location
are infeasible. Therefore the program is again reported as safe.

By choosing a good block-adjustment operator, the size of
the blocks (the regions of the ARG that do not contain abstrac-
tion states) and the number of abstraction computations can
be optimized. Larger blocks lead to fewer costly abstraction
computations, but the problems given to the SMT solver are
harder because the path formulas are more complex. With
ABE, the reachable states do not necessarily form a tree, like
for SBE and for LBE with preprocessing. However, note that
the abstraction states still form a tree in both examples. In fact,
this is true for all choices of the block-adjustment operator.

Related Work. Our work is based on the idea of stepwise
exploring the reachable states of the program, using CEGAR
to refine the abstraction, and symbolic techniques to operate
on abstract data states. Existing example implementations of
this category are SBE-based (SLAM [4] and BLAST [7]) or
LBE-based [6]. The goal of our ABE-based approach is to
make the configuration of the algorithm flexible, i.e., (1) to
subsume the previous approaches (SBE, LBE) and (2) enable
even larger encodings such that it is freely adjustable how
much of the state-space exploration is done symbolically by

the SMT solver. A different category of verification tools is
based on the idea of performing a fully symbolic search.
Examples are the model checker SATABS [14], which is
based on CEGAR but operates fully symbolically, and the
bounded model checker CBMC [13], which is targeted at
finding bugs instead of proving safety. Fully symbolic search
is also applied to large generated verification conditions, for
example in the extended static checkers CALYSTO [1] and
SPEC# [5]. The algorithm of McMillan is also based on
the idea of lazy abstraction, but never performes predicate
abstraction-based successor computations [21]. Our approach
can be characterized as based on predicate abstraction [17],
CEGAR [12], lazy abstraction [19], and interpolation [18].

II. Preliminaries
A. Programs and Control-Flow Automata

We restrict the presentation to a simple imperative program-
ming language, where all operations are either assignments
or assume operations, and all variables range over integers.1

We represent a program by a control-flow automaton (CFA).
A CFA A = (L,G) consists of a set L of program locations,
which model the program counter l, and a set G⊆ L×Ops×L
of control-flow edges, which model the operations that are
executed when control flows from one program location to
another. The set of program variables that occur in operations
from Ops is denoted by X . A program P = (A, l0, lE) consists
of a CFA A = (L,G) (models the control flow of the program),
an initial program location l0 ∈ L (models the program entry),
and a target program location lE ∈ L (models the error loc.).

A concrete data state of a program is a variable assignment
c : X → Z that assigns to each variable an integer value. The
set of all concrete data states of a program is denoted by C . A
set r⊆C of concrete data states is called region. We represent
regions using first-order formulas (with free variables from X):
a formula ϕ represents the set [[ϕ]] of all data states c that
imply ϕ (i.e., [[ϕ]] = {c ∈ C | c |= ϕ}). A concrete state of
a program is a pair (l,c), where l ∈ L is a program location
and c is a concrete data state. A pair (l,ϕ) represents the
following set of concrete states: {(l,c) | c |= ϕ}. The concrete
semantics of an operation op∈Ops is defined by the strongest
postcondition operator SPop(·): for a formula ϕ , SPop(ϕ) rep-
resents the set of data states that are reachable from any of the
states in the region represented by ϕ after the execution of op.
Given a formula ϕ that represents a set of concrete
data states, for an assignment operation s := e, we have
SPs:=e(ϕ) = ∃ŝ : ϕ[s7→ŝ]∧ (s = e[s7→ŝ]), and for an assume op-
eration assume(p), we have SPassume(p)(ϕ) = ϕ ∧ p.

A path σ is a sequence 〈(op1, l1), ...,(opn, ln)〉 of pairs of
operations and locations. The path σ is called program path
if σ starts with l0 and for every i with 0 < i≤ n there exists
a CFA edge g = (li−1,opi, li), i.e., σ represents a syntactical
walk through the CFA. The concrete semantics for a program

1 Our implementation CPACHECKER works on C programs that are given
in CIL intermediate language [22]; non-recursive function calls are supported.
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path σ = 〈(op1, l1), ...,(opn, ln)〉 is defined as the successive
application of the strongest postoperator for each opera-
tion: SPσ (ϕ) = SPopn(...SPop1(ϕ)...). The formula SPσ (ϕ)
is called path formula. The set of concrete states that result
from running σ is represented by the pair (ln,SPσ (true)).
A program path σ is feasible if SPσ (true) is satisfiable. A
concrete state (ln,cn) is called reachable if there exists a
feasible program path σ whose final location is ln and such
that cn |= SPσ (true). A location l is reachable if there exists
a concrete state c such that (l,c) is reachable. A program is
safe if lE is not reachable.

B. Predicate Precision and Boolean Predicate Abstraction

Let P be a set of predicates over program variables in a
quantifier-free theory T . A formula ϕ is a boolean combina-
tion of predicates from P . A precision for formulas is a finite
subset π ⊂P of predicates. A precision for programs is a
function Π : L→ 2P , which assigns to each program location
a precision for formulas. The boolean predicate abstrac-
tion (ϕ)π of a formula ϕ is the strongest boolean combination
of predicates from the precision π that is entailed by ϕ . Such
a predicate abstraction of a formula ϕ , which represents a
region of concrete program states, is used as an abstract data
state (i.e., an abstract representation of the region) in program
verification. For a formula ϕ and a precision π , the boolean
predicate abstraction (ϕ)π of ϕ can be computed by querying
an SMT solver in the following way: For each predicate pi ∈ π ,
we introduce a propositional variable vi. Now we ask the solver
to enumerate all satisfying assignments of v1, ...,v|π| in the
formula ϕ ∧

∧
pi∈π(pi ⇔ vi). For each satisfying assignment,

we construct a conjunction of all predicates from π whose
corresponding propositional variable occurs positive in the
assignment. The disjunction of all such conjunctions is the
boolean predicate abstraction for ϕ . An abstract strongest
postoperator for a predicate abstraction with precision π and
a program operation op, which transforms an abstract data
state ϕ into its successor ϕ ′, can be defined by applying first
the strongest postcondition operator and then the predicate
abstraction, i.e., ϕ ′ = (SPop(ϕ))

π . For more details, we refer
the reader to the work of Ball et al. and Lahiri et al. [3], [20].

III. Adjustable-Block Encoding
In ABE, the predicate abstraction is not computed after every
CFA edge, but only at certain abstract states, which we call
abstraction states (the other abstract states are called non-
abstraction states). On paths between two abstraction compu-
tations, the strongest postcondition of the path(s) is stored in a
second formula of the abstract state, which we call disjunctive
path formula. Therefore, every abstract state of ABE contains
two formulas ψ and ϕ , where the abstraction formula ψ is
the result of an abstraction computation and the disjunctive
path formula ϕ represents the strongest postcondition since
the last abstraction state was computed. Given a CFA edge
g = (l,op, l′) and an abstract state with ψ and ϕ , the abstract

successor either extends the path formula ϕ only (which is a
purely syntactical operation), or computes a new abstraction
formula ψ and resets ϕ . Where to compute abstractions
(and thus the block size) is determined by the so-called
block-adjustment operator blk as follows: If blk(e,g) returns
false (no abstraction computation, i.e., the abstract state e
is a non-abstraction state), the abstract successor contains ψ

(unchanged) and SPop(ϕ) (as the new ϕ). If blk(e,g) returns
true (e is abstraction state), the abstract successor contains
the formula that results from the abstraction of ψ ∧ϕ as the
new abstraction formula and true as the new disjunctive path
formula. If ψ ∧ϕ is unsatisfiable for an abstract state e, then
e is not reachable.

A. CPA for Adjustable-Block Encoding

We formalize adjustable-block encoding (ABE) as a config-
urable program analysis (CPA) [8]. This allows us to use the
flexibility of the CPA operators to describe how the analysis
operates without changing the general iteration algorithm (cf.
Alg. CPA). The configurable program analysis for adjustable-
block encoding D=(D, ,merge,stop) consists of an abstract
domain D, a transfer relation , a merge operator merge, and
a stop operator stop, which are defined as follows. (Given
a program P = (A, l0, lE), we use X for denoting the set of
program variables occuring in P, P for the set of quantifier-
free predicates over variables from X , and Π : L→ 2P for the
precision of the predicate abstraction.)
1. The abstract domain D = (C,E , [[·]]) is a tuple that
consists of a set C of concrete states, a semi-lattice E =
(E,>,v,t), and a concretization function [[·]] : E → C. The
lattice elements e ∈ E are also called abstract states, and
are tuples (l,ψ, lψ ,ϕ) ∈ (L ∪ {l>})×P × (L ∪ {l>})×P ,
where l models the program counter, the abstraction formula
ψ is a boolean combination of predicates that occur in Π,
lψ is the location at which ψ was computed, and ϕ is a
disjunctive path formula representing some or all paths from
lψ to l. Note that an abstraction state has always l = lψ

and ϕ = true. The top element of the lattice is the abstract
state > = (l>, true, l>, true). The partial order v ⊆ E ×E is
defined such that for any two elements e1 = (l1,ψ1, lψ

1,ϕ1)
and e2 = (l2,ψ2, lψ

2,ϕ2) from E the following holds:

e1 v e2⇐⇒ (e2 =>)∨ ((l1 = l2)∧ (ψ1∧ϕ1⇒ ψ2∧ϕ2))

The join operator t : E×E→ E yields the least upper bound
of the two operands, according to the partial order.
2. The transfer relation  ⊆ E ×G× E contains all tu-
ples (e,g,e′) with e = (l,ψ, lψ ,ϕ), e′ = (l′,ψ ′, lψ

′
, ϕ ′) and

g = (l,op, l′) for which the following holds:
(ϕ ′ = true)∧

(
ψ ′ = (SPop(ϕ ∧ψ))Π(l′)

)
∧ (lψ ′ = l′)

if blk(e,g)∨ (l′ = lE)
(ϕ ′ = SPop(ϕ))∧ (ψ ′ = ψ)∧ (lψ ′ = lψ ) otherwise

The ‘mode’ of the transfer relation, i.e., when to compute
abstractions, is determined by a block-adjustment operator
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Algorithm 1 CPA(D,e0) (taken from [8])
Input: a CPA D= (D, ,merge,stop),

an initial abstract state e0 ∈ E, where E denotes
the set of elements of the lattice of D

Output: a set of reachable abstract states
Variables: a set reached of elements of E,

a set waitlist of elements of E
1: waitlist := {e0}
2: reached := {e0}
3: while waitlist 6= /0 do
4: choose e from waitlist
5: waitlist := waitlist\{e}
6: for each e′ with e e′ do
7: for each e′′ ∈ reached do
8: // combine with existing abstract state
9: enew :=merge(e′,e′′)

10: if enew 6= e′′ then
11: waitlist :=

(
waitlist∪{enew}

)
\{e′′}

12: reached :=
(
reached∪{enew}

)
\{e′′}

13: if ¬ stop(e′, reached) then
14: waitlist := waitlist∪{e′}
15: reached := reached∪{e′}
16: return reached

blk : E × G → B, which maps an abstract state e and a
CFA edge g to true or false. The operator blk is given as
parameter to the analysis. The second case does not compute
an abstraction, but purely syntactically assembles the precise
strongest postcondition 2. Thus, the choice of blk determines
the block-encoding (i.e., how much to collect in the path
formula before abstraction). Most instances of the block-
adjustment operator will eventually return true for every path
through the CFA, otherwise the analysis might not terminate
if the program contains loops. The precision of the predicate
abstraction can vary between program locations (parsimonious
precision [7]).

3. The merge operator merge : E×E → E for two abstract
states e1 = (l1,ψ1, lψ

1,ϕ1) and e2 = (l2,ψ2, lψ
2,ϕ2) is defined

as follows: merge(e1,e2) ={
(l2,ψ2, lψ

2,ϕ1∨ϕ2) if (l1 = l2)∧ (ψ1 = ψ2)∧ (lψ
1 = lψ

2)

e2 otherwise

This operator combines the two abstract states using a disjunc-
tive path formula, if the location of the abstract states is the
same and they were derived from the same abstraction states,
i.e., the abstraction formulas are equal and were computed at
the same program location 3.

4. The stop operator stop : E×2E →B checks if e is covered
by another state in the reached set:

∀e ∈ E,R⊆ E : stop(e,R) = ∃e′ ∈ R : (ev e′)

2 The strongest postcondition as defined in the preliminaries in fact contains
existential quantifiers. However, our implementation of the transfer relation
uses an SP that operates on SSA-like quantifier-free formulas.

3 Two identical abstraction states never exist in the reached set due to
the stop operator, which would eliminate the second instance of the same
abstraction state before insertion into the reached set. Thus, the ARG restricted
to abstraction states still represents a tree (ART).

B. Discussion: SBE, LBE, BMC, and in Between

A fundamental improvement of adjustable-block encoding
over the previous work with blocks hard-coded in the pre-
processed CFA is that now other abstract domains that the
ABE analysis is combined with, can work each with different
(perhaps also adjustable) block sizes, which are not dictated
by the pre-processed CFA. The great flexibility of ABE results
from the possibility to freely choose the blk operator. Two
particular possibilities are blksbe and blklbe. The operator blksbe

returns always true, and thus the transfer computes the pred-
icate abstraction after every CFA edge. The operator blklbe

returns true if the successor location of the given edge is the
head location of a loop, and thus the transfer computes the
predicate abstraction at loop heads. Therefore, the analysis
can easily be configured to behave exactly like SBE or LBE.
Another possible choice for blk is to compute an abstraction
if the length of the longest path represented by the path
formula ϕ of the abstract state exceeds a certain threshold.
But the decision made by blk does not necessarily have to
be based only on statically available information. We could
for example measure the memory consumption of the path
formula and compute abstractions if the path formulas become
too large. Or we could measure the time needed to compute
the abstractions and adjust the block encoding such that a
single computation does not take more than a certain amount
of time. Thus, one could write a block-adjustment operator
that is tailored to the SMT solver that is used, i.e., to delegate
problems to the solver that are large enough to benefit from
the SMT technology, and at the same time small enough to not
overwhelm the solver. In our experiments, we demostrate the
usefulness of the ABE approach using a few simple choices
for the operator blk. In particular, the experiments indicate that
useful block-adjustment operators should respect the control-
flow structure of the program.

We did not describe how the precision Π for programs is
computed, because we use a standard approach that is based
on CEGAR, lazy abstraction, and Craig interpolation. We
consider only abstraction states for the abstract reachability
tree (ART). The merge operator ensures that the abstrac-
tion states form a tree (abstraction states are never changed
by merge). The formulas of the error path are the (disjunctive)
path formulas that were constructed during the creation of
the abstraction states along this path and which were used
as inputs for the abstraction computation. The only differ-
ence is that now a single formula represents one or several
paths between two arbitrary locations of the CFA, and not
necessarily only one CFA edge as before. The interpolation
will then produce predicates for those locations at which an
abstraction was computed, so the new predicates will be used
in the next iteration of the analysis if the block-adjustment
operator returns the same value. The possiblity of dynamic
block-adjustment operators, i.e., determining different abstract
states as abstraction states depending on the overall progress of
the analysis, raises the interesting question of where to add the
predicates extracted from the interpolants. Currently, we refine
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the predicate precision of the program only at the abstraction
states, but we could in principle also add the predicates to all
locations between the previous and current abstraction state.

IV. Experiments

Implementation. We implemented adjustable-block encoding
in CPACHECKER, which is a software-verification framework
based on configurable program analysis. The tool accepts
programs in C Intermediate Language [22] (other C programs
can be pre-processed with the tool CIL). CPACHECKER uses
MATHSAT [11] and CSISAT [9] as SMT solvers.

Our implementation uses the following optimizations:
(1) The feasibility of abstract paths is checked only at ab-
straction states. This does not negatively affect the precision
of the analysis because abstract states with the error loca-
tion are always abstraction states. (2) Instead of constructing
postconditions that include existential quantifiers, we leave
the variables in the path formulas and use a simple form of
skolemization, which is equivalent to static single-assignment
(SSA) form [16] (well-known from compilers). A tutorial-
like example of this process is provided in an article about
BLAST [7]. (3) When the operator stop checks if an abstract
state e is covered by a non-abstraction state e′, we do not
perform a full SMT check for the implication that the partial
order requires; instead we do a quick syntactical check that
compares the path formulas of both states. This check will
correctly detect that e is covered by e′ if e was merged into
e′, but may fail in other situations. This is sound, and faster
than a full SMT check.

Benchmark Programs. We experimented with three groups
of C programs, which are similar to those previously used [6].
The first group (test_locks_*) was artificially created to
show that SBE leads to exponentially many abstract states.
Several nested locks are acquired and released in a loop. The
number in the name indicates the number of locks in the
program. The second group contains several (parts of) drivers
from the Windows NT kernel. The third group (s3_*) was
taken from the SSH suite. The code contains a simplified
version of the state machine handling the communication
according to the SSH protocol. Both the NT drivers and
the SSH examples were pre-processed manually in order to
remove heap accesses, and automatically with CIL v1.3.6. The
examples with BUG in the name have artificially inserted bugs
that cause assertions to fail. All examples are included in the
CPACHECKER repository together with the used configurations.

All experiments were performed on a machine with 2.8 GHz
and 4 GB of RAM. The operating system was Ubuntu 9.10
(64 bit), using Linux 2.6.31 as kernel and OpenJDK 1.6 as
Java virtual machine. We used CPACHECKER, branch ‘abe’,
revision 1457, with MATHSAT 4.28 as SMT solver. The times
are reported in seconds and rounded to three significant digits.
In cases where CPACHECKER needed either more than 1800 s or
more than 4 GB of RAM, the analysis was aborted, indicated
by “> 1800” or “MO”, respectively. CPACHECKER reports the

correct verification result in all cases, i.e., a counterexample
for all programs with BUG, and safety for all other programs.
Configurations. We experimented with different choices of
the block-adjustment operator of ABE, which we classify into
three categories: (1) we repeat the experiments with LBE from
previous work [6], (2) we perform new experiments to explore
the spectrum of encodings between SBE and LBE, and (3) we
explore new encodings larger than LBE. Our implementation
supports functions, and thus we extend the operator blklbe such
that it returns true at loop heads and function entries/returns.
We measure the length of a block that is encoded in an abstract
state e as the length (in ops) of the longest path represented
in the disjuncive path formula of e.

We have also experimented with cartesian vs. boolean
abstraction, and not only re-confirm the results from previous
experiments [6] (SBE: cartesian works best, LBE: boolean is
best); we conclude that cartesian abstraction becomes unusably
imprecise as soon as the block length is more than 1 op. Thus,
boolean abstraction must be used for all non-SBE encodings.

A. LBE: Pre-Processed versus On-the-Fly

Due to the overhead that is caused by the on-the-fly encod-
ing and some additional abstraction computations, a certain
performance loss is expected. We started our experiments
with confirming that the negative impact of the overhead on
the performance is not dramatic. The results are reported in

Program Pre-proc. LBE LBE (blklbe)
test_locks_5.c .170 .483
test_locks_6.c .370 .398
test_locks_7.c .237 .875
test_locks_8.c .305 .437
test_locks_9.c .202 .510
test_locks_10.c .266 .746
test_locks_11.c .256 .416
test_locks_12.c .248 .486
test_locks_13.c .240 .769
test_locks_14.c .227 .787
test_locks_15.c .466 .896
cdaudio1.sim.c 11.7 51.5
diskperf1.sim.c 537 146
floppy3.sim.c 7.04 20.1
floppy4.sim.c 8.35 32.2
kbfiltr1.sim.c 1.27 2.57
kbfiltr2.sim.c 1.73 3.75
cdaudio1_BUG.sim.c 5.26 32.5
floppy3_BUG.sim.c 2.97 11.1
floppy4_BUG.sim.c 4.58 20.1
kbfiltr2_BUG.sim.c 1.96 2.28
s3_clnt_1.sim.c 15.9 14.6
s3_clnt_2.sim.c 12.8 35.4
s3_clnt_3.sim.c 19.5 17.8
s3_clnt_4.sim.c 36.6 9.59
s3_srvr_1.sim.c 16.6 31.2
s3_srvr_2.sim.c 107 86.7
s3_srvr_3.sim.c 109 14.1
s3_srvr_4.sim.c 441 160
s3_srvr_6.sim.c 456 45.7
s3_srvr_7.sim.c 321 136
s3_srvr_8.sim.c >1800 21.2
s3_clnt_1_BUG.sim.c 1.22 2.81
s3_clnt_2_BUG.sim.c 2.12 2.06
s3_clnt_3_BUG.sim.c 1.26 3.14
s3_clnt_4_BUG.sim.c 2.03 2.54
s3_srvr_1_BUG.sim.c 1.43 1.62
s3_srvr_2_BUG.sim.c 1.55 2.71

TABLE I
COMPARISON OF PRE-PROCESSED LBE WITH ADJUSTED LBE (blklbe)
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Program SBE k = 10 k = 20 k = 30 k = 40 k = 50 k = 60 k = 70 k = 80 k = 90 k = 100 LBE
test_locks_5.c 6.36 3.42 1.02 1.29 .367 .695 .397 .292 .587 .468 .507 .483
test_locks_6.c 13.1 3.03 1.90 1.36 .690 .334 .527 .428 .637 .790 .323 .398
test_locks_7.c 34.8 5.71 1.30 3.26 .516 1.06 .800 .326 .591 .355 .807 .875
test_locks_8.c 102 25.8 3.82 1.86 1.20 1.27 .414 .392 .670 .575 .680 .437
test_locks_9.c 298 67.7 12.4 6.97 1.67 1.63 .543 .454 .551 .667 .705 .510
test_locks_10.c 1250 109 7.53 6.59 3.79 1.24 .679 .588 .805 .845 .993 .746
test_locks_11.c >1800 244 26.7 4.71 6.73 1.71 .906 .992 1.20 .905 .418 .416
test_locks_12.c >1800 >1800 88.5 20.6 3.08 5.31 1.32 1.04 .995 1.35 .728 .486
test_locks_13.c >1800 MO 134 71.5 7.12 2.78 2.29 1.48 1.77 1.05 1.09 .769
test_locks_14.c >1800 MO >1800 580 19.6 17.6 4.61 2.25 2.07 1.13 .915 .787
test_locks_15.c >1800 >1800 >1800 >1800 32.2 22.3 23.1 5.56 2.71 2.46 1.40 .896
cdaudio1.sim.c MO 210 119 51.9 52.9 54.5 49.0 52.6 58.1 53.8 53.5 51.5
diskperf1.sim.c MO 855 155 171 163 168 158 152 154 146 167 146
floppy3.sim.c 559 80.5 23.6 19.3 25.5 23.1 20.0 21.0 21.1 19.8 17.9 20.1
floppy4.sim.c MO 212 54.0 28.8 41.4 39.2 35.2 31.7 32.6 32.8 44.6 32.2
kbfiltr1.sim.c 48.2 10.1 3.72 2.66 3.28 2.82 2.15 2.49 1.83 1.89 2.81 2.57
kbfiltr2.sim.c 128 59.1 10.2 5.26 5.90 7.93 4.12 4.56 4.19 4.67 3.94 3.75
cdaudio1_BUG.sim.c 158 106 151 32.6 36.7 38.6 32.7 35.5 40.0 33.4 31.9 32.5
floppy3_BUG.sim.c 75.8 45.9 13.9 12.1 13.9 11.3 11.2 9.38 9.11 10.5 10.4 11.1
floppy4_BUG.sim.c 77.4 150 39.0 16.9 30.4 31.3 26.1 21.3 22.2 23.3 23.1 20.1
kbfiltr2_BUG.sim.c 156 16.5 3.25 4.16 3.22 3.37 2.89 3.22 2.19 2.36 2.27 2.28
s3_clnt_1.sim.c MO MO MO MO MO 41.3 27.8 13.4 10.8 445 45.0 14.6
s3_clnt_2.sim.c MO MO MO MO MO 34.4 45.0 16.2 12.8 569 49.1 35.4
s3_clnt_3.sim.c MO MO MO MO MO 45.7 238 309 24.6 MO 36.4 17.8
s3_clnt_4.sim.c MO MO MO MO MO 38.1 17.7 24.2 9.53 441 28.4 9.59
s3_srvr_1.sim.c >1800 MO MO MO MO 43.7 MO 712 113 MO 47.8 31.2
s3_srvr_2.sim.c MO MO MO MO MO 462 33.2 MO 340 MO 98.5 86.7
s3_srvr_3.sim.c >1800 MO MO MO MO 32.9 11.5 31.1 24.7 MO MO 14.1
s3_srvr_4.sim.c >1800 MO MO MO MO 325 56.4 12.1 22.0 MO 45.6 160
s3_srvr_6.sim.c >1800 MO MO MO MO MO 83.8 638 MO 50.8 MO 45.7
s3_srvr_7.sim.c >1800 MO MO MO MO MO 133 458 MO MO 315 136
s3_srvr_8.sim.c >1800 MO MO MO MO MO 18.9 42.7 26.8 155 565 21.2
s3_clnt_1_BUG.sim.c 667 67.5 20.4 8.78 11.8 3.82 2.39 2.25 2.16 7.87 4.19 2.81
s3_clnt_2_BUG.sim.c 677 135 26.6 14.2 10.2 3.93 3.05 1.94 2.59 6.47 3.58 2.06
s3_clnt_3_BUG.sim.c 653 55.3 18.6 19.6 6.20 3.62 2.72 3.27 1.93 9.87 3.45 3.14
s3_clnt_4_BUG.sim.c 646 78.0 33.8 15.2 5.42 3.73 2.35 1.86 2.68 8.91 3.64 2.54
s3_srvr_1_BUG.sim.c 42.2 14.9 9.44 2.03 3.01 1.49 2.64 2.32 2.35 5.22 1.47 1.62
s3_srvr_2_BUG.sim.c 35.6 60.4 6.18 2.72 4.80 2.65 1.09 2.03 1.61 5.00 3.32 2.71

TABLE II
RESULTS FOR blksbe , FOR blklbe

k WITH k FROM 10 TO 100, AND FOR blklbe

Fig. 5. Results for blksbe, for blklbe
k with k from 10 to 100, and for blklbe
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Program LBE k = 50 k = 100 k = 150 k = 200 k = 250 k = 300
cdaudio1_BUG.sim.c 32.5 26989 451 49240 168 6428 11.1 444 12.9 114 15.9 105 13.4 181
floppy3_BUG.sim.c 11.1 4059 51.4 4697 20.1 1207 6.17 217 7.81 99 10.9 112 4.03 43
floppy4_BUG.sim.c 20.1 11066 87.7 7734 43.7 2491 11.8 177 14.2 167 10.4 161 6.63 55
kbfiltr2_BUG.sim.c 2.28 660 3.75 424 1.94 57 1.45 52 2.22 24 1.07 0 1.10 0
s3_clnt_1_BUG.sim.c 2.81 16 14.6 743 MO - 5.39 38 3.63 33 4.67 10 6.57 20
s3_clnt_2_BUG.sim.c 2.06 20 3.70 146 2.94 51 3.41 28 MO - 4.48 9 5.07 18
s3_clnt_3_BUG.sim.c 3.14 22 14.6 795 MO - MO - 13.1 44 7.06 7 5.27 7
s3_clnt_4_BUG.sim.c 2.54 22 5.21 218 4.46 78 MO - 13.2 125 5.32 9 6.17 19
s3_srvr_1_BUG.sim.c 1.62 13 6.01 303 1.28 38 3.24 10 MO - 1.90 2 2.13 7
s3_srvr_2_BUG.sim.c 2.71 13 4.61 306 MO - 2.24 10 MO - 1.97 2 2.01 7
test_locks_5.c .483 4 1.21 22 1.03 10 2.05 7 1.09 5 1.65 3 2.49 2
test_locks_6.c .398 4 71.4 2258 2.26 84 2.22 40 2.18 12 1.11 1 1.47 1
test_locks_7.c .875 4 3.17 120 2.48 17 1.11 1 1.66 10 7.16 26 5.90 60
test_locks_8.c .437 4 3.33 180 .578 1 1.16 14 8.71 144 1.78 1 5.49 7
test_locks_9.c .510 4 2.37 89 .880 2 11.2 192 3.49 19 2.62 10 15.5 47
test_locks_10.c .746 4 1.83 118 .677 10 4.97 144 32.1 114 11.2 38 1.57 1
test_locks_11.c .416 4 3.85 164 1.59 22 3.80 27 1.75 18 8.51 95 3.19 14
test_locks_12.c .486 4 33.0 1985 MO - 1.12 1 17.2 98 1.29 1 185 537
test_locks_13.c .769 4 24.4 285 324 4628 .626 1 37.8 470 1.48 3 24.1 232
test_locks_14.c .787 4 179 79 77.1 1202 1.01 2 10.0 220 4.43 22 27.8 107
test_locks_15.c .896 4 1580 1268 154 2234 1.80 10 4.93 37 367 1255 1.28 1

TABLE III
RESULTS AND NUMBER OF ABSTRACTIONS FOR blklbe AND FOR blkk WITH k FROM 50 TO 300

Table I. Column ‘Pre-proc. LBE’ reports the performance of
the previous implementation [6], which first transforms the
CFAs of the program in a pre-processing step into new CFAs
that reflect the large-block encoding, and then the analysis is
performed. Column ‘LBE (blklbe)’ reports the performance of
the new, more flexible implementation, with the block operator
adjusted to blklbe. The simple old implementation is faster
on most example programs, as expected, but the difference
is not dramatic, and also inconsistent, i.e., there are several
examples on which the new approach performs as good or even
better. Thus, although it might seem wasteful to explore a huge
number of extra states without performing any abstraction,
just to assemble the strongest-postcondition formula for the
encoded block on-the-fly, this table shows that in fact the
overhead is not dramatic.

B. Block Sizes between SBE and LBE

The second set, of novel configurations, is based on the
new block-adjustment operator blklbe

k : E ×G→ B, which is
defined as the disjunction blklbe ∨ blkk. The operator blklbe

k
returns true if either the longest path represented by the
disjunctive path formula of the abstract state is longer than
k ∈ N \ {0} or the successor location is a loop/function
head. Only a few examples have blocks longer than 100 ops
when analyzed with LBE, thus, we analyze the examples for
k ∈ {10,20,30,40,50,60,70,80,90,100}.

Table II shows the results for the three groups of example
programs. The examples test_locks_* and the NT drivers
show an exponential performance improvement with growing
blocks. The diagram with a logarithmic time axis in Fig. 5
illustrates this for the first group of examples. The blocks of
blklbe

k are never longer than in LBE, and thus, there is no
further performance improvement beyond a certain program-
dependent threshold. The SSH programs with artificial bugs
follow the same trend. The safe SSH programs do not follow
such a clear trend and instead, their performance extremely
depends on the block size. This indicates the superiority of
blklbe over blklbe

k for blocks that are smaller than in the LBE
encoding: the operator blkk cuts off the formulas at an arbitrary

position, ignoring the structure of the control flow and thus
destroying the advantage of encoding larger blocks. LBE, i.e.,
the encoding with the largest blocks, is the only configuration
that can verify all examples, and is the best for most examples.

It is important that the block-encoding encloses ‘whole
structures’, i.e., that a block not only contains a few branches,
but that it actually contains the branches until they meet again
(for example, a whole ‘if’ structure). This is demonstrated by
the fact that encodings smaller than LBE are sometimes not
performing well (cf. s3_clnt_3.c with k = 50 vs. k = 60;
in particular, note the MO for k = 90). This is particularly im-
portant for loop unrollings: coverage checks can be done most
efficiently at abstraction states, thus, abstraction computations
should ideally occur at matching locations of the loop body.

C. Block Sizes larger than LBE

In the third set of experiments, we evaluated new configura-
tions with blocks larger than LBE. It is known that shallow
bugs can efficiently be found by a technique called bounded
model checking, where programs are unrolled up to a given
bound of the length, and a formula is constructed which
is satisfiable iff one of the modeled program paths reaches
the error location. We apply a similar technique to find
bugs using our ABE approach: in this set of experiments,
we use the block-adjustment operator blkk : E × G → B,
which returns true if the block is k operations long, with
k ∈ {50,100,150,200,250,300}.

Table III reports the time and number of abstraction com-
putations needed to find the error, in the first part of the table.
The benefit of ever larger block encodings is clearly indicated.
The performance of this configuration for finding bugs is
almost comparable to the performance of a highly tuned tool
for bounded model checking (BMC) [10]: we analyzed the
programs with CBMC [13] and the runtimes were less than
6 s for every NT driver example with bug. It is interesting to
consider the number of abstractions in our table; there are even
two cases where the large size of the block encoding makes it
possible to find the bug without any abstraction computation
or refinement step (this would be equivalent to BMC).
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As the results look promising, very large block encodings
might be a way to reduce the number of abstraction com-
putations, which in turn improves both precision and perfor-
mance. Therefore, we also experimented with the examples
that do not have bugs. The performance of the examples
test_locks_* are shown in the second part of Table III.
The results show that the performance can dramatically de-
crease if the block is terminated after a certain number
of operations regardless of the control-flow structure. The
performance of the NT driver examples without bug did not
improve, because the effect of the loop bodies seems efficiently
represented by the abstractions at the loop heads (or loop
bodies are not relevant for the property to verify). The results
for the SSH programs were mixed. Only some configurations
provide better performance than LBE for a few programs.
However, there were many examples for which much more
time is needed, or the analysis even fails to terminate. Almost
all time is spent by the SMT solver while computing Craig
interpolants, and the resulting formulas are sometimes huge.
The SMT solvers seem to be overwhelmed by the complexity
of the large disjunctive path formulas. A comparison of differ-
ent SMT solvers (MATHSAT, CSISAT) shows that different
solvers perform well on different examples. Thus, we can
conclude that there is much room for improvement when a new
generation of SMT solvers is available which can handle large
interpolation queries (only three interpolating SMT solvers are
currently available: MATHSAT [11], CSISAT [9], FOCI [21]).

V. Conclusion
Software model checking largely depends on automated the-
orem proving, and the efficiency and precision have signifi-
cantly improved over the last years due to ever better theorem
provers. We have designed and implemented a model-checking
approach which makes it possible to flexibly choose how much
of the state-space exploration is delegated to a theorem prover.
A previous project had already indicated that it is highly
beneficial to design the model-checking process such that
larger queries can be given to a theorem prover, and less state-
space is explored by the software model checker itself [6].
Our work provides answers to several new experimental
questions: (1) We should generally use boolean abstraction
in software model checking, because cartesian abstraction is
feasible only for one (the traditional, SBE) configuration.
(2) On the full spectrum between single-block encoding (SBE)
and large-block encoding (LBE), there is no configuration of
the block size that is generally better than LBE. (3) Encodings
in the spectrum far beyond LBE can significantly improve
the performance for finding bugs, similar to bounded model
checking. We have also identified room for improvement for
block encodings larger than LBE. 4 We leave it for future work
to explore improvements of interpolation procedures, and to

4 For example, the “very large block” encodings should not be defined as a
strict k-bound, but respect the control structure of the program (e.g., compute
an abstraction after each control-flow subgraph of size more than k) — the
ABE approach opens a large spectrum of possibilities.

assemble structurally better encoding formulas that are ‘easier’
for theorem provers, restrict the size of the interpolation
queries, or help the SMT solver where needed by keeping
structures explicit. We found it convenient to formalize our
concept of ABE using the framework of configurable program
analysis [8]; but we have only specified explicitly what ABE
means for a predicate-analysis domain, and have not yet
designed any other abstract domains (e.g., numerical domains)
with adjustable-block encoding.
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Modular Bug Detection with Inertial Refinement
Nishant Sinha

NEC Research Labs, Princeton, USA

Abstract—Structural abstraction/refinement (SAR) [4] holds
promise for scalable bug detection in software since the ab-
straction is inexpensive to compute and refinement employs pre-
computed procedure summaries. The refinement step is key to
the scalability of an SAR technique: efficient refinement should
avoid exploring program regions irrelevant to the property being
checked. However, the current refinement techniques, guided
by the counterexamples obtained from constraint solvers, have
little or no control over the program regions explored during
refinement. This paper presentsinertial refinement (IR), a new
refinement strategy which overcomes this drawback, byresisting
the exploration of new program regions during refinement: new
program regions are incrementally analyzed only when no error
witness is realizable in the current regions. The IR procedure is
implemented as part of a generalized SAR method in theF-SOFT
verification framework for C programs. Experimental comparison
with a previous state-of-the-art refinement method shows that IR
explores fewer program regions to detect bugs, leading to faster
bug-detection.

I. I NTRODUCTION

Modular program analyzers [30], [28], [12], [6], [32], [31],
[4], [7] that exploit the program structure are more scalable
since they avoid repeated analysis of program regions by com-
puting reusable summaries. Traditional modular methods [30],
[28] target proofs of program assertions by computing and
composing summaries in an intertwined manner. For example,
to compute a summary for a functionF , the methods need to
compute and compose the summaries of all the callees ofF ,
even if many of these callees are irrelevant to checking the
property at hand. Recent methods based on structural abstrac-
tion/refinement (SAR) [4], [31], [12] alleviate this problem by
dissociating summary composition from computation: function
summaries and verification conditions [16] are firstcomputed
locally by skipping the analysis of callees (abstraction phase)
and thencomposed lazilywith callee summaries (refinement
phase). Refinement is property-driven and employs an efficient
constraint solver (e.g., [15], [13]) for the program logic. In
contrast to other abstraction/refinement methods, e.g., predicate
abstraction [17], [5], computing a structural abstraction is
relatively inexpensive, and refinement is done incrementally via
pre-computed function summaries. Owing to these advantages,
several recent methods [31], [4], [2], [7] have exploited the idea
of SAR for scalable bug detection.

By dissociating summary computation from composition,
SAR has the ability toselectwhich regions to explore during
the refinement phase for checking properties efficiently. The
selective refinement strategy determines the efficiency of an
SAR-based verification method. Ideally, we desire anoptimal
strategy, which explores (composes with) exactly those pro-
gram regions which are relevant to a given property. Optimal
refinement is as hard as the (undecidable) program verification
problem since it may require a knowledge of the complete
program behavior for making a selection. Consequently, re-
searchers employ heuristics [4], [31] for performing refine-
ment, guided by the counterexamples obtained when the solver
checks the abstract model [23], [10]. The solver, however, is

oblivious of the program structure, and may produce spuri-
ous counterexamples that continuously drive the refinement
towards newer program regions, even though a witness may
exist undetected in the currently explored regions. Redundant
refinement of this form burdens the solver with irrelevant
summary constraints, leading to dramatic increase in solving
times, and, in many cases, to the failure of an SAR-based
method.

This paper presents a new structure-aware method, called
inertial refinement(IR) to overcome this drawback. TheIR
methodresistsexploring new program regions during refine-
ment, as much as possible, in hope of finding a witnesswithin
the currently explored regions. Given a program assertionA,
our method computes an initial abstracterror condition φ
for violating A, by exploring program paths in a small set
of regions relevant toA, while abstracting the other adjacent
regions. To check ifφ is feasible,IR first symbolicallyblocks
all unexplored program regions involved inφ, by adding
auxiliary constraints to the solver. This forces the solver to
find witnesses toφ that avoid the unexplored regions. If such
a witness exists,IR succeeds in avoiding the costly analysis
of the unexplored regions. Otherwise,IR explores aminimal
set of new program regions that may admit an error witness.
The minimal set of regions are computed in a property-driven
manner by analyzing the proofs of infeasibility inside the
solver (based on the notion ofminimal correcting sets[24]),
which provide hints as to why the currently explored regions
are inadequate for checking the property.IR has multiple
advantages as a refinement method.IR improves the scalability
of SAR-based methods by restricting search to a small set of
program regions, leading to morelocal witnesses than other
methods. Moreover,IR exploits the fact that most bugs can be
detected by analyzing a small number of program regions [3],
[26].

All previous methods based on SAR [31], [4], [2], [7]
restrict structural abstraction to function boundaries. This paper
proposes ageneralizedSAR scheme that may abstract (and
later refine on-demand) arbitrary program regions, including
loops. As a result, SAR can exploit the entire modular program
structure to make a more fine-grained selection of regions to
explore for checking properties efficiently. A consequence of
this generalization is that we do not statically unroll loops
and recursive functions for checking properties; they are dy-
namically unrolled in a property-driven manner by inertial
refinement. The paper makes the following main contributions:

• We present a modular bug detection method based on a
new generalizedstructural abstraction/refinement (SAR)
approach, which fully exploits the modular structure of
a program (functions, loops and conditionals) to perform
an efficient analysis.

• We propose a new structural refinement method, called
inertial refinement, which avoids exploring new program
regions until necessary. The technique is property-guided
and employsminimal correcting sets[24] produced by
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1 int x,y;
2 void foo ( int ∗p, int c) {
3 if (p == NULL)
4 x = c;
5 else x = bar (∗p);
6 ...
7 assert (x> c);
8 ...
9 if (x == c)

10 y = neg(x );
11 else y = 0;
12 assert (y>= 0);
13 }

1 int neg (int a) {
2 if (a > 0) return −a;
3 else return a;
4 }

1 void loopf ( int n) {
2 int i=0, j=0;
3 while ( i < n) {
4 j = j + 2 ∗ i ;
5 i++;
6 }
7 assert (n>= 0 &&
8 j < 2∗n);
9 }

Fig. 1: Motivating Examples. The complex functionbar is not
described.

constraint solvers [15], [13] to efficiently select new
regions to explore.

• The SAR method with inertial refinement is imple-
mented in the F-SOFT verification framework for C pro-
grams [19]. Experimental results on real-life benchmarks
show that the method explores fewer regions than a state-
of-the-art refinement technique [4], and outperforms the
previous approach on larger benchmarks.

II. OVERVIEW
We illustrate the key ideas of inertial refinement for checking

the functionfoo in Fig. 1: foo contains a call to a complex
function bar (line 5) and two assertions at lines 7 and 12,
respectively. Consider the assertion (sayA) at line 7 infoo:
to check this assertion, SAR first computes anerror condition
(EC) under whichA is violated. This EC, sayφ, represents
the feasibility condition for all program executions infoo
which terminate atA and violateA. To computeφ, our
method exploresfoo locally (cf. Sec. III) by performing
a precise data-flow analysis: a form of forward symbolic
execution [20] with data facts being merged path-sensitively
at join nodes [21], [3]. The analysis propagates data of form
(ψ, σ) throughfoo: ψ is the path condition at the current
program location (summarizing the set of incoming paths to the
location symbolically) andσ is a map from program variables
to their path-sensitive (symbolic) values at the current location.

To avoid exploringbar at line 5, the method performs
structural abstraction ofbar during propagation: the effect
of bar is abstracted by a tuple(πb, [retbar 7→ λb,ret]), where
the placeholder (essentially, a free variable)πb abstracts the
set of paths throughbar symbolically, and the placeholder
λb,ret abstracts the return value ofbar. For example, the
value ofx computed at line 6 (obtained by merging data from
the branches of the conditional at line 3) isx1 = ite(p 6=
0 ∧ πb, λb,ret, c) and the path condition isψ′ = ((p 6=
0 ∧ πb) ∨ (p = 0)). The ECφ computed forA at line 7 (ψ′

conjoined with the negated assertion) isφ = ψ′ ∧ (x1 ≤ c).
Note thatφ depends on the two unconstrained placeholdersπb

and λb,ret corresponding tobar. Now, φ is checked with a
constraint solver, e.g., [15], [13] using structural refinement.
We will see how the placeholderπb plays a crucial role to
avoid exploring paths intobar.

Checkingφ with the solver may return a witness (lines 2-
5-6-7) that includes a call to the complex functionbar. This

witness relies on the abstraction ofbar by πb andλb,ret and
hence may be spurious, e.g., ifbar returns a value always
greater thanc. To check if the witness is an actual one,
refinement will expandπb andλb,ret with the corresponding
precise summaries frombar. Note, however, that line 4 sets
x to c, and hence an actual witness forφ exists insidefoo
(line 2-3-4-6-7) that does not require exploringbar. However,
this is not apparent fromφ syntactically and a naive SAR

checker will perform spurious refinement by expanding both
the placeholders.

More sophisticated refinement procedures may also suc-
cumb to spurious refinement. For example, the state-of-the-
art structural refinement strategy (referred to asDCR) [4],
[3] uses the satisfying model from the constraint solver to
compute a set of irrelevant placeholders, to avoid expanding
them subsequently. SinceDCR is guided only by the structure-
unaware solver, it may expand placeholders spuriously even if
a witness exists in the current regions. For example, suppose
the solver generates the following model for the ECφ above:
(p 6= 0) and (πb = true). DCR analyzes the expression
for φ guided by this model and concludes that bothπb and
λb,ret are relevant toφ being satisfiable. Therefore,DCR
must perform the costly expansion of both the placeholders.
Similarly, another structural refinement procedure [31] driven
only by models from a constraint solver may also explorebar
when trying to concretize an abstract counterexample.

In contrast, our inertial refinement (IR) procedure (cf.
Sec. IV) resists expansion and checks if a proof/witness to
φ exists within the currently explored region. To this goal, the
analysisblockspaths leading to the unexplored functionbar
by adding a constraint¬πb to φ and then checks for a solution.
If a solution is found, as in this case, the method is able to
avoid the cost of a spurious refinement. Otherwise,IR selects
a minimal set of new regions to explore, which may admit an
error witness (cf. Sec. IV).

Most bug finding approaches [4], [9], [32] statically unroll
the loops to a fixed depth, which may lead to several errors
being missed. Although loops may be also handled as tail-
recursive functions in SAR (as in [31]), conventional static
analysis [11] seldom does so. We propose a structural abstrac-
tion specific to loops, so that inertial refinement corresponds
to dynamicallyunrolling loop iterations in a property-driven
manner (cf. Sec. IV-A). As a result, our method can check
non-trivial assertions, e.g., the assertion at line 7 in theloopf
function in Fig. 1 is violated only whenn ≥ 3.

III. G ENERALIZED STRUCTURAL ABSTRACTION

We start with describing ourgeneralizedstructural abstrac-
tion, which forms the basis of our SAR method and may
abstract arbitrary programregions, as defined below.
Program Regions. A program regionR corresponds to a
structural unit of the program syntax, i.e., a function body, a
loop or a conditional statement. To formalize regions precisely,
we view a sequential C programP as a hierarchicalrecursive
state machine(RSM)M [1]. The RSMM consists of a set of
regions: each region contains a control flow graph, which in
turn consists of (i) a set ofnodes(labeled by assignments), (ii)
a set ofboxes(each box is, in turn, mapped to a region), and
(iii) control flow edges among nodes and boxes (labeled with
guards). Each region also has specialentry and exit nodes.
An unfolding [1] of M is obtained by recursively inlining
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SAR (ProgramP)
R := PartitionP into regions
foreach regionR ∈ R do

(ψR, σR,ΦR) := LOCSUMMARIZE (R)
Φ := HOIST(ΦR)
foreachφ ∈ Φ do

res := REF(φ)
/* Report witness ifres is SAT */

REF(φ)
while φ contains placeholdersdo

if CHECK (φ) = UNSAT then
return UNSAT

Pick a placeholderλ in φ
t = GETSUMMARY (λ)
φ := φ[λ 7→ t]

return SAT

Algorithm 1: A generic modular analysis algorithm SAR.

each box by the corresponding region. An edge from a node
to a box is said to be acall edge. A program regionR1 is
said toprecedeanother regionR2, if R1 contains a box that
maps toR2, i.e., control flow entersR2 on leavingR1. We
also say thatR2 succeedsR1 in this case. We assume that
assertions for property checking, e.g., dereference safety, array
bound violations, etc., are modeled as specialerror nodesin
the RSMM ; the reachability of error nodes implies that the
corresponding assertion is violated.

For example, the program fragment in Fig. 1 consists of
the following top-level regions: function bodiesfoo, neg
and loopf. Regionfoo contains two boxes mapped toif-
then-else(conditional) regionsC1 (lines 3-5) andC2 (lines
9-11); both regions succeed regionfoo. C1 andC2, in turn,
contain boxes mapped tobar and neg function regions,
respectively. Similarly, theloopf function region contains a
box corresponding to theloop body region (lines 3-6). For
ease of description, we will refer to an inlined instance of a
region in a box as a region also. In the following, we use the
standard program analysis terminology [30], [12], extended to
RSM regions in a straightforward manner. In the following, we
will assume that the regions corresponding to conditionals are
inlined in the corresponding boxes; we will only differentiate
between function and loop regions.
Side-effects. For each program regionR, the side-effects
set M(R) denotes the set of program variables that may
be modified on executingR (together with its successors)
under all possible calling contexts. Theinputs to regionR
consist of the set of variables that are referenced inR. To
compute side-effects for programs with pointers, we assume
that the heap size is bounded (to handle dynamic allocation
and recursive data structures) and employ a whole-program
side-effect analysis [29], [31] to compute the side-effects.
Error Conditions. Given an error nodeeb in the program
RSM and a set of pathsT terminating ateb, the formula
representing the feasibility condition for the setT is said to be
an error condition (EC). In contrast to verification conditions
(VCs) [16], which express sufficient conditions for existence of
proofs, the satisfiability of ECs implies existence of assertion
violations. We say that an ECφ has a witness, ifφ has
a satisfying solution; otherwise, we say that the EC has a
proof. Note that an infinite number of ECs may be derived
from a locationeb (due to loops and recursion). Ourunder-
approximateanalysis checks only a finite subset of all the ECs
and therefore, guarantees only the soundness of bugs detected;
the proofs do not imply thateb is unreachable (cf. Theorem 1).
Structural Abstraction. Analyzing all program regions may

neither be feasible for a given program analysis nor necessary
for checking a given property. Structural abstraction enables a
property-driven modular analysis of programs while avoiding
the analysis of undesired regions, e.g., one or more nested
successor regions of a regionQ can be abstracted during
analysis ofQ. The structural abstraction of a regionR is a
tuple (πR, σR), where (i)πR is a Skolem constant(basically,
a fresh variable) summarizing the paths inR and (ii) σR is
a map with entries of form(v 7→ λv,R), wherev ∈ M(R)
is a side-effect ofR and λv,R is a Skolem constant which
models arbitrary modifications ofv in R. In the following,
the Skolem constantsπR and λv,R are jointly referred to as
placeholdervariables. We also refer to placeholders of form
πR as π-variables. The set of placeholders in the range of
σR are said todependon πR, and are denoted byDep(πR).
For example, the call tobar in the functionfoo in Fig. 1
(cf. Sec. II) is abstracted by the tuple(πb, [retbar 7→ λb,ret]),
whereλb,ret ∈ Dep(πb).

When the analysis encounters a call toR in a preceding
region Q, it conjoins the placeholderπR with the current
path conditionψ, updates the current value mapσ with σR,
and continues analyzingQ. If R is later found relevant to
an assertion inQ, the initial abstraction ofR is refined on-
demand. The abstraction has several advantages: first, it is
cheap (computation of side-effectsM(R) is done once for
the whole program); second, it allows on-the-fly refinement
using a summary ofR, which is computed only once, and
finally, it allows us to analyze programfragmentsin absence
of the whole program. Note that our formalization generalizes
the earlier approaches [31], [4] to handle all modular units of
a program, i.e., functions, loops and conditionals, uniformly.
As a result, SAR can perform a more fine-grained selection of
program regions to explore when checking an EC.

Alg. 1 presents a generic modular algorithm SAR for check-
ing assertions in a programP , having these phases:

• The algorithm first partitions the program into a set of
regionsR.

• For each regionR ∈ R, a procedure LOCSUMMARIZE

is used to compute alocal summary (by a forward data
flow analysis over program expressions [21], [3] or using
weakest preconditions [14], [16], [4]) while abstracting all
the successor regions ofR as above. The local summary
(ψR, σR,ΦR) consists of the predicateψR summarizing
the paths inR, the mapσR summarizing the outputs
(side-effects) ofR in terms of symbolic expressions over
inputs toR, and a set of error conditions (ECs)ΦR which
correspond to assertion violations inR.
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• The ECsΦR are local toR; in order to find violating
executions starting from the program entry function, these
ECs arehoisted [3], [7], [16] to the entry function of
the program by the HOIST procedure, which computes
weakest preconditions of ECs with respect to a bounded
set of calling contexts [30] to the regionR. Note that
HOIST may also use structural abstraction during back-
ward propagation [3].

• Finally, the procedure REF is used to check each hoisted
EC φ using structural refinement based on a constraint
solver, e.g., an SMT solver [13], [15]. REF proceeds
iteratively by choosing a placeholderλ in φ, expanding
λ using its summary expressiont (computed by the
GETSUMMARY procedure), and checking if the resulting
φ is satisfiable. The procedure REF terminates when the
solver finds the ECφ unsatisfiable (UNSAT) or ifφ does
not contain any placeholders and is satisfiable (SAT).

In this paper, we assume a partition of the program into only
function and loop regions, i.e., conditionals are inlined in the
predecessor regions. The details of the LOCSUMMARIZE , GET-
SUMMARY and HOIST procedures can be found elsewhere [3],
[21], [7], [16]; we will only concern ourselves with the REF

procedure, which is the prime bottleneck for the SAR method.
SAR is anunder-approximateanalysis, i.e., it analyzes only

a subset of all possible paths reaching an assertion violation.
Hence, it can only detect bugs soundly (cf. Theorem 1). SAR

can natively handle programs with arbitrary recursive functions
and loops: however, it may not terminate if an unbounded
number of iterations ofIR are needed during the check.
Example 1.Recall the program fragment shown in Fig. 1. Our
analysis first partitions the fragment into four regions:foo,
neg, loopf functions, and the loop body region (lines 3-6
in loopf). The procedure LOCSUMMARIZE then summarizes
each region, e.g., the summary offoo (shown below) consists
of path and side-effect summaries,ψfoo and σfoo, resp., and
a set of ECsΦfoo. To summarizefoo, the calls tobar and
neg are abstracted by placeholder pairs (πb, λb,ret) and (πn,
λn,ret) respectively.
ψfoo (ψ1 ∧ ψ2) whereψ1 = (p = 0 ∨ (p 6= 0 ∧ πb)),

ψ2 = ((x1 = c ∧ πn) ∨ (x1 6= c))
σfoo [x 7→ x1, y 7→ y1], wherex1 = ite(p 6= 0 ∧ πb, λb,ret, c)

andy1 = ite(x1 = c ∧ πn, λn,ret, 0)
Φfoo {Φ1,Φ2}; Φ1 = (ψ1 ∧ x1 ≤ c), Φ2 =(ψfoo ∧ y1 < 0)

All the ECs are then hoisted to the entry functions (foo and
loopf here): in this case, the ECs forfoo are already hoisted.
Finally, REF analyzes each ECφ in the entry function by
iteratively checkingφ and expanding placeholders.

Theorem 1:Let SAR compute an ECφ for an error location
l after hoisting. If REF(φ) returns SAT, then there exists a true
error witness tol.
Selective Refinement.In general, many placeholders in an
EC φ are not relevant for finding a proof or a witness, and
expanding them leads to wasteful refinement iterations along
with an increased load on the solver.Selectiverefinement,
therefore, focuses on selecting a subset of placeholders inφ
that are relevant to the property. This allows REF to terminate
early if there exist no relevant placeholders inφ. An additional
benefit of selective refinement is that, in many cases, recursive
programs can be analyzed without unbounded expansion of
the placeholders. We now present a new strategy for selective
refinement, calledinertial refinement.

IV. I NERTIAL REFINEMENT

The key motivation behind inertial refinement (IR) is to
avoid exploring irrelevant regions during modular analysis,
based on the insight that most violations involve only a small
set of program regions. To this goal,IR first tries to find a
witness/proof for an ECinside the program regions explored
currently, sayR. If IR is unsuccessful, thenR is inadequate
for computing a witness or a proof. Therefore,IR augments
R by a minimal set of successor program regions, which may
admit a witness. The new regions are selected efficiently based
on an analysis of why the current region setR is inadequate.
In order to describe the details ofIR, we first introduce the
notion of region blocking.
Region blocking.Recall (cf. Sec. III) that SAR may abstract a
regionR (when analyzing a predecessor regionQ) in form of a
tuple (πR, σR), whereπR is the path summary placeholder of
R andσR maps output variables inR to unique placeholders.
A region blockingconstraint (π-constraint, in short) for aπ-
variableπR is defined to beφπ = ¬πR. Assertingφπ when
checking an ECφ in the regionQ, forces the solver to find
witnesses byblocking the program execution paths that lead
from Q to R.

Figure 2 shows theIR procedure in form of a flow diagram.
IR proceeds by iteratively adding or removingπ-constraints,
until the result is satisfiable (SAT) or unsatisfiable (UNSAT). In
order to resist exploration of irrelevant regions, the procedure
first assertsπ-constraints (Φπ) for all π-variables in the current
EC φ. If φ remains satisfiable even after addingΦπ, the
procedure returnstrue, implying that a witness forφ exists
that does not involve traversing the blocked regions. Otherwise
(the constraints are UNSAT), a subsetφπ of π-constraints
is computed, whose removal leads to a satisfiable solution.
Note that the setφπ corresponds to a set of blocked regions
whose exploration may lead to the discovery of a concrete
witness toφ. If the setφπ is empty, then no witness forφ
exists (see Theorem 2), andIR returnsfalse. Otherwise,IR
performs exploration of the regions corresponding toφπ in
the following way. First, the paths to the blocked regions are
exposed by removing allπ-constraints inφπ. Then,IR refines
φ by expanding the placeholdersVπ in φπ and their depen-
dent placeholdersDep(Vπ) with the corresponding summary
expressions (cf. Sec. III).

The key step in theIR procedure is that of computing
φπ ⊆ Φπ efficiently. To this goal, we employ the notion
of a correction set(CS) of a set of constraints [24]: given
an unsatisfiable set of constraintsΨ, a correction setψ is a
subset ofΨ such that removingψ makesΨ \ψ satisfiable. To
obtain efficient inertial refinement, i.e., explore a small set of
blocked regions, we are interested in aminimal correcting set
(MCS), none of whose proper subsets are correction sets. The
notion of correction sets is closely related to that ofmaximal
satisfiable subsets(MSSs) [24], which is a generalization of
the solution of the well-known Max-SAT problem [24]. An
MSS is a satisfiable subset of constraints that is maximal,
i.e., adding any of one of the remaining constraints would
make it UNSAT. Thecomplementof an MSS consisting of
the remaining set of unsatisfied constraints is an MCS. For
example, the UNSAT constraint set((x), (¬x∨y), (¬y)) admits
three MCSs,(x), (¬x∨y), and(¬y), all of which areminimum.
Note that many approaches utilize unsatisfiable cores [27]
during refinement, e.g., for proving infeasibility of abstract
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Refine φ by expanding Vπ ∪ Dep(Vπ)

Fig. 2: Flow diagram for checking ECφ using inertial refinement.

counterexamples with predicate abstraction [18] or procedure
abstraction [31]. In contrast to the above approaches which try
to prove infeasibility in the concrete model (using cores), we
try to obtain constraints (MCS) that allow a witnessto appear
in the abstract model. The notion of MCSs is also related
to computing aninterestingwitness to a satisfiable temporal
logic formula by detecting vacuous literals [22]. Note that
computing MCSs is NP-hard and hence makesIR expensive
as compared to the light-weightDCR method [4] (cf. Sec. II),
which only needs a model from the solver. However, we expect
that exploring fewer regions inIR will compensate for the
extra cost.

An MCS for a set of constraintsΦ can be computed by
obtaining all the proofs of infeasibility (UNSAT cores) ofΦ
and then computing the minimalhitting literal set for this
set of UNSAT cores [24]. Many modern constraint solvers,
e.g., [15], allow for constraints with weights and solving Max-
SAT (MSS) problems natively. Therefore, we can compute
MCSs of π-constraints using these solvers by first asserting
π-constraints with non-zero weights and then computing the
subset of unsatisfiedπ-constraints in the weighted Max-SAT
solution. In our experiments, however, we used the previous
method of computing hitting sets: Max-SAT results obtained
from [15] were unfortunately erroneous and not usable.

The IR procedure can be implemented efficiently using
an incremental SMT solver (e.g., [15], [13]). These solvers
maintain an internalcontext of constraints to provide in-
cremental checking; constraints can be asserted or retracted
iteratively from the context while checking, and the solver is
able to reuse the inferred results effectively from the previous
checks. Alg. 2 shows the pseudo-code of the inertial refinement
algorithm REF-IR using such an SMT solver. REF-IR replaces
the naive REF procedure in the overall SAR algorithm (cf.
Sec. 1). The description uses the symbolctx to denote the
context of the incremental solver and the methods ASSERT

and RETRACT [15] are used for adding and removing con-
straints to the context incrementally. The procedure starts at
the BEGIN block by asserting the current ECφ in the solver’s
context. Depending on whether the context is satisfiable or
not, the control switches to the locations labeled byBLOCK
and EXPAND respectively (cf. Alg. 2). In theBLOCK case,
the region-blocking constraintsΦπ are asserted first. If the

resultant context is satisfiable, REF-IR returns with SAT result.
Otherwise, the control switches to the UNSAT label. Here, a
MCSφπ of π-constraints is computed to check if removing any
π-constraints may admit a witness toφ. If the MCS is empty,
no witness is possible and the procedure returns UNSAT.
Otherwise, all theπ-constraints in the MCS are retracted and
the ECφ is refined by expandingπ-variablesVπ in φπ together
with their dependent variablesDep(Vπ).

Theorem 2:The inertial refinement procedure REF-IR re-
turns SAT while checking an ECφ only if there exists a
concrete witness to the error node forφ.
Example 2.Recall the summary of the procedurefoo (Fig. 1)
presented in Example 1. The ECφ for the assertion at line 12
is (ψfoo ∧ y1 < 0), wherey1 = ite(x1 = c∧πn, λn,ret, 0) and
x1 = ite(p 6= 0 ∧ πb, λb,ret, c); φ contains twoπ-variablesπb

(bar) and πn (neg). (BEGIN ) Initially, φ is satisfiable, and
REF-IR (Alg. 2) switches to theBLOCK label.
(BLOCK ) The REF-IR procedure first blocks bothπb andπn

(addsπ-constraints¬πb, ¬πn), and checks for a solution. No
solution is found since all feasible paths infoo contain a
function call. Therefore, the control switches toEXPAND.
(EXPAND) Here, REF-IR computes an MCSφπ, which is
(¬πn). Sinceπn corresponds to functionneg, IR must explore
neg to find a witness. The procedure then removes¬πn

and refinesφ by adding summary constraints forπn and the
dependent placeholderλn,ret. These constraints (πn = true
andλn,ret = ite(x1 > 0,−x1, x1) respectively) are generated
by analyzing theneg function (cf. Fig. 1).
(BEGIN ) On checkingφ again after expansion, the solver
finds a witness (lines 2-3-4-6-7-8-9-10-12), with say,c = 1,
p = 0, x1 = 1, y1 = −1. REF-IR now checks if the witness
is an actual one (BLOCK label) by blocking allπ-variables.
Note thatπb is the only π-variable remaining inφ and the
correspondingπ-constraint is already asserted. Therefore, REF-
IR concludes that the witness is an actual one and terminates.
Note how REF-IR avoids the redundant expansion of the
complex functionbar, guided both by the abstract ECφ as
well as the modular program structure. Also, the efficiency of
REF-IR crucially depends on the computed MCSs.

A. Example: IR with Loop-specific Abstraction

Consider the functionloopf in Fig. 1. The assertion at
line 7 checks if on loop exit, the value ofj is less than2 ∗ n,
and is violated only whenn ≥ 3. To see this, consider the data
computed at the loop exit (line 7) by a symbolic execution [20]
of loopf after few initial iterations:(0) (0 6< n, j 7→ 0; i 7→
0), (1) (0 < n∧ 1 6< n, j 7→ 0; i 7→ 1) (path condition reduces
to n = 1), (2) (n = 2, j 7→ 2; i 7→ 2), (3) (n = 3, j 7→ 6; i 7→
3), respectively. Note that the value(3) violates the assertion
at line 7, while(0), (1) and (2) do not.

In general, a violation like above may require an arbitrary
number of iterations of the loop, depending on one or more
inputs. Many bug finding methods [9], [4], [32] unroll all
program loops to a fixed depth, and may miss bugs like
these. The approach in [31] transforms loops to tail-recursive
functions; however, conventional static analysis seldom does
so. In contrast, we show how inertial refinement can be used
to perform adynamicproperty-driven unrolling of loop regions,
with the help of an abstractionspecificto loop regions. Note
that methods based on refining predicate abstractions [5], [18]
may detect this violation by refinement; however, constructing
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REF-IR(ctx, φ)
BEGIN: ASSERT(ctx, φ)

if ctx is satisfiablethen
goto BLOCK

else
goto EXPAND

BLOCK: VΠ := set ofπ-variables inφ
/* Assertπ-constraints */
Φπ := ∧{(v = false) | v ∈ VΠ}
ASSERT(ctx, Φπ)
if ctx is satisfiablethen

return SAT
else

goto EXPAND

EXPAND: φπ := MCS(ctx)
if φπ = false then

return UNSAT
/* Witness may exist */
RETRACT (ctx, φπ)
/* Select placeholders to refine */
Vπ := Variables inφπ

V ′
π := Vπ ∪Dep(Vπ)

foreach λ ∈ V ′
π do

t = GETSUMMARY (λ)
φ := φ[λ 7→ t]

goto BEGIN

Algorithm 2: The REF-IR procedure for checking an ECφ with an incremental SMT solver using inertial refinement. The
variablectx denotes the context of the solver.

and refining predicate abstractions is expensive. In contrast,
SAR with cheap abstraction and inertial refinement using loop
summaries can detect such violations at a much lower cost.

SAR first computes a local loop body summary,(io <
n, [j 7→ jo +2∗ io; i 7→ io +1]), wherejo andio represent the
values ofj and i respectively at the beginning of the body.
Recall that SAR first checksloopf by skipping the loop
region with an abstraction of form(ψ, σ); in this case, however,
the abstraction isspecific to the loop region and allows
dynamic loop unrolling. More precisely, (1)ψ = (π0 ∨ π1+),
where π0 = (n ≤ 0) and π1+ are path conditions after
zero or ≥ 1 loop iterations, respectively, and the map (2)
σ = [j 7→ ite(π0, 0, λj,1+); i 7→ ite(π0, 0, λi,1+)], whereλj,1+

andλi,1+, respectively, are the values ofj andi obtained after
≥ 1 loop iterations (i = j = 0 after zero iterations). Using the
above abstraction, the symbolic data obtained at the assertion
at line 7 is(ψ, σ) so that the ECφ is
φ = ((π0 ∨ π1+) ∧ n ≥ 0 ∧ ite(π0, 0, λj,1+) ≥ 2 ∗ n))

The procedure REF-IR first checksφ by blocking all the loop
iterations, i.e., it adds aπ-constraint¬π1+. The solver checks
(φ ∧ ¬π1+) and returns UNSAT with the MCS¬π1+. As a
result,IR removes¬π1+ and refinesφ by adding summary
constraints forπ1+, λj,1+ andλi,1+, i.e.,π1+ = (n = 1∨π2+),
λj,1+ = ite(n = 1, 0, λj,2+), etc.. IR again proceeds it-
eratively by blockingπ2+, π3+, and so on, obtaining MCSs
and refiningφ. A satisfiable solution is obtained in the fourth
iteration (with π4+ blocked), which corresponds to a true
violation witness.
Note that if a witness requires a large number of loop un-
rollings, refinement usingIR is inefficient. One solution is
to expand multiple loop iterations simultaneously. However,
we observed that in many real-life programs having input-
dependent loops, few loop unrolls are sufficient for finding
bugs; inertial refinement is effective in such cases.

V. EXPERIMENTAL EVALUATION

We implemented the modular analysis SAR (cf. Sec. III) in
the F-SOFT [19] framework for verification of C programs.
The framework constructs aneager memory model for C
programs [19] by bounding the heap, flattening aggregate data
types into simple types (up to depth 2 for our experiments),
and modeling the effect of pointer dereferences by an explicit

case analysis over the points-to sets for the pointer variables.
Also, F-SOFT instruments the program for properties being
checked, e.g., dereference safety (N), array bounds violation
(A) and string related checks (S). Therefore, SAR is able to
check multiple types of properties in an uniform manner in the
F-SOFT framework. The initial model is simplified by the tool
with constant folding, program slicing and other light-weight
static analysis, and is then provided as an input to the SAR

procedure.
We used a wide collection of open-source and proprietary

industrial examples for evaluation: L2 is a Linux audio driver
(ymfpci.c), L9 implements a Linux file-system protocol
(v9fs), M1, M3 are modules of a network controller software,
N1, N2 belong to a network statistics application, F consists of
the ftp-restart module from thewu-ftpd distribution,
and Spin corresponds to the SPIN model checker (without the
parser front-end). The analyzed benchmarks range from LOC
sizes of 1K to 19K. Our analysis focused on discovering known
bugs efficiently.

Our implementation of SAR computes summaries and ECs
for all program regions locally (cf. Alg. 1), stores them
efficiently by representing terms as directed acyclic graphs
(DAGs) and manipulates them using memoized traversal algo-
rithms. The local ECs were hoisted up to the entry function and
checked using the YICES SMT solver [15] in an incremental
manner with refinement (cf. Alg. 1). To precisely model non-
linear operators, e.g., modulo, which occur in many of our
benchmarks, we encode all variables as bit-vectors.

We evaluated four structural refinement schemes: (i)Naive:
expand all placeholders in the EC, (ii)DCR: use don’t-cares
for expansion, expand onlyone selectedplaceholder in each
iteration (cf. Sec. II, similar to the state-of-the-art Calysto
algorithm [4]), (iii) DCR+, same asDCR except expandall
selectedplaceholders (setV ′

π in Alg. 2) in each iteration, and
(iv) IR, the new inertial refinement scheme. In our experi-
ence, expanding all the selected placeholders (set-expansion)
in each refinement iteration converges much faster than one
placeholder at a time (one-expansion), and, therefore, is our
default mode forNaiveandIR schemes. The experiments were
done on a Linux 2.4Ghz Core2Duo machine, with timeout of
1 hr and 8GB memory limit.

Figure 3 shows the experimental comparison between the

204



Bm LOC #EC Naive DC-based IR
DCR DCR+

#R T #R T #R T #R T
F-A 1K 48 162 73 75 282 58 71 51 78
F-N 1K 18 78 12 63 71 32 11 51 17
F-S 1.3K 54 100 2044 - TO 27 844 17 2359

N1-N 1.2K 77 4 65 2 62 2 62 0 61
N2-S 1.4K 230 7 9 3 11 3 10 1 9
L2-A 5.4K 135 550 27 292 58 304 29 450 28
L9-A 6K 314 978 279 - TO 549 589 257 162
L9-N 6K 124 721 22 114 139 144 15 205 27
M1-A 6K 356 906 59 - TO 527 64 408 87
Spin 9K 233 662 2173 - TO 295 2018 192 1472
M1-S 12K 196 800 68 338 124 354 62 283 57
M3-S 19K 419 - TO - TO 253 1599 221 1334

Fig. 3: Experimental comparison of structural refinement schemes: (i) (Naive) without any selection of placeholders, (ii)DCR [4] (iii) DCR+

with set-expansion and (iv) the newIR scheme. Benchmarks (Bm) are named in ”Name-Checker” format, where Checker is either A (array
bounds), N (NULL dereference) or S (string checker). LOC shows the lines of code analyzed post-simplification. #EC = the number of ECs
checked for the benchmark. #R denotes the number of regions expanded. Time out (TO) of 3600s. Memory limit 8GB. Best figures are in
bold.
various structural refinement techniques. The results confirm
that structural abstraction methods scale to industrial bench-
marks while retaining precision: many of these examples can-
not be handled by other techniques, e.g., based on monolithic
BMC [9] and predicate abstraction. We report the total time (T)
including the summary computation and EC checking times.
For each benchmark, we report the total number of regions
(#R) expanded during the run. Note that ECs may have either
a proof or a witness, and many of them may be checked
without any refinement. Also, the set of regions explored (#R)
may include the same function under multiple contexts. The
results show thatDCR+ andIR clearly outperform the naive
refinement scheme, which time-outs on the largest example
M3-S, implying that selective refinement is essential. However,
we observe thatDCR time-outs in many cases where evenNaive
with set-expansion finishes. In the following, we compareDCR,
DCR+ andIR systematically.
(DCR vs DCR+). SinceDCR performs one-expansion, it calls
the solver large number of times. As a result, it time-outs
on 40% of the benchmarks, whileDCR+ finishes in time,
showing thatDCR+ converges much faster thanDCR. However,
in most cases whereDCR finishes, it expands fewer regions and
variables thanDCR+, due to one-expansion.
(IR vs DCR). DCR time-outs on many benchmarks, especially
the bigger ones, due to one-expansion, whereasIR finishes.
The results show thatIR outperformsDCR [4] in terms of
run-times on all benchmarks. To permit a fair comparison, we
augmentDCR with set-expansion (DCR+) and compare with
IR below. Note, however, that for benchmarks L2-A and L9-
N, DCR does expand fewer regions thanIR. We discuss this
below.
(IR vs DCR+). Both these approaches use set-expansion and
finish on all benchmarks. We observe that, in most cases,
IR expands fewer regions thanDCR+, showing that inertial
refinement is indeed useful, and that many properties can be
checked while restricting to a smaller region set. For example,
benchmarks N1-N and N2-S show the effectiveness ofIR: in
case of N1-N,DCR+ needs to perform two expansions, while
IR doesn’t need any expansions. On an average,IR expands
about 20% fewer (54% in the best case) regions thanDCR+.
Moreover,IR outperformsDCR+ in terms of run-times on

bigger examples (e.g. Spin, M1-S, M3-S), in spite of being
more computationally expensive (requires computing MCSs).
SinceIR expands fewer regions thanDCR+, we believe that
the improvement will be more dramatic on larger benchmarks.

On a few examples (F-N, L2-A and L9-N), however,IR
expands more regions thanDCR+. This is becauseIR depends
crucially on MCSs generated during refinement, which may
not be optimal; in these examples, non-optimal MCSs led
to exploration of irrelevant program regions. We believe that
using more sophisticated MCS computing algorithms [24],
[25], based on native MAX-SAT solving inside a constraint
solver (as opposed to our method of computing hitting sets of
UNSAT cores, cf. Sec. IV) will lead to faster computation of
MCSs and hence improve the performance significantly.

We were unable to compare thoroughly with the previous
work Calysto [4], [3], since it is not available publicly and the
memory models used by F-SOFT and Calysto are different.
However, the refinement scheme in Calysto is similar toDCR
with one-expansion; in our experience, set-expansion is more
powerful since the total number of SMT solver calls are
reduced. Refinement based on counterexample-driven analysis
of the concrete model [31] as opposed to abstract models is
orthogonal to our approach; however, these approaches can
also benefit from inertial refinement.

VI. RELATED WORK

Modular methods for sequential programs have been in-
vestigated extensively: most techniques perform an over-
approximate analysis to obtain proofs of assertion validity
via abstract interpretation [11], [12]. In contrast, our focus is
on modular bug finding methods, which perform anunder-
approximate program analysis [12]. Taghdiri and Jackson
proposed a method based onprocedure abstraction[31] for
detecting bugs in Java programs. To analyze a caller function,
the method automatically infers relevant specifications for all
the callee functions: it starts from empty specifications, and
gradually refines them using proofs derived from analyzing
spurious counterexamples in the concrete program model.
Babic and Hu introduced thestructural abstractionmethod-
ology in the tool Calysto [4], [3] for analyzing large-scale C
programs. Again, the method analyzes the caller by abstract-
ing the callees with summary operators (placeholders). When

205



checking abstract verification conditions (VCs) having these
placeholders, structural refinementexpandsthe placeholders
with the corresponding summaries derived from the callees. In
contrast to [31], structural refinement avoids the potentially
expensive analysis of the concrete model: placeholders are
selected by analyzing the abstract VC using adon’t-care
analysis of the abstract counterexample [4]. Both the above
approaches [31], [4] perform refinement based purely on the
counterexamples produced by the solver, which is oblivious of
the program structure, and hence may explore new program
regions even if a witness is realizable in the current regions.

PREfix [6] performs modular bug detection using path-
enumeration based symbolic execution [20] to compute
bottom-up summaries. These summaries only model partial
procedure behaviors and the method may succumb to path ex-
plosion. In contrast, we compute precise summaries effectively
using a merge-based data flow analysis [21], [3], and employ
SAR to explore all program paths relevant to the property
in an incremental fashion. The tool Saturn [32] performs
bit-precise modular analysis for large C programs; however,
the analysis is not path-sensitive inter-procedurally, and leads
to infeasible witnesses. Chandra et al. [7] employ property-
driven structural refinement to incrementally expand the call
graph of Java programs in the presence of polymorphism, to
avoid an initial call graph explosion. The ESC/Java tool [16]
introduced verification condition (VC) generation based on
intra-procedural weakest precondition [14] computation but
requires pre/post specifications to reason inter-procedurally.
In contrast, inter-procedural VCs are generated automatically
in our approach using structural abstraction (cf. Sec. III).
Compositional symbolic execution [2] also uses structural
abstraction of functions with uninterpreted functions to make
coverage-oriented testing more scalable: inertial refinement can
also benefit these methods. In context of symbolic trajectory
evaluation, Chockler et al. [8] present a method to refine circuit
node placeholders using the notion ofresponsibility.

VII. C ONCLUSIONS

We presented a modular software bug detection method
using structural abstraction/refinement, based on analyzing
programregionscorresponding to modular program constructs.
A new inertial refinement procedureIR was proposed to
address the key problem of structural refinement:IR resists
the exploration of abstracted program regions by trying to
find a witness for an assertion inside the program regions
explored previously. The procedureIR implemented in the
F-SOFT framework scales to large benchmarks and is able
to check properties by exploring fewer program regions than
the previous don’t-care based refinement technique [4]. Future
work includes combiningIR with other schemes, e.g.,DCR, for
more effective placeholder selection. Methods to dynamically
expand the heap during analysis will also be investigated.
Partitioning a program automatically for efficient SAR is also
an interesting open problem. Finally, we plan to perform a
detailed usability study of the SAR method for finding bugs in
large benchmarks.
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Abstract—This paper describes a method to create an abstract
model from a set of properties fulfilling a certain completeness
criterion. The proposed abstraction can be understood as apath
predicate abstraction. As in predicate abstraction, certain concrete
states (calledimportant states) are abstracted by predicates on
the state variables. Additionally, paths between important states
are abstracted by path predicates that trigger single transitions
in the abstract model. As results, the non-important states are
abstracted away and the abstract model becomes time-abstract
as it is no longer cycle-accurate. Transitions in the abstract
model represent finite sequences of transitions in the concrete
model. In order to make this abstraction sound for proving
liveness and safety properties it is necessary to put certain
restrictions on the choice of state predicates. We show that
Complete Interval Property Checking (C-IPC) can be used to
create such an abstraction. Our experimental results include
an industrial case study and demonstrate that our method can
prove global system properties which are beyond the scope of
conventional model checking.

I. I NTRODUCTION

Even after years of progress in the area of formal property
checking, simulation is still the predominant technique in
industrial practice for verifying the hardware of Systems-on-
Chip (SoCs). There are at least two reasons for that: first,
formal techniques provide a rigorous correctness proof only
for a selected piece of design behaviour. Ensuring such local
correctness is considered valuable, especially in corner cases
of a design. However, in many industrial flows only parts
of the overall design behavior are covered by properties and
confidence in the correctness of the overall design largely still
depends on simulation examining global input stimuli to the
design and their output responses. Sophisticated methodolo-
gies have been developed to achieve full design coverage by
local properties according to rigorous completeness metrics,
as we will consider them in this paper. This can indeed
contribute to replace simulation for SoC module verification
by formal techniques. However, even in such a scenario
simulation will still be needed for chip-level verification. This
is the second reason for the prevailing role of simulation in
SoC hardware verification. Formulating and proving global
system properties spanning across different SoC modules on
the Register-Transfer-Level (RTL) of an SoC is clearly beyond
the capacity of current tools. As an alternative more viable
than proving global properties at the RTL we may resort to
system-level verification based on abstract design descriptions
as they are supported by languages like SystemC [1]. How-
ever, unless the design refinements from these high levels to
lower implementation levels become fully automated and can

possibly be supported by new generation equivalence checking
tools it is apparent that chip-level simulation at the RTL will
still be needed and will contribute substantially to the overall
verification costs.

The techniques proposed in this paper intend to make a
step toward proving global properties for an RTL design im-
plementation. We will prove properties that span over multiple
SoC modules and which are significantly more complex than
what can be proved with available property checkers. Our
approach is not based on boosting the performance of the
proof engines. Instead we propose a methodology to create
design abstractions based on sets of properties fulfilling a
certain completeness criterion.

The proposed approach leverages the significant advances
that have been made over the last years in developingsystem-
atic procedures of writing properties for comprehensively cap-
turing the behavior of a design. In particular, property checking
formulations such as in Symbolic Trajectory Evaluation (STE)
are very suitable for a systematic approach [2], [3], [4]. STE
employs a specific style of formulating properties making
it natural to compose properties into a more comprehensive
design description which is successfully used in industrial
practice. This paper is based on a related industrial property
checking formulation calledInterval Property Checking
(IPC) [5], [6]. IPC stands for proving so calledoperation
propertiesor interval propertieson a bounded circuit model
based on satisfiability (SAT) solving. From a computational
perspective it can therefore also be seen as a variant of
Bounded Model Checking (BMC) [7] while STE is more
related to symbolic simulation and has a different way of rep-
resenting and processing state sets based on Binary Decision
Diagrams (BDDs). Moreover, in this paper we state a rigorous
completeness criterion for sets of IPC properties [8], [9] which
is a prerequisite for the proposed abstraction. Nevertheless,
we believe that the proposed methodology and formalisms
could also be adapted to property checking formulations other
than IPC, in particular to STE and related approaches.

Abstraction in model checking is almost as old as model
checking itself. The most popular abstraction techniques can
be classified in being based on localization reduction [10] and
predicate abstraction [11]. There is tremendous progress to
integrate these abstractions into algorithms that automatically
search for an appropriate abstraction such as [12], [13], [14].
Such techniques contribute substantially to increasing the
scope of model checking to designs with several hundred state
variables. This is often adequate for proving properties in SoC
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module verification as described above. However, if designs
with thousands of state variables have to be handled and chip-
level properties must be proved on the RTL additional concepts
for even stronger abstractions are required.

In this paper we propose to create an abstraction based
on complete sets of IPC properties. This means as a starting
point of our approach we assume that individual SoC modules
have first been verified using IPC and a complete set of
properties is available. In [15] so calledcando-objectswere
proposed as abstract but still cycle-accurate design descriptions
obtained from IPC properties. In contrast, the abstraction
proposed here is time-abstract and is referred to as apath
predicate abstraction. It leads to sound models for verifying
both safety and liveness properties if certain restrictions on the
state predicates are fulfilled. In Section II we first introduce
basic notations. Section III introduces the proposed abstraction
and shows that it can be used to prove safety and liveness
properties which are also valid on the concrete model. Then, in
Section IV we explain how this abstraction is created through
the IPC methodology. In Section V we present experimental
results also including an industrial case study.

II. N OTATIONS

A Kripke model is a finite state transition structure
(S, I ,R,A,L) with a set of statesS, a set of initial statesI ⊆ S,
a transition relationR⊆S×S, a set of atomic formulasA, and
a valuation functionL : A 7→ S.

We considerstate predicates, η(s), S(s), X(s), Z(s), Y(s),
that are evaluated for any concrete states. In Kripke models
derived from Moore FSMs the state variables and input
variables may serve as atomic formulas. We may distinguish
between the two kinds of state variables in our notation. The
original state variablesare denoted byzi , the input variables
of the original Moore FSM byxj . If S(s) is expressed only
in terms of input state variables then the predicate describes
an input trigger condition denoted byX(s). If S(s) is ex-
pressed only in terms of original state variables then we write
Z(s). Y(s) denotes output values of the Moore machine in a
states. T(s,s′) is the characteristic function of the transition
relationR.

An l -sequenceπl is a sequence ofl +1 states(s0,s1, . . . ,sl ).
An l -sequence predicateσ(πl )=σ((s0,s1, . . . ,sl )) is a Boolean
function characterizing a set ofl -sequences;l is called the
lengthof the predicate.

Note that we allow anl -sequence predicate to be ap-
plied also to a longer sequence, i.e., to anm-sequence
(s0,s1, . . . ,sl , . . . ,sm) with m> l . The predicate is then evalu-
ated on thel -prefix (s0,s1, . . . ,sl ) of the sequence. In case we
would like to evaluate the predicate on anl -subsequence other
than the prefix we need to shift the predicate in time using the
nextoperator defined as follows:

next(σl ,n)((s0,s1, . . . ,sn−1, sn,sn+1, . . . ,sn+l ))

:= σl ((sn,sn+1, . . . ,sn+l )).

The next(σl ,n) operator shifts the starting point of the

evaluation of a predicateσl to the n-th state in a sequence;
next(σl ,n) is a sequence predicate of length(n+ l).

The usual Boolean operators∨, ∧, ¬, ⇒ are also applicable
to l -sequence predicates. Iflmax is the largest length of all
sequence predicates in a Boolean expression built with these
operators, then the value of the expression is defined only for
m-sequences with lengthm≥ lmax.

We also define a concatenation operation⊙ for l -sequence
predicates:

σl ⊙σk = σl ∧next(σk, l)

This predicate evaluates to true for all sequences that begin
with a sequence of lengthl characterized byσl and continue
with a sequence of lengthk characterized byσk, where the
last state in thel -sequence is the first state in thek-sequence.

A speciall -sequence predicate calledanyl (πl ) is defined to
evaluate to true for every sequenceπl of length l .

Together with the transition relation of the Kripke model,
an l -sequence predicate becomes anl -path predicate:

Pl (πl ) = Pl ((s0,s1, . . . ,sl )) = σ((s0,s1, . . . ,sl ))∧
l∧

i=1

T(si−1,si)

We define the general path predicateispath:

ispath((s0,s1, . . . ,sl )) =
l∧

i=1

T(si−1,si)

It represents an unrolling of the transition relation intol
time frames and evaluates to true if thel -sequence given as
its argument is a valid path in the Kripke model.

III. PATH PREDICATE ABSTRACTION

A. Abstract and Concrete Kripke Model

In path predicate abstractionwe consider a concrete Kripke
model(S, I ,R,A,L) and an abstract Kripke model denoted by
(Ŝ, Î ,R̂, Â, L̂). The two are related to each other based on a
mapping ofimportant statesof the concrete model to abstract
states and a mapping offinite paths between important states
to abstract transitions.

Important states are identified and characterized using state
predicatesηi(s). The vector of important state predicate val-
ues,(η1(s),η2(s), . . .), defines an abstract state value for every
concrete states. This is the abstraction function,α(s) :=
(η1(s),η2(s), . . .) mapping a concrete state to an abstract
state. The set̂A of atomic formulas of the abstract Kripke
model comprises one state variable ˆai for every important state
predicateηi(s).

Definition 1: An important-state predicateηi(s) is a predi-
cate evaluating totrue for a set of concrete important statess
and tofalse for all other states. The disjunction of allηi(s) is a
state predicateΨ(s) = η1(s)∨η2(s)∨ . . . characterizing the set
of all important states. Finally, we require that theηi satisfy
the important-state requirementsstated in Def. 3, below.

Definition 2: An operational l-pathbetween two important
states,sB ∈ S and sE ∈ S, is an l -path (sB,s1, . . . ,sl−1,sE)
with l > 0 such thatΨ(sB) = true and Ψ(sE) = true and
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all intermediate statess1, . . . ,sl−1 are unimportant states, i.e.,
Ψ(s1) = . . .= Ψ(sl−1) = false .

The important state predicates cannot be chosen arbitrarily.
Instead, the choice must satisfy two constraints in order to be
useful for the proposed abstraction.

Definition 3: The important-state predicates are defined to
fulfill the following important-state requirements:

1) For all pairs of (concrete) important statessB,sE ∈ S
between which there exists an operationall -path, there
is an lmax such that every operationall -path betweensB

andsE is of lengthlmax or shorter:l ≤ lmax.
2) For every pair of important-state predicates,ηB(s),

ηE(s), such that there exists a finite operational path
(s̃, . . . , s̃′) with ηB(s̃) = true and ηE(s̃′) = true it holds
that there also exists an operational path(s, . . . ,s′) for
everystates satisfyingηB(s) = true and somestates′

satisfyingηE(s′) = true .

The first constraint requires thatall cyclic paths in the
concrete model intersect an important state, i.e., there are
only finite operational paths between important states. The
second constraint is more difficult to understand: it ensures
that abstract paths assembled from abstract transitions can
always be mapped to some concrete path, i.e., there are
no false abstract paths. This requirement is “automatically”
fulfilled by the operation-oriented property checking technique
introduced later.

Definition 4: We consider an abstraction functionα such
that the important-state predicatesηi fulfill the requirements
of Def. 3. Then, the transition relation̂R⊆ Ŝ× Ŝof the abstract
model is given by:

R̂= {(ŝ, ŝ′)|∃l : ∃(s0,s1, . . . ,sl ) : ispath((s0,s1, . . . ,sl ))

∧α(s0) = ŝ ∧ α(sl ) = ŝ′ ∧ ¬Ψ(s1)∧ . . .∧¬Ψ(sl−1)

In this definition,(s0,s1, . . . ,sl ) denotes an operational path
of length l (i.e., l transitions andl +1 states) in the concrete
Kripke model. The transition relation contains all pairs(ŝ, ŝ′)
whereŝ and ŝ′ are head and tail of a path between important
states such that all intermediate states are non-important.

Besides mapping a set of concrete states into a single
abstract state as in in standard predicate abstraction, the
proposed path predicate abstraction also maps a set of concrete
paths into a single abstract transition. Therefore, we refer to the
proposed abstraction as a “path predicate abstraction”. Note,
however, that such path predicate abstraction only leads to
sound models since we require certain conditions on the state
predicates to be fulfilled as stated in Def. 3.

B. Model Checking on the Abstract Model

In this section we show that the proposed abstraction can
be used to prove CTL safety and liveness properties of the
concrete model. Similar results could be obtained for other
temporal logics such as LTL.

Theorem 1:Consider a formulaf̂ for the abstract model
from Table I. The formula has the form̂f =<CTL operator>
p̂(â1, â2, . . .), with p̂ being a Boolean formula of only ˆai ∈

abstract formulaf̂ concrete formulaf
EF p̂ EF (Ψ∧ p)
EG p̂ EG (Ψ ⇒ p)
AF p̂ AF (Ψ∧ p)
AG p̂ AG (Ψ ⇒ p)

TABLE I
ABSTRACT FORMULAS VS CONCRETE FORMULAS

Â, i.e., atomic formulas of the abstract model. The corre-
sponding formula f from Table I for the concrete model
has the form f = <CTL operator>(Ψ ∧ p) or the form
f = <CTL operator>(Ψ ⇒ p) , wherep is the Boolean for-
mula obtained by replacing the ˆai in p̂ by their corresponding
important-state predicates:p= p̂(â1 := η1(s), â2 := η2(s), . . .).

If and only if the formula f̂ holds for a state ˆs∈ Ŝ of the
abstract model then the corresponding formulaf from Table I
holds for the corresponding concrete states, i.e., for all states
s∈ S of the concrete model such that ˆs= α(s).

Proof: We prove the theorem for the first row of Table I.
First it is proved that ifEF p̂ holds in an abstract state then
EF (Ψ∧ p) holds in all corresponding concrete states.

If EF p̂ holds in a state ˆs0 in the abstract model then there
exists a finite path(ŝ0, ŝ1, . . . , ŝn) of n abstract transitions
such that ˆp holds in ŝn. For every abstract transition(ŝi , ŝi+1),
according to Def. 4, there exists an operational finitel -path
(si,0,si,1, . . . ,si,l ) from an important concrete statesi,0 such
that α(si,0) = ŝi to an important concrete statesi,l such that
α(si,l ) = ŝi+1. Then, according to requirement 2 of Def. 3,
for every important statesi such thatα(si) = ŝi there exists
an operationall -path (si,0,si,1, . . . ,si,l ) from every important
state si,0 such thatα(si,0) = ŝi to some important statesi,l

such thatα(si,l ) = ŝi+1. (Note that l may be different for
every path.) The same argument holds for the important
states mapped to ˆsi+1. Hence, there must exist a finite path
(s0,0,s0,1, . . . ,s1,0,s1,1, . . . ,sn,l ) from every important states0,0

such thatα(s0,0) = ŝ0 to some important statesn,l such that
α(sn,l ) = ŝn. Since p̂ holds in ŝn and, therefore,Ψ∧ p holds
in all important statessn,l mapped to ˆsn, this means that
EF (Ψ∧ p) holds in all important statess0,0 mapped to ˆs0.

We now prove that ifEF (Ψ ∧ p) holds in an important
concrete state thenEF p̂ holds in the corresponding abstract
state. IfEF (Ψ∧p) holds in an important concrete states0 then
there exists a finite path(s0,s1, . . . ,sn) from s0 to an important
concrete statesn such that(Ψ∧ p) holds in sn. The path can
be split up into segments(si ,si+1, . . . ,sj−1,sj ) such thatsi and
sj are important states and the intermediate statessi+1 . . . ,sj−1

are non-important states. According to Def. 4, for every such
segment of the concrete path there exists an abstract transition
(ŝi , ŝj) ∈ R̂ such thatα(si) = ŝi and α(sj) = ŝj . Hence, there
exists an abstract path from ˆs0 to ŝn. Because(Ψ∧ p) holds
in the concrete statesn the abstract property ˆp holds in ŝn.
Therefore, there exists an abstract path from ˆs0 to a state where
p̂ holds, i.e.,EF p̂ holds in ŝ0.

The proof for the second row of Table I forEG formulas
is very similar to the above proof forEF formulas. The only
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Fig. 1. Concrete FSM

difference is that in the translation from abstract properties to
concrete properties, the properties are evaluated only on im-
portant states, i.e., ˆp maps to(Ψ⇒ p) and vice versa. We omit
this proof for reasons of space. The proof for the third row of
Table I follows directly fromAF p = ¬EG¬p. Likewise, the
proof for the fourth row follows fromAG p= ¬EF¬p.

The proposed path predicate abstraction is related to the
notion of stuttering bisimulation [16]. It also decomposes
infinite runs into segments of finite length that are matched
segment by segment. However, we only require the important
starting and ending states of the segments to be matched by
the abstraction function and do not care about the intermediate
state predicates. Furthermore, instead of using a theorem prov-
ing approach we use IPC to establish this weaker correlation
of the models.

IV. COMPLETE INTERVAL PROPERTYCHECKING

In this section we revisit Interval Property Checking
(IPC) [5], [6]. We also restate Completeness Checking for sets
of IPC properties as proposed in [8], [9]. An important purpose
of this paper is to show that both together can be used to create
a path predicate abstraction as described in Section III.

Interval property checking is based on standard Mealy- or
Moore-type finite state machine models. CTL model checking
is based on Kripke models. A Moore model can be translated
into a Kripke model in a straightforward way by introducing
“state variables” (i.e., atomic formulas) for every input. We
encode the state space of the Kripke model by the state vector
s= (sz,sx). The sub-state vectorsx represents the set of input
values. Every states contains in its sub-state vectorsx what
combination of input values made the system transition into
the states. (This is equivalent to latching the input variables.)

In the following sections, we use the FSM of Figure 1
as a simple running example. The Moore machine stays in
IDLE until it receives asend command. When the command
comes it moves to stateBUSY , sending out a request (output,
not shown). In stateBUSY it waits for an acknowledgeack .
When the acknowledge comes it moves to stateSENT where
it signals completion to its client (output, not shown). Then it
moves back to stateIDLE .

In our IPC-based abstraction, we adopt an operational view
on the design to come up with a complete set of IPC properties.
An IPC operation property covers the behavior of a design
moving from oneimportant state to another important state
within a finite time interval [6]. Operations in industrial prac-
tice typically describe one or several computational steps in a
SoC module such as instructions of a processor, or processing
steps of communication structures such as in transactions of a
protocol. An operation (interval) property typically spans up to

BUSY1 SENT

BUSY2

BUSY3

send
ack

ack

IDLE
send ack

ack

ack

Fig. 2. Example of concrete FSM with a timing constraint onack

P1: assume: att: IDLE ; at t: send ;
prove: att +1: IDLE ;

P2: assume: att: IDLE ; at t: send ; at t +1: ack ;
prove: att +2: SENT ;

P3: assume: att: IDLE ; at t: send ; at t +1: ack ; at t +2: ack ;
prove: att +3: SENT ;

P4: assume: att: IDLE ; at t: send ;
at t +1: ack ; at t +2: ack ; at t +3: ack ;

prove: att +4: SENT ;

P5: assume: att: SENT ;
prove: att +1: IDLE ;

TABLE II
OPERATIONAL IPC PROPERTIES

a few hundred clock cycles and can have up to a few million
gates in its cone of influence. By unfolding the design into its
operations IPC provides a functional view on the design that
is orthogonal to the conventional structural view at the RT
level. Industrial practice has proved that this is very effective
in finding bugs.

A. Operations and Important States

Consider the example of Figure 1. The verification engineer
choosesIDLE and SENT to be the important states — this
is indicated by bold circles. We can identify three basic
operations in this design: one staying inIDLE , one moving
from IDLE to SENT and one moving back fromSENT to IDLE .

Obviously, there is an infinite path in the Moore model
between statesIDLE and SENT that cannot be represented
in an IPC property. A technical solution is to add an input
constraint to the model. In our example, we assume thatack

is asserted at most three clock cycles after entering state
BUSY . Note that the verification as well as the abstraction of
Section IV-E are based on the validity of such a constraint. In
most practical cases, however, constraints can be justified by
RT-level verification of other modules of the system. Figure 2
shows the Moore model resulting from the input constraint.

Table II shows a set of five IPC properties describing all
possible operations between the important statesIDLE and
SENT in the Moore FSM of Fig. 2. Note that IPC properties
are always formulated over finite time intervals, hence the
requirement 1 of Def. 3 is always fulfilled if path predicate
abstraction is based on IPC.

Figure 3 shows the concrete Kripke model of our example.
Since there are 5 states in the constrained Moore FSM we
need (at least) 3 state variables for encoding them. The state
encoding is chosen as follows:IDLE = 000, BUSY1 = 100,
BUSY2 = 101, BUSY3 = 110,SENT = 111. We need 2 more
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Fig. 3. Concrete Kripke model

state variables to encode the input variablessend andack . The
state transition graph of the Kripke model in Figure 3 shows
the 5-bit state codes inside each node.

In our examples, if we group states to abstract states this
is indicated by drawing extra circles around these states. The
enclosed states may themselves be abstract states. When we
draw a transition edge such that it ends (or begins) at a
surrounding circle we implicitly mean it to end (or begin,
respectively) at every state represented by that circle.

B. Interval Property Checking

An operation property or interval property P is a
pair (Al ,Cl ) where bothAl (calledassumption) andCl (called
commitment) are l -sequence predicates. The property checker
proves that if the assumption holds on the design (given by
the l -path predicateispath()) the commitment does too, for all
starting statess0:

A((s0,s1, . . . ,sl ))∧ ispath((s0,s1, . . . ,sl ))⇒C((s0,s1, . . . ,sl ))

Both sequence predicatesAl andCl are defined over sequences
of lengthl . The parameterl is called thelengthof the property.
Since the property is implicitly checked for all possible starting
statess0 (not just the initial state of the system) it is a safety
property. The implication can be rewritten in the following
equivalent form:

ispath(πl )⇒ (Al (πl ) ⇒ Cl (πl ))

where πl = (s0,s1, . . . ,sl ) is an l -sequence andispath(πl ) =∧l
i=1T(si−1,si) is the unrolling of the transition relation intol

time frames. The property check can be formulated as a SAT
problem that searches for a a pathπl in the Kripke model
where the implication does not hold. The pathπl is then a
counterexampleof the property. It is a false counterexample
if the states0 in the path is unreachable from the initial state.

In order to rule out unreachable counterexamples in practice,
it is common to add invariants to the proof problem [6]. The
strengthened proof problem looks like this:

(Φ(s0)∧ ispath(πl )) ⇒ (Al (πl )⇒Cl (πl ))

where Φ(s) is a state predicate characterizing an over-
approximation of the reachable state set ands0 is the head
(i.e., the starting state) of thel -sequenceπl . If we re-write the
implication in the following equivalent form:

ispath(πl ) ⇒ ((Φ(s0)∧Al(πl ))⇒Cl (πl ))

we can see that the predicateΦ(s0) may simply be included
in the assumption part of the property in order to add it to the
proof.

The properties we consider in this paper have a special form.
The assumptionAl of a propertyP is an l -sequence predicate
of the form

Al ((s0,s1, . . . ,sl )) = Z(s0)∧Xl((s0,s1, . . . ,sl )). (1)

Here,Z(s0) is a state predicate characterizing an important
state from which the operation starts, andXl (πl ) characterizes
a trigger sequence for the operation. The predicateZ(s0) is
expressed only in state variables of the Moore machine, i.e.,
it is independent of input variables.

The commitmentCl is an l -sequence predicate of the form

Cl ((s0,s1, . . . ,sl )) =Yl ((s0,s1, . . . ,sl ))∧Z(sl )

∧¬Ψ(s1)∧ . . .∧¬Ψ(sl−1)
(2)

The state predicateZ(sl ) characterizes the important state
in which the operation ends. Again,Z(sl ) refers only to state
variables of the Moore machine and not to input variables.
The output sequences produced in the operation are character-
ized byYl (πl ). The state predicate¬Ψ(si) checks that every
intermediate statesi visited in the operation is an un-important
state. This is not needed in conventional IPC but is inserted
here to fulfill Def. 4.

Writing the properties in this way ensures that we only
consider operational paths as defined in Def. 2. In practice, we
can obtain the desired forms of Eq. 1 and 2 by following some
coding conventions for writing properties, e.g., by defining
appropriate macros as supported by commercial tools.

To continue our running example, the assumptions and
commitments of the five properties are given by thel -sequence
predicates listed below. In the commitments, the important-
state predicateΨ(s) is given byΨ(s) = IDLE (s)∨SENT (s).

A1((s0,s1)) = IDLE (s0)∧¬send (s1)
C1((s0,s1)) = IDLE (s1)
A2((s0,s1,s2)) = IDLE (s0)∧ send (s1)∧ack (s2)
C2((s0,s1,s2)) = SENT (s2)∧¬Ψ(s1)
A3((s0,s1,s2,s3)) = IDLE (s0)∧

send (s1)∧¬ack (s2)∧ack (s3)
C3((s0,s1,s2,s3)) = SENT (s3)∧¬Ψ(s1)∧¬Ψ(s2)
A4((s0,s1,s2,s3,s4)) = IDLE (s0)∧ send (s1)∧

∧¬ack (s2)∧¬ack (s3)∧ack (s4)
C4((s0,s1,s2,s3,s4)) = SENT (s4)∧¬Ψ(s1)∧¬Ψ(s2)∧¬Ψ(s3)
A5((s0,s1)) = SENT (s0)
C5((s0,s1)) = IDLE (s1)

C. Property Language

In industrial practice, IPC properties can be formulated, for
example, in SVA, or in ITL (InTerval Language), a proprietary
language developed by OneSpin Solutions [5] that is well
adapted to interval property checking. This language can be
mapped to a subset of LTL as described in the following.

Definition 5: An interval LTL formulais an LTL formula
that is built using only the Boolean operators∧, ∨, ¬ and the
“next-state” operatorX .

Let us define a generalized next-state operatorX t that
denotes finite nestings of the next-state operator, i.e., ifp is
an interval LTL formula, thenX t(p) = X

(
X t−1

)
for t > 0 and

X 0(p) = p.
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Definition 6: An interval LTL formula is in time-normal
form if the generalized next-state operatorX t is applied only
to atomic formulas.

Since in LTL,X (a∨b) = X a∨X b andX (a∨b) = X a∨X b
and¬X a= X¬a, any interval LTL formula can be translated
to time-normal form. It is easy to see how an interval LTL
formula can be used to specify anl -sequence predicate: The
generalized next-state operator refers to the state variables of
the system at the different “time” points in the sequence.

The ITL language can be used to specify interval LTL
formulas and, hence,l -sequence predicates, using convenient
syntax extensions. Consider the example of the property set
shown in Table II. The “assume” and “prove” keywords are
used to identify the assumption and commitment formulas,
respectively. Each formula is a list of sub-formulas that are
implicitly conjoined. A subformula is a Boolean expression
over design variables, preceded by the definition of a time
point using the “at” keyword. The time point “at t:” corre-
sponds to the operatorX t as defined above.

For usability, ITL has many more syntactic extensions. For
example, several sub-properties can be considered together
disjunctively in a single property. In our example, properties
P2, P3 andP4 would result from a single “property” statement
in ITL, succinctly describing the operation moving fromIDLE

to SENT . Also, expressions can be encapsulated for re-use
and code structuring in so-calledmacros. For example, in our
property set we have two state predicates,IDLE andSENT that
have been formulated as ITL macros over the state variables
of the design. They define the important states that will be the
states of the abstract model.

D. Complete Interval Property Checking

In this section, we describeComplete Interval Property
Checking (C-IPC)[8], [9]. It is based on a completeness
criterion developed independently also by Claessen [17]. We
will see that operation properties match well with this notion
of completeness and that the completeness check becomes
computationally tractable in combination with IPC.

The completeness criterion in [9], [8], [17] answers the
question whether a set of properties fully describes the in-
put/output behavior of a design implementation. The property
suite is calledcompleteif for every input sequence the property
suite defines a unique output sequence that is to be produced
by the implementation, according to somedetermination re-
quirements. The basic idea presented in this section is to prove
this inductively by considering chains of operation properties.

The determination requirements specify the times and cir-
cumstances when specific output signals need to bedetermined
through the design. As an example: data on a bus only needs
to be determined when the “data valid” signal is asserted. A
determination requirement for the data signal could be written
as “if (datavalid = true) then determined(data)”. In general,
a determination requirement is a pair(o,σs) for a signalo
(here: data) and a guardσs given as anl -sequence predicate
(here: datavalid) characterizing the temporal conditions when
the signalo is to be determined. A signal is calleddetermined

by an operation at a certain time point if its value at this
time point can be uniquely calculated from the start state
Z of the operation, from its trigger conditionX, or from
other determined signals. These other determined signals can,
for example, belong to the operands of a data path. If the
operation performs an addition then the result signals are
determined if the input operands are determined. It is checked
for the reset state of the system that it fulfills all determination
requirements. This is the induction base of an inductive proof.

In C-IPC the set of operation properties written by the
verification engineer completely covers the state transition
graph of the design’s finite state machine. Any input/output
sequence produced by the design, starting from reset, can
be split up into a corresponding sequence of operations,
each defined by one operation property. For each individual
operation we can verify the functionality and we can check
whether the determination requirements are fulfilled in that
operation, provided the previous operation did also fulfill its
own determination requirements. This is the induction step of
an inductive proof.

Definition 7: A property set is complete if two arbitrary
finite state machines satisfying all properties in the set are
sequentially equivalent in the signals specified in the deter-
mination requirements at the time points characterized by the
guards of the determination requirements.⋄

Completeness of a set ofn + 1 properties V =
{P0,P1, . . . ,Pn}, with P0 being the reset property, is checked
in the following way. Besides the determination requirements
mentioned above, the user specifies aproperty graph G=
(V,E) where the nodesV = {Pi} are the properties. Each prop-
erty Pi is a pair(Ai ,Ci) where both the assumptionAi and the
commitmentCi arel -sequence predicates;l is called the length
of the propertyPi. Every propertyP has its own lengthlP.
The edges of the property graph describe the concatenation
(sequencing) of operations. There is an edge(Pj ,Pk) ∈ E if
the operation specified byPk can take place immediately after
the operation specified byPj . (This is the case if operationPj

starts in the important state that is reached by operationPk.)
Note that, in principle, the property graph could be deter-

mined automatically from the set of properties. However, for
better debugging an incomplete and possibly incorrect property
suite the user is required to specify the property graph which
only involves a small extra effort.

The completeness engine performs three checks on the
property graphG: a case split test, asuccessor testand a
determination test, all described below. It is important to
note that the completeness checks are carried out without
consideration of the design.

1) Case Split Test:The case split test checks that all paths
between important states in the design are described by at least
one property in the property suite, i.e., that all input scenarios
in an important state are covered. The set of important states
is given by the commitments{Ci} of the properties{Pi}. For
every important state (given by a commitmentCP) reached in
an operationP it is checked whether the disjunction of the
assumptions{AQj } of all successor propertiesQj completely
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covers the commitmentCP, i.e., for every path starting in
a substate of the important stateCP there exists an opera-
tion propertyQj whose assumptionAQj describes the path.
Let {AQ1,AQ2, . . .} be the set of assumptions, then the case
split test checks if

CP⊙anylQ ⇒ anylP ⊙ (AQ1 ∨AQ2 ∨ . . .)

In this expression,lP is the length of propertyP and lQ
is the length of the longest successor propertyQj . The anyl
sequence predicate defined in Section II is used to make both
sides of the implication a sequence predicate of lengthlP+ lQ.

If the case split test succeeds this means that for every
possible input trace of the system there exists a chain of
properties that is executed. However, this chain may not be
uniquely determined. Therefore, the following successor test
is performed.

2) Successor Test:The successor test checks whether the
execution of an operationQ is completely determined by ev-
ery predecessor operationP. For every predecessor/successor
pair (P,Q) ∈ E it is checked whether the assumptionAQ of
propertyQ depends solely on inputs or on signalsdetermined
by the predecessorP.

The successor test creates a SAT instance that is satisfied if
there exist two state sequences,π1 andπ2, such thatπ1 repre-
sents an execution of operationP followed by operationQ and
the other represents an execution of operationP followed by
another operation not beingQ, with the additional constraint
that the inputs and determined variables are the same in both
sequences. The execution ofP followed by Q is expressed
through(AP∧CP)⊙AQ, the execution ofP followed by not-
Q is expressed through(AP ∧CP)⊙¬AQ. If the SAT check
succeeds then, according toAQ, triggering of the operation
Q is decided non-deterministically. This is the case if the
assumptionAQ was written such that it depends on some state
variables other than inputs and variables determined byP.

What is most important for our work here is that the
successor test (as a side product) makes sure that for all
pairs(P,Q) ∈ E:

anylP ⊙AQ ⇒ CP⊙anylQ.

The expression states that the successor operationQ always
starts in an (important) statesl that is reached by a predecessor
operationP.

Having established that there exists a unique chain of
operations for every input trace it remains to be shown
that these operations determine the output signals as stated
in the determination requirements. This is the task of the
determination test.

3) Determination Test: The determination test checks
whether each propertyQ fulfills its determination requirements
provided the predecessor operationP, in turn, fulfilled its
determination requirements.

The test creates a SAT instance that is satisfied if a de-
termination requirement is violated. The satisfying set rep-
resents two state sequences,π1 and π2, that both represent
an execution of operationP followed by operationQ, with
the additional constraint that the inputs and the variables

determined byP are the same in both sequences, such that
π1 and π2 have different values for some signal that should
be determined byQ.

The three completeness tests all contribute to an inductive
proof. The induction is rooted at the reset, represented by
the reset propertyP0 that does not have a predecessor. The
induction base is established through a separatereset testthat
checks whether reset can always be applied deterministically
and whether reset fulfills all determination requirements.

E. Abstraction by C-IPC

It is now shown that C-IPC with a set of properties written
in the form of Eq. 1 and Eq. 2 of Section IV-B leads to an
abstract Kripke model that is a path-predicate abstraction of
the design under verification according to Section III.

As described above, the methodology produces a set of
properties,V, and a property graphG = (V,E) for which
the completeness tests have been successfully carried out. A
basic element of the created abstraction are theimportant
statesgiven by state predicates that are used in the prop-
erties to characterize the starting statess0 of an operation
in the assumption and the ending statessl of the operation
in the commitment. The important-state predicates defining
the abstraction functionα(s) are given by the set of all
important-state predicates{Zi(s)} appearing in the properties:
α(s) := (Z1(s),Z2(s), . . . ). The abstraction function maps every
concrete state of the design to an abstract state.

It must be shown that the transition relationR̂ of the abstract
Kripke model is given by the set of properties in the following
way: there is a transition from one abstract state ˆs to another
oneŝ′ if and only if there exists a proven propertyP describing
an operation that starts in the important state ˆs and that ends
in ŝ′ according to Def. 4. Moreover, the requirements for the
state predicates of Def. 3 must be fulfilled.

The IPC proof engine, when proving the propertyP, verifies
for a given pair of important states forming an abstract
transition(ŝ, ŝ′) that there exists a corresponding operational
path as given in Def. 4. It is obvious that the first requirement
of Def. 3 is always fulfilled in IPC. Since every operation is
proved for all concrete important states described by a state
predicateZi(s) and a trigger conditionXi(s) the Kripke model
will also fulfill the second requirement of Def. 3. Forall
concrete states fulfillingZi(s) there is a path in the Kripke
model to some state fulfilling the ending state condition of the
operation and the trigger condition that leads into this state.

It remains to be shown that there is a property for every
abstract transition fulfilling Def. 4, and for every property there
is an abstract transition. This follows from the case split test
and the successor test. The case split test makes sure that for
every path leaving an important state in the concrete model
there is a property, i.e., an abstract transition, describing that
path. The successor test makes sure that properties describe
only paths actually starting in an important state reached by
some other property, i.e., for every abstract transition there
also exists a succeeding abstract transition.
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Thus, the abstraction produced by means of C-IPC fulfills
all requirements as stated in Section III and is sound to prove
safety and liveness properties for the concrete system.
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Fig. 4. Abstract Kripke model

Fig. 4 shows the abstract Kripke model of our example. The
model has two important statesIDLE and SENT . There is an
edge between two important states if there is an IPC property
describing a path between the two.

V. EXPERIMENTS

Two sets of experiments were made to evaluate the useful-
ness of C-IPC-based abstraction. The first set is a case study
on an experimental serial bus system [18]. The second set
of experiments was made on a system built using Infineon’s
Flexible Peripheral Interconnect (FPI) bus.

In both experiments we have a set of modules commu-
nicating over a bus.Clients connect to the bus throughbus
agents. Each bus agent has one interface to the bus and another
interface to the client. (The client could, e.g., be a CPU core
or a peripheral.)

A. Serial Bus System

The communication system used in the first set of experi-
ments is a custom-made serial bus. The protocol uses certain
elements from different “real-world” serial communication
protocols; for example, it uses CSMA (Carrier Sense Multiple
Access) with bitwise arbitration as in CAN, and synchroniza-
tion is done as in RS232 using start and stop bits.

Using C-IPC with OneSpin 360MV the bus agent was
verified and a complete set of properties was obtained. The
corresponding abstract state machine was manually translated
into VHDL. This step will have to be automated in our ongoing
work, but is here guided by a coding convention that makes the
abstract states and abstract transitions obvious. Note that only
the bus agents were abstracted. The clients and the interface
between a client and its bus agent remained the same so
that properties could be checked on the concrete and the
abstract system. The clients were designed to implement a
token passing mechanism among them.

Number of Concrete system Abstract system
agents CPU time Memory CPU Time Memory

3 0.32s 78MB 0.04s 37MB
5 1.75s 158MB 0.12s 43MB
8 1min 46s 735MB 0.38s 74MB
12 54min 59s 1372MB 1.03s 109MB
15 — — 1.89s 155MB
30 — — 9.09s 514MB

TABLE III
IPC PROPERTY CHECKED ON CONCRETE AND ABSTRACT SYSTEM

Table III shows the results for checking an IPC prop-
erty on different abstract system configurations using One-
Spin 360MV. The design was made such that the number
of bus participants can be configured by a parameter. The
property checks that after reset, token passing is triggered
ensuring that there is only one master in the system. Table III
shows in each row the number of bus participants and the
CPU time and memory consumption for checking the property
on the concrete system and on the abstract system. The
experiments were run on an Intel Core 2 Duo at 3GHz with
4GB main memory.

For the serial bus system, the particular strength of path
predicate abstraction becomes apparent. Each individual agent
in the system has 129 state variables in the concrete and 89
state variables in the abstract model. While this reduction
of about 30% is not drastic the main reduction in proof
complexity comes from temporal abstraction: The individual
operations in the concrete model, having lengths of up to
35 cycles, are mapped to abstract single-cycle transitions. A
system transaction taking more than a hundred clock cycles
of serial transmission is therefore mapped to only a few
transitions in the abstract model, reducing temporal length of
properties by factors as low as 1/35.

Number of Concrete System Abstract System
agents CPU Time Memory CPU Time Memory

2 10s 117MB 4s 119MB
3 26s 115MB 9s 346MB
4 1min 16s 461MB 15s 428MB
5 — — 58s 577MB

TABLE IV
SAFETY PROPERTY CHECKED USING INDUCTION

Table IV shows the results for checking a safety property
using the induction prover built into OneSpin 360 MV. The
safety property ensures that at any time there is only one
master. For more than 4 agents the property cannot be proven
on the concrete system, while on the abstract system it is
proven in very short CPU time.

B. Industrial FPI Bus System

A more comprehensive evaluation of the proposed method
using CTL model checking on the abstract model was done in
an industrial case study. The Flexible Peripheral Interconnect
bus (FPI bus) owned by Infineon Technologies is used for
our experiments. It is an on-chip bus system similar to the
industry standard AMBA. The throughput of the FPI bus is
optimized by pipelining of transactions and extensive use of
combinational logic. This makes it particularly interesting to
examine how our approach can be used to abstract from such
high-performance implementations and how a “clean” model
at the transaction level can be obtained.

The FPI bus is a modular system consisting of master/slave
interfaces, a BCU, an address decoder and a bus multiplexer.
C-IPC was applied to obtain complete property sets for the
modules. From the complete property sets we derived the
abstract modules.
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In our experiment we implemented our abstraction in the
Cadence SMV input language. By extensive use of macros in
our IPC-based verification tool (OneSpin 360 MV) the signals
of the SoC modules were encapsulated and named so that a
one-to-one mapping with the signals of the abstract module
was obtained. The implementation of the abstraction also here
was a manual step. Correctness can be ensured easily due
to the one-to-one mapping between the macros created in
OneSpin 360MV and the design description used for Cadence
SMV. In this way, abstract modules for the master agent and
the BCU were derived. For the slave agent, the address decoder
and the bus multiplexer the abstract modules were not derived
from C-IPC but created ad-hoc and integrated with the master
agent and the BCU to form an abstract system.

Master agent BCU
RT code inspection, lines of code 4,000 1,500
Number of properties 17 6
Total runtime of properties 1h 19min 15s
Total runtime of completeness checks 41s 10s

TABLE V
FPI BUS MODULE VERIFICATION

Table V shows some information on the complexity of de-
riving the abstract modules by C-IPC. Specifically, it presents
the approximate number of lines of RTL code which had to
be inspected in order to create our abstract models. In general,
the manual effort spent in C-IPC is about 2,000 lines of code
per person month for an average verification engineer. This
figure proved quite accurate also in the case study conducted
here.

Based on these industrial SoC modules we assembled a
system of three master agents, two slaves, the arbiter as well
as bus multiplexers and address decoders. If several complete
property suites are composed to completely describe a design
assembled from several modules additional checks need to
be applied in the completeness methodology to ensure the
correctness of the integration conditions [8].

As a result of the proposed methodology the abstract model
was obtained for the assembled FPI bus. While the concrete
system contained 2,624 state variables only 75 state variables
were included in the abstract system. We now used Cadence
SMV to prove several liveness and safety properties on the
abstract system. All properties are proven on the abstract
model within a few minutes using less than 500 MB.

As a liveness property, we have proved that any request from
a master will finish successfully within a fixed time under
the constraint that a master peripheral only sends requests
complying with the protocol, that the starvation prevention
is switched on, and that a slave does not stay busy forever.
As an example of a safety property, we prove that the bus
is correctly driven at any time. Specifically, we proved that
the various enable signals (data, address, ready) are one-hot-
encoded. According to Theorem 1 this property holds only in
the important states. By adding local properties proving that
the enable signals do not change value in-between important
states we obtain an unrestricted proof of the safety property

that now holds for both the important and the unimportant
states of the concrete model.

VI. CONCLUSION

In this paper we presented a methodology to leverage the
results of a complete property checking methodology, C-
IPC, to create abstractions for system-level verification. Our
approach can be understood also as a light-weight theorem
proving approach. In theorem proving, building a stack of
models to prove system properties is very common. Our
results show that such a paradigm is also feasible for property
checking by an appropriate methodology. Future work will
explore how the proposed abstraction can be integrated into a
SystemC-based design and verification flow.
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Abstract—FPGA-based SAT solvers have the potential to
dramatically accelerate SAT solving by effectively exploiting fine-
grained pipeline parallelism in a manner which is not achievable
with regular processors. Previous hardware-based approaches
have relied on on-chip memory resources to store data which,
similar to a CPU cache, are very fast, but are also very limited
in size. For hardware-based SAT approaches to scale to real-
world instances, it is necessary to utilise large amounts of off-chip
memory. We present novel techniques for storing and retrieving
SAT clauses using a custom multi-port memory interface to off-
chip DRAM which is connected to a processor core implemented
on a medium sized FPGA on the BEE3 system. Since DRAM is
slower than on-chip memory resources, the parallelisation which
can be achieved is limited by memory throughput. We present
the design and implementation of a new parallel architecture
that tackles this problem and estimate the performance of our
approach with memory benchmarks.

I. INTRODUCTION

SAT solvers have been established as popular black-box
reasoning techniques in a number of application areas, most
notably, formal verification of hardware and software. This
can be partially attributed to the fast rise in solving efficiency
over the last 15 years. One possibility of increasing solving
efficiency further is to make use of the fine-grained parallelism
that is offered by hardware platforms. Previous approaches
have relied on on-chip memory resources which are fast and
allow for parallelised access, but impose strict limits on the
size of input instances.

In this paper, we explore the feasibility of building a
hardware-based SAT solver that directly accesses off-chip
DRAM memory resources. This has the advantage that the size
of SAT instances solved by our hardware solver are orders of
magnitude larger than what is possible when storing instance
data using only on-chip memory. The disadvantage is that
it creates a memory bottleneck due to the memory access
characteristics of DRAM. We present an implementation of
a Boolean constraint propagation (BCP) unit on the BEE3
multi-FPGA board.

Our design uses novel techniques for clause retrieval and
propagation that utilise fine-grained parallelism in spite of this
bottleneck. For the clause retrieval step, we adapt the BCP
algorithm to independently access multiple memory channels.
The unique advantage of our approach is that it does not
impose the strict instance size limits that are common with

other hardware-based SAT solvers. The evaluation of our
implementation is work in progress. We present initial memory
benchmarks to estimate the feasibility of our approach.

II. RELATED WORK

A survey of techniques published until 2004 is given in
[1]. Early work on reconfigurable hardware SAT focuses
on instance specific approaches (e.g., [2], [3], [4], [5]), in
which a circuit is generated specific to a single SAT instance.
This requires computationally expensive circuit resynthesis
and reconfiguration of the hardware once a new instance
is to be evaluated and severely limits the size of possible
input instances. Application specific hardware solvers do not
require reconfiguration between solving instances. A popular
approach is to implement BCP, the most work intensive step of
the popular DPLL procedure, on hardware, and handle more
complex tasks such as conflict analysis and decision heuristics
in software [6], [7], [8], [9]. Fully functional hardware solvers
are presented in [10], [11], [12].

Capacity is an issue for all these solvers. Examples of more
large-scale approaches include the BCP accelerator presented
in [9], which can accommodate 64K variables and equally
many clauses of length 9, or the solver in [12], which can
accommodate 10K variables and 280K fixed-length clauses.
Many SAT instances of practical interest are not representable
within these restrictions.

A number of methods have been proposed to increase the
capacity of hardware-based solvers: Examples include using a
larger FPGA [4] or multiple FPGAs [7], [8], [9], splitting the
problem into small subproblems [5], partitioning the instance
into small-sized frames that are loaded on-demand [12], or
combining a software solver with a hardware solver for small-
size subproblems [10]. Our approach, in contrast, explores the
feasibility of directly accessing off-chip memory resources.

III. MEMORY ACCESS PATTERNS IN SAT SOLVERS

In FPGA designs, very small amounts of data can be stored
on arrays of state-holding flip-flops. Larger amounts can be
stored in dedicated Block RAM (BRAM) modules on the
FPGA chip, or off-chip on external RAM. On-chip memory is
very limited, with typical sizes smaller than 4MB, but access
is fast and can be performed in parallel. Access to DRAM
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Fig. 1. Watch list and clause read operations in Algorithm 1

memory is performed via an external memory controller using
an asynchronous protocol. We have used a freely available
controller presented in [13] for our implementation. The
time required for a single read and write command depends
on a number of factors including access locality, memory
clock speed and the implementation of the memory controller.
Random accesses are, on average, significantly slower than
linear streaming access.

Most modern SAT solvers are based on the Conflict Driven
Clause Learning (CDCL) framework, which utilizes clause
learning and backjumping ([14], [15]), and spend most of the
runtime in Boolean Constraint Propagation (BCP). BCP can
be efficiently implemented using a watched-literal scheme [16]
where two literals in each clause are observed for changes.
Literal watching can be implemented by associating each
literal with a list, which records the clauses that have to be
visited when the literal is contradicted during search.

Algorithm 1 The BCP step
1: procedure Propagate(l : literal)
2: wl← readWatchList(l) . R
3: while HasNextClause(wl) do
4: c← readNextClause(wl) . R
5: v ← readVariableValues(c) . R
6: s← analyse(v, c)
7: if s = Conflict then return Conflict
8: else if s = Deduction then writeDeducedValue() . W
9: changeWatchLits() . W

10: return Unknown

In Algorithm 1, the inner core of the BCP algorithm
is presented in a way that emphasizes memory accesses.
ReadVariableValues fetches the values assigned to variables
occurring in a clause. The Analyse function determines the
status of a clause and returns a result that indicates if an action
needs to be taken. Finally, ChangeWatchLits modifies watch
lists in accordance with the two-watched literal scheme.

The memory access pattern for reads is illustrated in Figure
1. Reads are issued in a linear fashion on successive addresses,
with intermittent single random accesses. We will refer to this
access pattern as quasi-linear.

In order to estimate the viability of using DRAM in a
reconfigurable-hardware SAT solver, we compared the effi-
ciency of quasi-linear memory accesses on the BEE3 platform
with the same access pattern implemented in software and run
on an average PC. Since modern CPUs have large multi-level
caches which allow fast access to recently used data, it is not a
priori clear that the performance is similar, even when similar
types of main memory are used.

For our experiments and implementation of the BCP core,
we use a pre-production version of the BEE3 FPGA board
which has four XC5VLX110T FPGAs. Each FPGA has two

PC (400MHz RAM) Virtex5 (250MHz RAM)
rnd./lin. 93.7 / 1066.7 44.4 / 1066.7

quasi-lin. 691.9 984.6

TABLE I
AVERAGE MEMORY ACCESS SPEED (MB/S)

independent memory channels connected to dual channel
DDR2-533 RDIMMs with each channel populated with 8GB
of memory (giving a total of 64GB for the whole system).
The FPGAs are connected in a ring and a cross-over board
also provides direct connections between the other two FP-
GAs. Although this platform was primarily developed for
the emulation of multi-core processors we believe it is an
interesting platform for hardware SAT-solving because of the
large amount of off-chip memory and the ability to use eight
independent memory channels to experiment with hardware
parallelisation techniques.

The BEE3 system also provides a variety of I/O ports
including for each FPGA an RS232 serial port, dual 10GBase-
CX4 Ethernet interfaces, a single PCI-Express x8 end-point
slot and a Gigabit Ethernet port. We use the Gigabit Ethernet
port to communicate with a host PC running Windows 7.

We compared DDR2 memory access speed on a 3GHz CPU
with memory clocked at 400MHz and a Virtex-5 FPGA with
memory clocked at 250MHz. Random address values were
precomputed and read (linearly) from an array in the software
case, and generated on-the-fly in the hardware case. The
memory controller has a granularity of 256 bit per memory
access (288-bits including error correction bits). Hence, for the
linear and quasi-linear access cases, a single read and write
operation can manipulate 8 integers of width 32 at once.

The test setup consisted of reading and incrementing
256MB of 32 bit integers. The results are shown in Table
I, which shows read/write speeds for a completely random,
linear and quasi-linear access patterns. The quasi-linear access
pattern reads 64 words linearly before performing a random
address jump. As can be seen from the table, the access speed
for quasi-linear access is comparable on the two platforms, de-
spite the lower memory clock speed of the FPGA. Since quasi-
linear accesses are characteristic for the DPLL algorithm, this
result gives some preliminary indication that a hardware-based
implementation of DPLL with direct DRAM access is feasible.

IV. BUILDING A DRAM-BASED BCP-CORE

Since straight-forward highly parallel approaches are not
practicable when accessing DRAM directly, we base our im-
plementation on modern software CDCL solvers and enhance
it with fine-grained parallelism where possible. The only data
which we store on-chip are the current value of variables,
all other data is kept in off-chip DRAM. In this situation,
it becomes necessary to explore parallelisation techniques that
are still viable in the context of the memory bottleneck that is
created by off-chip data storage.
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Fig. 2. Parallel watched literal scheme

A. The Parallel Watched-Literal Scheme

While DRAM access is inherently sequential, the BEE3
board retains some options for concurrent off-chip memory
operations by offering multiple RAM channels, each of which
is connected to its own RAM chip and can be controlled
independently.

A key aspect of our approach is the ability to exploit
two independent memory channels on each of the FPGAs,
since it maps naturally to the two-watched literal scheme. In
the watched literal scheme, two literals of each clause are
designated and watched for changes. This is implemented by
keeping a list for each literal, and appending all clauses to it
in which it is being watched.

In our BCP implementation, we parallelise the two-watched-
literal scheme by watching each of the two literals of a single
clause on a separate memory channel (see Figure 2). Each
literal is associated with two watch lists that are stored on
separate channels A and B. Clause data is stored redundantly
on the two memory chips. This allows to localise the inner
core of BCP to require only memory accesses on a single
memory channel. When the routine in Algorithm 1 is executed,
the two partial watch lists are fetched independently on the
two memory chips. After this step, the while-loop at line 3
of the algorithm can be executed completely in parallel by
performing propagation local to data stored on each of the
memory channels.

Redundant storage of clause data creates a memory over-
head that is not significant in view of the large amount of
available off-chip memory, but can speed up the processing
of a watch list by up to 100%. By dividing the watched
literals between the two memory channels, the average length
of watch lists on each channel will be equal.

B. Parallel Inference

When relying on off-chip memory resources, clauses need
to be read sequentially after the watch list is retrieved. The
amount of possible parallelisation in analysing clauses is
directly limited by the rate at which clauses can be streamed
from memory.

After a clause has been retrieved, its variables’ values have
to be read (line 5 in Algorithm 1). The actual analysis step (line
6) can then be performed in a single clock cycle by a dedicated
analysis circuit. We store variable values on on-chip memory
resources. A value can therefore be accessed in a single cycle.
Large clauses might still require a number of cycles to fill
up all variable values of interest. Depending on how fast a

issue read receive clause read values analyse

issue read receive clause read values analyse

Fig. 3. Timing of the clause analysis step

clause can be streamed from memory and how many variable
values need to be fetched before the status of a clause can be
determined, there can be an overlap with new clauses arriving
while a previous clause is still fetching variable values, as
illustrated in Figure 3.

To speed up these cases, we have implemented a limited
form of inference parallelism. The clause analysis step is
performed by propagator cores, which are assigned clauses
that arrive from memory. Once a core has received a clause,
it starts issuing requests for variable values to a common bus,
and listening for useful variable values on another bus. Once
enough variable values have been received to determine clause
status, the core sets a ready flag and waits for the next clause
assignment. In most cases, a core does not need to fetch all
variable values in order to determine the status of a clause.
In case a clause is either satisfied or is neither conflicting nor
leads to a deduction, the result can be determined early.

The number of propagator cores is a parameter in our
design. Once the analysis speed outpaces clause throughput
no further efficiency gains can be obtained by adding cores. In
our implementation, we have therefore instantiated the design
with two propagation cores per memory channel.

C. Algorithmic Description of the BCP step

We will now give an algorithmic description of our solver,
before discussing the implementation architecture. We present
an overview in Algorithm 2. The procedures BCP and BCP-
Core correspond to the hardware modules of the same name
that are discussed in the next section.

Algorithm 2 Algorithmic description of hardware BCP
1: procedure BCP(l : literal)
2: q ← {l}
3: while |q| > 0 do
4: p← pop(q) . pop queue
5: BCPCore(p,A), BCPCore(p,B) . execute in parallel
6: if conflict(A) ∨ conflict(B) then return Conflict
7: append(q, deductions(A) ∪ deductions(B))
8:
9: procedure BCPCore(l : literal, X : memory channel)

10: wl← issueReadWatchList(l,X) . watch list fetch
11: while ¬watchListReceived() do
12: addr ← waitForClauseAddress();
13: issueClauseRead(addr,X) . clause fetch
14: while ¬allClausesReceived(wl) do . clause propagation
15: c← waitForClause(); assignToFreePropagationCore(c)
16: writeBackWL(l,X) . write new watch list for l
17: appendWatches(X) . append changed watched literals

In the BCP step, propagation literals are incrementally taken
from a queue, after which BCPCore is executed in parallel on
memory channels A and B. Each BCPCore reads its (partial)
watch list from memory and issues “clause read” commands
as soon as clause addresses are received. Arriving clause data
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is distributed to the propagator cores which record their results
for later evaluation. The addresses of those clauses which
remain in the watch list (e.g., already satisfied clauses) are
written back to memory in the call to WriteBackWL. The
addresses of all other clauses are appended to their new
watch lists in the AppendWatches step. Deduction results are
recorded and processed in the main BCP procedure. If no
conflict is found, the procedure appends new deduction results
to the BCP queue.

D. Implementation Description

In our implementation, we use external DRAM to store
clause and watch list information, while we use on-chip
BRAM to store variable values. We use an openly available
DDR2 memory controller [13].

The architecture of our BCP module is presented in Figure
4. The “BCP controller” block corresponds to the BCP proce-
dure in Algorithm 2. It manages a BCP queue, issues propagate
commands to the two “BCP CORE” modules, and controls
the modification of watch lists. The two BCP cores receive
propagation literals from the BCP controller, issue memory
requests to the “CDCL MEM interface” module and distribute
clauses on their partial watch list between free “propagator”
cores. The propagator units access a common bus to read literal
values.

In our BEE3 implementation, we limit the clause size to
24 literals to enable efficient propagation, and impose a limit
on total size of watch lists to 256 clause addresses (128 per
memory channel). This allows storage of instances with up to
1 million variables and 70 million clauses. We have validated
our approach in simulation and synthesized our circuit with
a memory clock frequency of 200 MHz and control logic
clocked at 100 MHz. Obtaining benchmark results is work
in progress.

V. CONCLUSION

In this paper we have presented an implementation of a
Boolean constraint propagation core that does not rely on
limited on-chip memory resources to store instance data,
but instead directly accesses off-chip DRAM. Based on the
memory access behaviour of CDCL solvers and the character-
istics of DRAM, we have proposed techniques that introduce
parallelism in spite of the memory bottleneck created by using
off-chip resources. The evaluation of our implementation is
work in progress. Our initial exploration is encouraging and
we conclude that there is a good potential for implementing
high performance parallel hardware SAT solvers by carefully
designing and tuning the circuits that make up the memory
hierarchy.

Future work includes the completion of the system which
drives the parallel hardware BCP core by adapting an existing
SAT-solver like MiniSAT and executing it on an embedded
soft processor on the Virtex-5 FPGA or on an embedded hard
core processor like a PowerPC or ARM core. Currently we
use just one of the four FPGAs on the BEE3 system and in
future work we hope to exploit all four FPGAs.
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Abstract—A variety of tasks in formal verification require
finding small or minimal unsatisfiable cores (subsets) of an
unsatisfiable set of constraints. This paper proposes two algo-
rithms for finding a minimal unsatisfiable core or, if a time-out
occurs, a small non-minimal unsatisfiable core. Our algorithms
can be applied to either standard clause-level unsatisfiable core
extraction or high-level unsatisfiable core extraction, that is,
an extraction of an unsatisfiable core in terms of “interesting”
propositional constraints supplied by the user application. We
demonstrate that one of our algorithms outperforms existing
algorithms for clause-level minimal unsatisfiable core extraction
on large well-known industrial benchmarks. We also show that
our algorithms are highly scalable for the problem of high-
level minimal unsatisfiable core extraction on huge benchmarks
generated by Intel’s proof-based abstraction refinement flow. In
addition, we provide a comparative analysis of the impact of
various algorithms on unsatisfiable core extraction.

I. I NTRODUCTION

Given an unsatisfiable formula in Conjunctive Normal Form
(CNF), a (clause-level) unsatisfiable core (UC)is an unsatis-
fiable subset of its clauses. A(clause-level) minimal unsatisfi-
able core (MUC)is a clause-level UC that becomes satisfiable
when any one of its clauses is removed. The problem for
finding a small, a minimal, the smallest minimal, or all the
minimal unsatisfiable cores has been addressed frequently in
recent years [1]–[19], mainly due to the increasing importance
of this problem in formal verification.

While clause-level UC extraction is widely used, the for-
mulation of the problem of extracting a clause-level core
implicitly assumes that a “good” core should contain as few
clauses as possible, whereas many real-world applications
require minimizing the number of high-level propositional
interesting constraintsin the core. Ahigh-level small/minimal
unsatisfiable coreis a small/minimal subset of the interesting
constraints, whose conjunction with the other constraints in
the system is unsatisfiable.

In [13] an algorithm for finding all the high-level MUCs
is proposed and applied during the refinement stage of
the datapath abstraction refinement-based approach to formal
equivalence verification (FEV) described in [20]. Specifically,
an abstract counterexample is written as a set of interesting
constraints. The abstract counterexample is encoded into CNF
in order to find corresponding concrete bit-level counterexam-
ples. If the CNF instance is unsatisfiable, then no such con-
cretization exists, and the abstract counterexample is spurious.
In this case, high-level MUCs are used to locate the source of
infeasibility and refine the abstraction. The algorithm of [13]
is reviewed in Section II.

High-level MUC extraction is used for compositional
FEV [21], [22] in [23]. In compositional FEV, the design
and the implementation are decomposed into pairs of corre-
sponding slices. By proving the equivalence of all the pairs
one can infer the equivalence of the models. It is essential
for fast and correct FEV to allow the user (the designer)
to specify assumptions that mimic the environment for each
pair of slices. These assumptions can be used for the proof
of equivalence, but the correctness of each assumption that
impacts the proof must be proved separately afterwards. High-
level MUC extraction, where the assumptions serve as the
interesting constraints, is used to identify the assumptions
that were relevant for the equivalence proof. The algorithm
of finding a high-level MUC is only briefly sketched in [23]
(in fact, a preliminary version of our Alg. 2 is used).

Another example where high-level UC extraction can be
applicable is proof-based abstraction refinement for SAT-based
hardware model checking, proposed independently in [24]
and [25]. This algorithm uses bounded model checking (BMC)
for increasing depths on the concrete design. When there is
no counterexample up to a given depth, an UC is identified
for this depth and an abstraction based on latches and/or
gates is used to generate an abstract model which is then
proved using complete model checking techniques. While the
existing literature uses clause-level UC extraction for finding
the abstraction, it would be more appropriate to use high-level
UC extraction for this purpose, since the algorithm clearly
needs UCs in terms of latches and/or gates, rather than clauses.

Finding one non-minimal core is the cheapest alternative in
terms of run-time, but the least precise in terms of the size
and accuracy of the core. Extracting all the minimal cores is
the most precise, albeit the most costly, option. Finding one
minimal core is a reasonable compromise between accuracy
and run-time. In this paper we introduce two new algorithms
applicable for both high-level and clause-level single MUC
extraction. They can also return a small non-minimal core if
a time-out occurs after the initial approximation stage, where
the larger the time-out the smaller the core will be. One of
the algorithms generalizes and improves the resolution-based
approach to clause-level MUC extraction [6]–[8], while the
other uses the selector variable-based approach to clause-level
non-minimal UC extraction of [4], [11] as the starting point.
We show that one of our algorithms, given large industrial
benchmarks, yields empirically better results than previous
approaches to clause-level MUC extraction. We demonstrate
the scalability of our algorithms for high-level MUC core
extraction using huge benchmarks generated by Intel’s imple-
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mentation of the proof-based abstraction refinement flow [24],
[25]. Also, our work provides an extensive comparison be-
tween our new resolution-based and selector variable-based
approaches to MUC extraction. Furthermore, we analyze the
impact of the following on resolution-based MUC extraction:
(1) different approaches to incremental SAT solving (pervasive
clause reuse [26] versus reusing a single SAT instance [27]);
(2) RRP (Resolution Refutation-based Pruning) [6]–[8]; (3)
in-memory data structures with reference counters [9]–[11]
versus on-disk data structures [1], [2].

The rest of the paper is organized as follows. Section II pro-
vides the necessary background and surveys the related work.
Sections III and IV introduce our approaches (resolution-based
and selector variable-based, respectively) to extracting a MUC.
Section V presents and analyzes the experimental results.
Section VI concludes our work.

II. BACKGROUND AND RELATED WORK

We start this section with an overview of algorithms for
incremental SAT solving, whose relevance to UC extraction
will be explained shortly.

A. Incremental SAT Solving

Incremental SAT solving is intended to boost the solving
of closely related SAT instances, which share clauses. It
was noted in [26] thatpervasive clause reuse(that is the
reuse of learned clauses derived from shared input clauses
in consecutive SAT invocations) provides a significant perfor-
mance boost in SAT-based Automatic Test Pattern Generation.
Another single SAT instance-basedapproach to incremental
SAT solving was proposed in [27] in the context of incre-
mental model checking and implemented in the Minisat SAT
solver [28]. Minisat re-uses a single SAT instance for all the
related invocations. After the solving is completed, one can
add new clauses to Minisat and re-invoke the solver on the
incremented instance. The single SAT instance-based approach
is preferable to the pervasive clause reuse approach, since
it reuses not only the relevant conflict clauses, but also all
the information necessary for the decision and conflict clause
deletion heuristics. However, it suffers from the drawback that
it is notdecremental, that is, it does not allow removing clauses
between consecutive SAT invocations.SAT solving under
assumptions[27] (also implemented in Minisat) provides a
solution to this problem by allowing the user to supply a set of
assumptionsY = {y1, y2, . . . , ym} (where each assumptionyi

is a literal) along with the input formulaF . The solver returns
“satisfiable” iff F ∧ Y is satisfiable. The user application
can augment related clauses that are expected to be removed
with the negation of a literall and assert these clauses when
required by addingl to Y . An additional useful feature is that
whenF ∧Y is unsatisfiable, Minisat can return a small subset
of the assumptionsY ′

⊆ Y , called therelevant assumptions,
such thatF ∧ Y ′ is still unsatisfiable [28]. The algorithm
for returning the set of relevant assumptions is very cheap
and requires only minimal changes to the solver. All theY

literals are picked as decision variables before all the other

variables and are assigned true. Then standard SAT solving is
used. The algorithm terminates when one of the assumptions
y is forced to be false in clauseC by Boolean Constraint
Propagation (BCP). In this case the assumptions cannot hold
together. Minisat resolves theC with all its predecessors in
the implication graph until a clause containing the negations
of Y ’s literals only is generated. The negation of this clause
is returned as the set (conjunction) of relevant assumptions.

B. Unsatisfiable Core Extraction

The most scalable approach to extracting a small clause-
level UC is theresolution-based approach. It is based on the
ability of modern SAT solvers to store a resolution derivation
during the process of solving and to generate a resolution
refutation of a given unsatisfiable formula at the end. The basic
resolution-based approach, discovered independently in [1]
and [2], returns all the initial clauses connected to the empty
clause� as the UC. This approach imposes little overhead
on the SAT solver, hence it can handle huge instances having
millions of clauses. Two methods for trimming the size of the
core were proposed in [1] and [5], based on invoking the basic
resolution-based approach until a fixed point is reached and
manipulating the resolution refutation, respectively. Neither of
these methods guarantees minimality.

A resolution-based algorithm for extracting a minimal UC,
called Complete Resolution Refutation (CRR), was proposed
in [6]–[8]. CRR first finds a resolution refutationπ of the
input formula and removes clauses that are not connected to
the empty clause�. Then, for each remaining input clauseC,
CRR removes the cone ofC from π and invokes a SAT solver
on the rest of the remaining clauses, including the conflict
clauses. If the formula is satisfiable, thenC belongs to a MUC;
otherwise CRR removes all the clauses not connected to�
from π and continues the loop until all the input clauses are
either removed or are proved to belong to the MUC. CRR
uses the pervasive clause reuse approach to incremental SAT
solving: it invokes the SAT solver many times on related
instances, re-using all the relevant conflict clauses. CRR’s
performance can be enhanced by applying a technique known
as Resolution Refutation-based Pruning (RRP) [6]–[8], which
is briefly described in Section III. CRR with RRP scales
well for difficult industrial instances having up to one or two
hundred clauses [6]–[8].

The early implementations of resolution-based algorithms
for UC extraction stored the resolution derivation on disk [1],
[2]. Several independent researches realized that the perfor-
mance of UC extraction could be improved by storing the
resolution derivation in memory. In [6] it was suggested
as a direction for future work that storing the resolution
derivation in memory could boost CRR. BooleForce [29] was
the first solver to store the resolution derivation in memory (for
extracting non-minimal UCs). An efficient implementation of
the in-memory algorithm, based on reference counters, was
proposed independently in [9]–[11]. The key observation is
that if there are no references to the clause from either the
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instance or the resolution derivation, it can safely be removed
from the resolution derivation.

Now we describe another prominent approach to UC
extraction–theselector variable-based approach–introduced in
the AMUSE tool for non-minimal clause-level UC extrac-
tion [4]. This approach adds the negation of a freshselector
variable from a subsetY to each input clause. The SAT
solver is then guided to assert the clauses by setting the
selector variable to true whenever possible. In the end, the
algorithm derives aY -conflict clause containing a subset of
the selector variables. The core consists of clauses the negation
of whose corresponding selector variables belongs to theY -
conflict clause. AMUSE implementation requires changing the
internals of the SAT solver. A very similar algorithm for non-
minimal clause-level UC extraction which does not require
changing the SAT solver was proposed in [11]. It provides the
selector variables as assumptions, along with the formula aug-
mented by selector variables, to Minisat. The UC consists of
clauses whose selector variables are returned by Minisat as the
relevant assumptions. Unlike the resolution-based approach,
the selector variable-based approach does not need to store
a resolution derivation. However, its major drawback is that
adding selector variables causes the SAT solver to generate
very long learned clauses, making it so that the algorithm
does not scale well even to medium-size instances for clause-
level MUC extraction. The selector variable-based approach
to non-minimal clause-level UC extraction was shown to
be inferior to the basic resolution-based approach in [11].
Moreover, AMUSE was shown to be much slower than the
CRR algorithm in [6]–[8], even though AMUSE, unlike CRR,
does not guarantee the minimality of the core. The selector
variable-based approach can be extended for generating a
number of clause-based UCs [4], the smallest clause-based
MUC [12], and all the clause-based MUCs [13].

An algorithm for generating all the clause-level or all the
high-level MUCs, called CAMUS, is proposed in [13]. First
CAMUS computes the set of all the minimal correction subsets
(MCSs) of a given unsatisfiable problem, where a correction
subset is a subset of the constraints whose removal results
in a satisfiable set of constraints. Then it finds the set of all
the irreducible hitting sets of the MCSs, which is exactly the
set of all the MUCs. The first stage of this algorithm is very
costly, since it has to findall the MCSs. Yet, a version of
CAMUS for finding all the high-level MUCs was successfully
applied to formulas from the datapath abstraction domain [20]
having more than one hundred clauses. The efficiency of the
high-level MUCs extraction is achieved using Minisat’s feature
of SAT solving under assumptions with relevant assumption
extraction as an underlying reasoning engine. In our context,
it is important to note that the high-level MUCs extraction
mode of CAMUS marks all the clauses that correspond to
a particular interesting constraint with a particular selector
variable. This operation allows CAMUS to use Minisat’s
features for reasoning about interesting constraints. Our Alg. 3
for finding a single MUC uses this operation as well, but,
unlike CAMUS, we apply it to the problem of UC extraction

C8 = �

C7 = ¬a

C6 = c

C3 = a C4 = c C1 = b ∨ c C2 = ¬b ∨ c C5 = ¬a ∨ ¬c

Fig. 1: An example. Assume Ψ =
{R1 = {C1, C2} , R2 = {C3, C4}}; Ω = {C5}. Note that
the only high-level MUC is {R2}. A resolution refutation of
Clss(Ψ ∧ Ω), addressed in the text, is shown.

.

in a straightforward manner which makes our high-level MUC
extraction algorithm scalable to instances having millions of
clauses. Note that although the second stage of CAMUS can
easily be modified to return only one high-level MUC, this
option does not seem to be practical, since CAMUS’s first
stage is clear overkill when only one MUC is required to be
found.

III. R ESOLUTION-BASED MINIMAL UNSATISFIABLE CORE

EXTRACTION

In this section we introduce a new resolution-based algo-
rithm for high-level and clause-level minimal UC extraction.
It may also return a non-minimal core if a time-out occurs
after the initial approximation stage.

A. Definitions

We need to provide a number of well-known notions related
to resolution. Theresolution rule states that given clauses
D1 = A ∨ v and D2 = B ∨ ¬v, whereA and B are also
clauses, we can derive the clauseC = A ∨ B. The resolution
rule application is denoted byC = D1 ⊗

v D2. A resolution
derivation of a target clauseC from a CNF formulaF is a
sequenceπ = (C1, C2, . . . , Cp ≡ C), where each clauseCi is
either a clause ofF (an initial clause) or derived by applying
the resolution rule toCj and Ck, wherej, k < i (a derived
clause). Aresolution refutationis a resolution derivation of the
empty clause�. A resolution derivationπ = (C1, C2, . . . , Cp)
can naturally be considered as a directed acyclic graph (dag)
whose vertices correspond to all the clauses ofπ and in
which there is an edge from a clauseCj to a clauseCi

iff Ci = Cj ⊗ Ck (an example of such a dag appears in
Fig. 1). Let π be a resolution derivation. A clauseD ∈ π

is reachablefrom C ∈ π if there is a path (of 0 or more
edges) fromC to D. The set of all vertices reachable from
C ∈ π (or from ρ ⊆ π), called thecone of C (or ρ), is
denotedRe(π,C) (or Re(π, ρ)). For the example in Fig. 1,
Re(π, ρ = {C1, C2}) = {C1, C2, C6, C7, C8}.

Now we provide definitions related to high-level UC ex-
traction. Given a conjunction (set) of propositional formulas
Ψ = {R1, R2, . . . , Rm} and a propositional formulaΩ, such
that Ψ ∧ Ω is unsatisfiable,UC(Ψ,Ω) ⊆ Ψ is a high-level
unsatisfiable core, ifUC(Ψ,Ω) ∧ Ω is unsatisfiable. Each
Ri ∈ Ψ is an interesting constraint (IC)and the setΩ is
the remainder. A high-level UC isminimal if removing any
of its ICs makes its conjunction with the remainder satisfiable.

223



A clause projection Clss(F ) of a propositional formulaF is
a set of clauses equisatisfiable toF , generated by applying
Tseitin encoding [30]. We sometimes refer to a formulaF ,
meaning the associated clause projectionClss(F ).

Next we introduce our resolution-based algorithm for high-
level MUC extraction. For clarity of presentation we start with
a simple (yet novel) Alg. 1, which serves as the basis for the
eventual Alg. 2.

B. The Basic Algorithm

Alg. 1 receives a set of ICs and the remainder. Its initial
approximation stage(the first two lines) approximates a high-
level MUC mucby placing inmucICs whose intersection with
a clause-level non-minimal UC is non-empty1. The clause-
level non-minimal core is found using the basic resolution-
based approach [1], [2]. The approximation stage of Alg. 1
corresponds to the “folk” algorithm for finding a high-level
non-minimal UC. Note that even if the clause-level core is
minimal, the high-level core is not necessarily minimal (this
observation also holds for Alg. 2). Consider the example in
Fig. 1. The set of clauses{C1, C2, C3, C5} is a clause-level
MUC of Clss(Ψ∧ Ω). However, the corresponding set of
interesting high-level constraints{R1, R2} is not a high-level
MUC.

Assume now that the algorithm enters theminimization loop
(the “for all” loop). It simply goes over all the ICs remaining
in mucand checks if a particularremoval candidateRi can be
removed by invoking a SAT solver over the clause projection
of the remainder andmuc\ {Ri}. In the end,muc is a high-
level MUC.

Note that if a time-out occurs during the minimization stage,
the algorithm can still return a reduced, but not necessarily
minimal, core. This property also holds for Alg. 2. We describe
another property holding for both algorithms. This property is
essential for guaranteeing that the algorithms indeed return a
minimal core. Consider an ICRj , such thatj ∈ muc, butRj

is not the removal candidate for a certain minimization loop
iteration. Note that all the clausesClss(Rj) are sent to the
SAT solver, even if some of the clauses ofClss(Rj) did not
participate in the clause-level core returned by the SAT solver
during the approximation stage. For example, suppose that the
resolution refutation in Fig. 1 corresponds to the situation just
after completion of the approximation stage. Assume that the
removal candidate for the first iteration of the minimization
loop is R1. The clauseC4 ∈ Clss(R2) is not connected to
�. However, it must be sent to the SAT solver, otherwise
the algorithm will erroneously conclude thatR1 must belong
to the minimal core. Likewise, all the clauses in the clause
projection of the remainder are sent to the SAT solver.

The main drawback of Alg. 1 is the lack of incrementality.
The SAT solver is invoked each time on a new formula, while
the learned conflict clauses and heuristical information are lost.

1We assume here and elsewhere in the paper that the clause projection of
each constraint (either an interesting constraint or the remainder) is created
by appying Tseitin encoding which generatesnewauxiliary variables for each
translated entity.

Algorithm 1 Basic high-level MUC extraction

Require: Ψ = {R1, R2, . . . , Rm} ∧ Ω is unsatisfiable
1: Extract a clause-level non-minimal unsatisfiable coreF using the

basic resolution-based approach
2: muc:=

{
i | Clss(Ri) ∩ F 6= ∅

}

3: for all i ∈ mucdo
4: Invoke a SAT solver onClss(Ω ∧ {Rj | j ∈ muc\ {i}})
5: if the result is “unsatisfiable”then
6: muc:= muc\ {i}
7: return {Ri | i ∈ muc}

We would like to extend Alg. 1 so that it would reuse the
same SAT instance. To be able to check whether a removal
candidate belongs to the core, we need to have the ability to
conditionally removethe cone of the removal candidate (that
is, to remove the cone while maintaining the possibility of
returning it efficiently), since this cone corresponds exactly
to the removal candidate and all its logical consequences.
In addition, we need to support both the efficientreturn of
conditionally removed clauses to the SAT instance for cases
where the removal candidate belongs to the minimal core, and
the efficientunconditional removalof clauses to support the
operation of removing ICs from the core. We will describe how
we implemented these operations after presenting the flow of
Alg. 2.

C. The Final Algorithm

Alg. 2 uses an incremental SAT solver (which also maintains
a resolution derivation) and assumes that it returns a triplet
that contains the result (which can either be “satisfiable” or
“unsatisfiable”), an updated SAT instance, and an updated
resolution derivation. The approximation stage of Alg. 2 (from
the beginning until line 7) invokes the SAT solver over
the set of ICs and the remainder. The cones (of ICs) that
do not include� are removed from the instance forever.
The algorithm maintains a set ofminimal core candidates,
muc cands, initialized with the indexes of ICs whose cone
includes�. It is not known whether the ICs inmuc cands
belong to the minimal core. The algorithm also maintains a
set of minimal core habitants,muc, which contains ICs that
belong to the minimal UC. Consider the minimization loop
(the “while” loop). Each iteration picks a removal candidate
from the minimal core candidates. It conditionally removes
the cone of the removal candidate from the SAT instance
and invokes the SAT solver. If the instance is satisfiable, the
removal candidate is guaranteed to belong to the minimal core,
and hence it is moved frommuc candsto muc and its cone
is returned to the instance. If the instance is unsatisfiable, the
algorithm refines the minimal core candidates by keeping there
only those ICs whose cone includes�. Cones of other ICs are
removed forever. Hence one iteration of the loop may remove
more than one IC from the set of minimal core candidates. In
the end, the algorithm returns the set of minimal core habitants
as the high-level MUC.

Now we will discuss implementation details which are
critical for performance. Conditionally removed clauses are
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not deleted from the clause database, since this would make
returning them cumbersome and costly. Rather, we make sure
that these clauses are ignored by the solver’s major algorithms,
including Boolean Constraint Propagation (BCP) and clause-
based heuristics (if such a heuristic, e.g., CBH [31], is used).
This is done as follows. We remove the clauses from the WL
data structure [32], which is used for BCP, then we mark the
clauses and guide the heuristic to ignore the marked clauses.
To return the conditionally removed clauses, it is sufficient to
reinsert them into the WL data structure and unmark them for
the clause-based heuristics. In addition, our implementation
groups the following two operations into one pass over the
clauses carried out just after executing line 10: (1) finding
and conditionally removing the cone of the current removal
candidate; (2) finding and either returning or unconditionally
removing the cone of the previous removal candidate (or, for
the first iteration only, unconditionally removing the cones of
ICs found to be irrelevant during the approximation stage).

Algorithm 2 Resolution-based high-level MUC extraction

Require: Ψ = {R1, R2, . . . , Rm} ∧ Ω is unsatisfiable
1: Initialize the SAT instanceSI with Clss(Ψ ∧ Ω) and associate a

resolution derivationπ with SI
2: 〈res, SI, π〉 := SAT(SI)
3: for i ∈ 1 . . . m do
4: if � /∈ Re(π, Clss(Ri)) then
5: RemoveRe(π, Clss(Ri)) from SI forever
6: muc cands:= {i | � ∈ Re(π, Clss(Ri))}
7: muc:= {}
8: while muc candsis non-emptydo
9: k := a member ofmuc cands\ muc

10: Conditionally removeRe(π, Clss(Rk)) from SI
11: muc cands:= muc cands\ {k}
12: 〈res, SI, π〉 := SAT(SI)
13: if res= satisfiablethen
14: ReturnRe(π, Clss(Rk)) to SI
15: muc:= muc∪ {k}
16: else
17: RemoveRe(π, Clss(Rk)) from SI forever
18: for i ∈ muc candsdo
19: if � /∈ Re(π, Clss(Ri)) then
20: RemoveRe(π, Clss(Ri)) from SI forever
21: muc cands:= muc cands\ {Ri}
22: return {Ri | i ∈ muc}

Standard clause-level MUC extraction is a particular case
of high-level MUC extraction where each IC consists of a
single clause and the remainder is empty. Consider Alg. 2 as
an algorithm for clause-level MUC extraction and compare
it to the CRR algorithm [6]–[8] described in Section II. The
algorithms have a similar structure. Both try to reuse all the
relevant conflict clauses between different iterations of the
minimization loop. The main difference between them is that
while CRR creates a new SAT instance for each minimization
loop iteration, Alg. 2 reuses a single SAT instance. There is an
additional difference between the implementation of CRR and
the currently fastest implementation of Alg. 2. Alg. 2’s fastest
implementation uses the latest in-memory data structures with
reference counters for storing the resolution derivation [9]–

[11], while the CRR implementation of [6]–[8] uses the on-
disk approach. Section V demonstrates that Alg. 2 empirically
outperforms CRR for clause-level MUC extraction.

Our current implementation of resolution-based algorithms
uses reference counters for efficiently removing unreferenced
nodes in the in-memory resolution derivation. However, we
noticed that using reference counters for this purpose is
redundant, since the same effect can be achieved by remov-
ing unreferenced nodes during the standard interprocessing
required for the clause deletion heuristic as follows. The solver
stores the listL of all the clauses deleted by the clause deletion
heuristic. Note that only clauses that appear inL should be
considered for removal from the resolution derivation. When
L becomes larger than some threshold, the algorithm removes
from the resolution derivation all the clauses inL whose
predecessors in the resolution derivation also appear inL. The
exact implementation details are solver-specific. We have been
working on implementing this idea and experimenting with
it in the hope that it will result in further memory footprint
reduction.

RRP [6]–[8], used to enhance CRR, is directly applicable
to Alg. 2. The underlying idea is that a model forSI during
any minimization loop iteration can only be found under such
a partial assignment that falsifies every clause in some path in
Re(π,Clss(Rk)) from a clause inClss(Rk) to �. The claim is
correct, since finding a model forSI that satisfies every path in
Re(π,Clss(Rk)) would mean that there is a satisfiable vertex
cut in π, contradicting the assumption thatπ is a resolution
refutation. For example, consider again Fig. 1 and suppose that
R1 is picked as the first removal candidate by the minimization
loop. A model forSI can be found either whenb, c = 0; a = 1
for the pathC1, C6, C7, C8 or c = 0; b, a = 1 for the path
C2, C6, C7, C8. RRP takes advantage of the described property
during the minimization loop by guiding the decision heuristic
and the backtracking engine of the SAT solver to falsify paths
in Re(π, Clss(Rk)) in a systematic manner. We analyze the
impact of RRP on Alg. 2’s performance in Section V.

IV. SELECTORVARIABLE -BASED MINIMAL

UNSATISFIABLE CORE EXTRACTION

This section proposes a new selector variable-based algo-
rithm for extracting a single high-level or clause-level MUC or,
if a time-out occurs after the initial approximation stage, a non-
minimal core. Our algorithm takes advantage of the ability of
modern SAT solvers to solve the problem under assumptions
and to return a set of relevant assumptions for proving the
unsatisfiability [27], [28], explained in Section II.

Consider Alg. 3. It is composed of the approximation stage
and the minimization loop, exactly like Algs. 1 and 2. First,
the algorithm allocates a fresh selector variablesi for each IC
Ri and augments each clause in the clause projection ofRi

with ¬si. At every stage of the algorithm every conflict clause
in the cone ofRi will contain the literal¬si. Hence, assigning
somesi to true means asserting the ICRj , while assigning
sj to false means removing the associated IC by satisfying
all the relevant clauses. Our algorithm takes advantage of
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these properties to support the conditional and unconditional
removal of the ICs from the instance, as well as their return
to it, without explicitly maintaining a resolution derivation.

The approximation stage of the algorithm launches a SAT
solver, providing it the input formula (updated with the selector
variables) and the set of selector variables as the assumptions.
Suppose that the solver returns: (1) the satisfiability status;
(2) the updated incremental CNF instanceSI; and (3) the set
of relevant assumptionsrel asm. After invoking the solver,
the set of ICs which corresponds to the selector variables in
rel asm is a (not necessarily minimal) high-level UC. The
cones of the other ICs are removed from the instance. This
is done by adding unit clauses to the instance, each of which
contains the negation of a selector variable corresponding to
one particular IC. One could physically remove the clauses,
but this would require the expensive operation of going over
the clauses explicitly and rebuilding the clause database. In
our implementation, the SAT solver identifies and removes the
satisfied clauses, at no additional cost, as part of the standard
interprocessing required for the clause deletion heuristic.

The minimization loop of our algorithm maintains the sets
of minimal core candidates and minimal core habitants like
Alg. 2. Each iteration of the minimization loop removes a
particular removal candidate from the set of minimal core
candidates and launches the SAT solver on the formula,
supplying it a set of assumptions that does not include the
removal candidate. If the result is satisfiable, the removal
candidate belongs to the MUC, otherwise it does not belong to
it. In the latter case, based on the set of relevant assumptions
returned by the SAT solver, the algorithm refines the set of
minimal core candidates and removes the cones of unnecessary
ICs. At the end, the set of minimal core habitants is returned
as the high-level MUC.

Compare selector variable-based Alg. 3 to resolution-based
Alg. 2. The selector variable-based approach saves the over-
head of maintaining a resolution derivation and making ad-
ditional passes over the clause database. Alg. 3 is also much
simpler to implement. However, the selector variable-based
approach has the drawback that adding new variables to the
formula makes the conflict clauses larger and the solver slower.
An empirical comparison of Alg. 3 and Alg. 2 is provided in
Section V.

V. EXPERIMENTAL RESULTS

In this section we empirically compare algorithms for
clause-level MUC extraction and high-level MUC extraction.

A. Clause-Level Minimal Unsatisfiable Core Extraction

We used the same benchmarks that were used in [6]–
[8]. The instances were taken from well-known unsatisfi-
able families from bounded model checking (barrel, long-
mult) [33] and microprocessor verification (fvp-unsat.2.0,
pipe unsat 1.0) [34]. The size of the instances ranged from
6,069 to 189,109 clauses, the average size being 49,986
clauses. Detailed information regarding these instances ap-
pears in [6]–[8]. All the algorithms were implemented in the

Algorithm 3 Selector variable-based high-level MUC extrac-
tion
Require: Ψ = {R1, R2, . . . , Rm} ∧ Ω is unsatisfiable

1: For eachRi ∈ Ψ: Sel(Ri) := {¬si ∨ C|C ∈ Clss(Ri)}, where
si is a new variable

2: SI := (∧i:=1...mSel(Ri)) ∧ Clss(Ω)
3: 〈res,rel asm,SI〉 := SATAsm(SI; {s1, s2, . . . sm})
4: For eachj /∈ rel asm: Add a unit clause¬sj to SI
5: muc cands:= {i | si ∈ rel asm}
6: muc:= {}
7: while muc candsis non-emptydo
8: k := a member ofmuc cands\ muc
9: muc cands:= muc cands\ {k}

10: 〈res,rel asm,SI〉 := SATAsm(SI; {si | i ∈ muc cands∪ muc})
11: if res= satisfiablethen
12: muc:= muc∪ {k}
13: else
14: muc cands:= {i | si ∈ rel asm}
15: For eachj /∈ rel asm: Add a unit clause¬sj to SI
16: return {Ri | i ∈ muc}

Eureka SAT solver [35]. All experiments were carried out on
a machine with 4Gb memory and two Intel Xeon CPU 3.06
processors.

Note that CRR with RRP is the best existing algorithm for
extracting a clause-level MUC, given large difficult formal ver-
ification benchmarks. It was shown in [6]–[8] that CRR with
RRP convincingly outperforms AMUSE [4] and MUP [36].
There exist a number of other approaches to UC extraction,
such as those based on adaptive core search [3], Brouwer’s
fixed-point approximation algorithm [14], local search [15], a
combination of local search and complete search [16], [19], a
branch and bound algorithm [17], and genetic algorithms [18].
However, none of these approaches has been shown to scale
well to large-size or even medium-size benchmarks. The
instances considered in the experimental results sections of the
papers mentioned above rarely exceed 10,000 clauses; in most
cases the instances considered have at most a few thousand
or even a few hundred clauses. This is not surprising, since
these algorithms do not utilize the power of DPLL-based SAT
solvers, currently the only approach that can solve large and
difficult CNFs. Note that the problem of finding a MUC is
DP-complete [37], hence in general extracting a MUC is at
least as difficult as SAT solving; moreover, unless NP=co-NP,
it is more difficult.

Consider Table I. Columns 1MR, 1MN, and 1DN (the
names are explained in the caption of Table I) correspond to
various implementations of Alg. 2. Columns PDR and PDN
correspond to the CRR+RRP and CRR algorithms. Column
PMN can be thought of as an in-memory implementation of
CRR or as a modification of Alg. 2 that creates multiple SAT
instances with pervasive clause reuse between them. Column
SV corresponds to the selector variable-based approach of
Alg. 3. Compare the best implementation of our Alg. 2 (1MN)
to the best previous approach CRR with RRP (PDR). 1MN is
clearly preferable, as it is faster overall and faster for thirteen
out of sixteen instances. In addition, it manages to find the
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TABLE I: Comparing algorithms for clause-level MUC extraction. The first column contains instance names (where, p/b/l stand for
pipe/barrel/longmult). Each cell in the next seven columns contains the execution time in seconds on the top, the core size on the bottom-left,
and the number of clauses whose status was not determined within the time-out of 2 hours on the bottom-right (the core is minimal iff 0
appears on the bottom-right of the corresponding cell). The first letter of the abbreviated algorithm names corresponds to the approach to
incremental SAT solving: “P”/“1” stand for pervasive clause reuse/single SAT instance-based, respectively. The second letter corresponds
to the data structures: “D”/“M” stand for on-disk/in-memory with reference counters, respectively. The third letter corresponds to RRP
invocation: “R”/“N” stand for turning RRP on/turning RRP off, respectively. Bold times are the best times.

Resolution-based SV
Inst 1MR 1MN PMN 1DN PDR PDN

4p 7200 1417 2326 7200 3791 4055 2021
25399 25341 18164 0 17928 0 18622 4050 18897 0 18609 0 17472 0

4p 1 ooo 7200 1528 2593 7200 2928 4579 4323
20445 20443 12213 0 12211 0 12444 8417 12246 0 12226 0 12887 0

4p 2 ooo 4718 2383 3428 7200 4566 7062 4999
14456 0 14438 0 14572 0 16360 11047 14553 0 14569 0 14560 0

4p 3 ooo 5053 2560 3694 7200 4465 6285 5357
15844 0 15850 0 15811 0 16141 7168 15892 0 15899 0 16177 0

4p 4 ooo 4768 2432 4706 7200 5865 7200 6354
17625 0 17558 0 17633 0 19215 13680 17872 0 17916 370 17793 0

3p k 343 167 310 810 469 540 239
6784 0 6784 0 6787 0 6786 0 6783 0 6783 0 7074 0

4p k 7200 1426 2243 7200 2938 3261 3097
21459 21459 17045 0 17039 0 17218 3403 17055 0 17075 0 18786 0

5p k 7200 7200 7200 7200 7200 7200 7200
45406 45404 36423 8946 37479 22827 37523 36363 39336 19888 38800 28221 49134 47179

b5 286 68 71 869 115 128 48
2653 0 2653 0 2653 0 2653 0 2653 0 2653 0 2653 0

b6 1514 348 433 7200 436 552 402
4437 0 4437 0 4437 0 4498 659 4437 0 4437 0 4437 0

b7 1802 849 800 7200 1081 1108 700
6877 0 6877 0 6877 0 7324 2927 6877 0 6877 0 6877 0

b8 7200 4115 4479 7200 4110 4923 5758
10260 1390 10077 0 10076 0 12452 11382 10075 0 10075 0 10076 0

l4 23 14 14 25 12 12 78
972 0 972 0 972 0 972 0 972 0 972 0 972 0

l5 191 143 130 321 100 97 642
1518 0 1518 0 1518 0 1518 0 1518 0 1518 0 1520 0

l6 1121 968 1072 3129 1760 1615 5705
2189 0 2189 0 2190 0 2189 0 2189 0 2189 0 2194 0

l7 7200 5099 7200 7200 7200 7200 7200
2982 36 2982 0 2994 649 3203 1814 3454 1993 3071 973 3494 2895

Total 63019 30717 40699 84354 47036 55817 54123
199306 114073 170180 8946 171177 23476 179118 100910 174809 21881 173669 29564 186106 50074

minimal UC within the time-out for one more instance.
Comparing 1MN and SV clearly shows that our resolution-

based approach is preferable to our selector variable-based
approach for clause-level MUC extraction. The overhead of
adding a variable per clause is too high.

The single SAT instance-based approach to incrementality
results in better performance for the in-memory version of the
resolution-based approach to UC extraction (compare 1MN
to PMN). This is not surprising, as it takes advantage of
the information gathered by the decision variable and clause
deletion heuristics. However, it deteriorates the performance
of the on-disk algorithm (compare 1DN to PDN). The prob-
lematic aspect of such a combination is that the single SAT
instance-based approach stores the entire resolution derivation
in a single file whose growing size does not allow it to be
processed efficiently.

While RRP is helpful for CRR (compare PDR and PDN),
it deteriorates the performance of Alg. 2 (compare 1MR
and 1MN). We can also report that PMN outperforms PMR
(PMR’s results are not reported in the table due to space
limitations). Hence RRP does not work well when the res-
olution derivation is stored in-memory. The reasons for this
could be related to higher memory consumption, since RRP

requires more memory due to additional bookkeeping. We plan
to investigate and optimize the performance of RRP for Alg. 2
in the future.

B. High-Level Minimal Unsatisfiable Core Extraction

Compare the algorithms for high-level MUC extraction. As
far as we know, this paper is the first to address the problem
of extracting a single minimal (or small, if a time-out occurs)
high-level UC. A much more expensive algorithm, called
CAMUS, for the much more difficult problem of extracting
all the high-level MUCs, is proposed in [13]. We provided a
description of CAMUS in Section II-B. We used 49 instances
generated from the abstraction stage of Intel’s implementation
of the proof-based abstraction refinement flow for model
checking [24], [25]. All the instances are available from the
author. The abstraction is in terms of latches. Each instance
consists of two files: the standard CNF file in DIMACS format,
and a file that maps latches to their clause projection. The goal
was to minimize the number of latches in the core in order to
create a more accurate abstraction. Consider Table II. Note that
our instances have on average more than 1,850,000 clauses,
while the largest benchmark has more than 5,000,000 clauses.
Such instances are beyond the reach of modern algorithms
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TABLE II: Statistics for instances used for testing high-level MUC
extraction algorithms. The remainder fraction is the fraction of the
remainder out of all the clauses.

Clauses Remainder Fraction ICs Num. Mean IC size
Min. 136878 0.955 584 3.89
Average 1853500 0.968 3367 17.27
Max. 5136873 0.977 4030 48.6

TABLE III: Comparing algorithms for high-level UC extraction.

1MR 1MN PMN 1DN PDR PDN SV
UC time 416 416 416 766 766 766 588
UC size 28.9 28.9 28.9 28.9 28.9 28.9 27.7

MUC time 3843 3797 4731 9238 44699 44345 3278
MUC size 9.6 9.6 9.6 9.6 9.6 9.6 9.5

for clause-level MUC extraction. Note also that the fraction
of the remainder among the clauses is very high, while the
number of ICs (latches) is 3367 on average. We compared the
same 7 algorithms that were compared for clause-level UC
extraction. Consider Table III. The table summarizes the per-
formance of our algorithms for both high-level non-minimal
UC extraction (which corresponds to the approximation stage
only) and high-level MUC extraction. The overall run-time
and the average core sizes are displayed. Column PMN can
be considered either as a modification of Alg. 2 that creates a
new SAT instance for each minimization loop iteration or as a
generalization of CRR for high-level minimal UC extraction.

While the best resolution-based approach 1MN is preferable
to the selector variable-based approach for non-minimal UC
extraction, the selector variable-based approach is preferable
for minimal UC extraction. Hence, while adding selector
variables does not pay off for non-minimal UC extraction,
even when the number of ICs is relatively low, it turns out
to be useful for the minimization loop. This result hints that
the overhead of additional passes over the clauses is greater
than the overhead of maintaining additional variables for high-
level UC extraction (at least for our benchmarks). Also note
that: (1) RRP is not helpful for the high-level UC extraction.
The reason is, apparently, thatRe(π,Clss(Rk)) is too large to
be efficiently explored, since it has too many source clauses.
(2) Not surprisingly, the in-memory data structure is clearly
preferable to the on-disk one. (3) The single SAT instance-
based approach to incrementality pays off even if the on-disk
data structure is used (as opposed to the situation in clause-
level UC extraction). The apparent reason is that considerably
fewer operations of extracting the core using the file are
required for high-level UC extraction.

VI. CONCLUSION AND FUTURE WORK

We introduced two new algorithms (resolution-based and
selector variable-based) for finding a minimal unsatisfiable
core (or a small non-minimal core, if a time-out occurs).
Our algorithms can be applied to either standard clause-
level minimal unsatisfiable core extraction or high-level un-
satisfiable core extraction, that is, extraction of a minimal
unsatisfiable subset in terms of “interesting” propositional
constraints provided by the user application.

We demonstrated that our resolution-based algorithm out-
performs existing algorithms for standard clause-level mini-
mal unsatisfiable core extraction on large, difficult industrial
benchmarks. We also demonstrated the empirical usefulness
and scalability of both our algorithms for high-level minimal
unsatisfiable core extraction on huge benchmarks generated by
Intel’s proof-based abstraction refinement flow.

In addition, we provided a detailed comparison of various
algorithms and heuristics for minimal unsatisfiable core ex-
traction. An important conclusion is that while our resolution-
based approach is clearly preferable to our selector variable-
based approach for standard clause-level minimal unsatisfi-
able core extraction, the latter approach is faster for high-
level minimal unsatisfiable core extraction. We found that
the single SAT instance-based approach to incremental SAT
solving results in better performance than the pervasive clause
reuse approach. Furthermore, the in-memory data structure
with reference counters for storing the resolution derivation
is preferable to the on-disk data structure. Finally, RRP was
not found to be helpful for the newly proposed algorithms.

We plan to investigate how to efficiently integrate RRP
into our algorithms in the future. Furthermore, we have been
working on improving the in-memory data structures for
storing the resolution derivation by removing the redundant
usage of reference counters (as described in Section III-C).
In addition, we plan to study the impact of our algorithms
within various applications, such as proof-based abstraction
refinement and compositional FEV. Finally, we plan to study
how to enhance our algorithms to extract more than one MUC.
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Propelling SAT and SAT-based BMC using Careset
Malay K. Ganai
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Abstract—We introduce the notion of careset, a subset of
variables in a Boolean formula that must be assigned in any
satisfying assignment. We propose a restricted branching tech-
nique in a CDCL solver (i.e., DPLL-based SAT solver with clause
learning) such that every decision path is prefixed with decisions
on such a careset. Although finding a non-trivial careset may not
be tractable in general, we demonstrate that for a SAT-based
bounded model checking (BMC) application we can derive it
automatically from the sequential behaviors of programs. Our
proposed branching technique significantly reduces the search
effort of a CDCL solver, and leads to a performance improvement
of 1-2 orders of magnitude over well-known heuristics, and over
top-ranked solvers of SAT2009 competition, that do not exploit
system-level information. We also discuss the proof complexity
of such a restricted CDCL solver.

I. I NTRODUCTION

In application domains such as bounded model checking
(BMC) of software and hardware [1], the analysis engine has
to explore paths of bounded length to validate the reachability
property. The problem instances are typically derived from
transition relation capturing the sequential behaviors of an un-
derlying system using suitable transformation. These problem
instances are typically encoded into Boolean formulas (e.g.,
CNF DIMACS format). The core of the analysis engine uses
a DPLL-based [2] SAT solver to search through a Boolean
formula. As paths get longer, the number of possible paths,
and hence the search space, increases exponentially.

The state-of-the-art SAT solvers use various techniques to
prune the search space faster. Some of the important ones are
frequent restarts [3], [4], intelligent branching heuristics [5],
[6], and learning conflict-driven resolution clauses [7] and bi-
nary clauses [8]. These solvers are also well-engineered using
techniques such as two-literal watch scheme [6], efficient
preprocessing [9], hybrid representation [10], and many others
(e.g. [11], [12]). In spite of these improvements, the “loss”
of high-level information during encoding can significantly
degrade their performance. By loss, we imply that system-
level structure and behavior cannot be inferred from a Boolean
formula without knowing the actual transformation steps.

• Structure of the transition relation: During logic synthesis
(i.e., bit-blasting of the transition relation), there are
substantial losses of structural information such as types
of arithmetic and logical modules, connectivity among
such modules (i.e., their dependencies), and independent
(i.e., controlling) variables.

• System level behavior: The constraints and sequential
behaviors get lost during behavioral-level synthesis (i.e.,
during modeling of a system).

Previous experimental studies [10], [13]–[18] have shown
some success in exploiting structural information in a propo-
sitional formula to improve CDCL solvers (i.e., DPLL-
based solver using Conflict-Driven Clause Learning). Some
of these include: (I) branching restriction on dominating input

variables [13]–[15], backdoors variables [19], justification
gates [10], [18], fanout gates, and variables in dependency
graphs [14], [20]; (II) learning non-trivial circuit clauses
corresponding to symmetry [21], special gates such as XOR,
XNOR, and ITE gates [16], [17]; and (III) re-coding CNF us-
ing circuit observability don’t cares (Cir-ODC) [22]. However,
these techniques do not exploit system-level information.

A. Overview of our approach

Although it has been proved [23] that CDCL is expo-
nentially stronger (i.e., the search tree can be exponentially
shorter) than DPLL [2], the size of the search tree of CDCL
can still be very large as it is sensitive to a branching order.
Choosing the right variables and their order to shorten the
search tree are the primary focus of this paper.

It is a well known fact that not all variables need to be as-
signed while determining a satisfiable result. With that in mind,
we formalize the notion ofcareset, a subset of variables that
must be assigned in any satisfying assignment. We extend the
definition to an unsatisfiable instance, by defining careset on
maximal satisfiable subsets. We propose a restricted branching
technique in a CDCL solver such that every decision path is
prefixed with a sequence of decisions on such a careset. We
refer to such a sequence as abranching prefix sequence. Even
though finding such a non-trivial set and such a sequence may
not be tractable in general, we demonstrate that for a software
verification application we can derive them automatically from
the sequential behaviors of programs.

We compare formally the proof complexity [24] of restricted
CDCL vis-a-vis unrestricted CDCL in terms of the size of the
shortest proofs, measured in the number of decisions, they can
produce. For a given caresetc, and its size|c|, we show that
the shortest proof (π′) (and its size|π′|) obtained in restricted
CDCL cannot be greater than the shortest proof(π) (and its
size|π|) obtained in unrestricted CDCL by more than a factor
of f(c) i.e., |π′| ≤ f(c) · |π|, wheref(c) = 2|c| in general.
However, for the software model checking applicationf(c)
can be much smaller than2|c|.

For such an application, we demonstrate that our branching
technique significantly reduces the search effort of our CDCL
solver (based on [10]) by helping it learn shorter and useful
clauses earlier during the search process. We observe that the
length of clauses learnt are reduced by an order-of-magnitude
on average. This leads to a performance gain of 1-2 orders of
magnitude over the well known heuristics such as VSIDS [6]
and circuit-based [10], [14], [18], [22]. Even though we have
not yet included the latest and greatest improvements in
our solver, we demonstrate an order of magnitude improved
performance of such a restricted CDCL solver over the well-
engineered top-ranked solvers of SAT2009 competition [25].

For generality reasons, these advanced solvers do not intend
to exploit system-level information. However, without such
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information, the performance penalty incurred by these solvers
is in orders of magnitude as observed in our experiments. Our
goal is to draw attention to the SAT community of substantial
progresses that are still possible in branching techniques as
they play decisive role in the SAT performance.

B. Related Work

In [13]–[15], [26], problem structure was exploited to re-
strict the branching only to a smaller set of variables, referred
to as an independent variables set (IVS). These variables
correspond to non-deterministic initial state variables and
primary input variables for circuit applications [14], action
variables in planning applications [13], and task variables in
task sequencing problems [23]. By definition, these variables
dominate others variables that are not in the set i.e., dependent
variables. A total assignment on IVS uniquely determines the
values of the dependent variables. While such restrictions help
in specific applications, they can degrade the performance of
CDCL exponentially worse when compared to DPLL on some
other application [27].

In [19], a notion of backdoor variables was introduced,
where the branching was restricted only to such variables. The
idea is that once all of these variables have values, the reduced
formula can be solved by a polynomial-time solver. For a
constraint Boolean circuit, an IVS is a backdoor set. It was
demonstrated [28] that there is a strong correlation between the
size of a backdoor set and the hardness of the corresponding
Boolean formula. In general, finding a backdoor set from a
given Boolean formula, is intractable [28]. Researches have
also studied both theoretically and empirically [29] with the
notion of backbone set [30]. A backbone set of a satisfiable
Boolean formula is a set of literals which are assigned unique
common values in every satisfying assignment. It has been
shown that finding such a set is also intractable [28].

Our proposed notion of careset is different from the notion
of backdoor set or IVS. As we shall see later, a careset is
a necessary set while a backdoor set (or IVS) is a sufficient
set for a satisfiable formula. A careset is also different from
a backbone set, as careset variables need not have a unique
common assignment in every satisfying assignment.

In [10], [18], [22] circuit observability don’t cares (Cir-
ODC) were used to restrict the branching to justification gates
only, and avoid branching on the unobservable gates. In gen-
eral, such a branching is oblivious to system-level information.
In [31], functional information such as arithmetic types were
used to guide the decision engine. In our previous work [32],
we bias the decision choice on variables corresponding to
control state predicates, and thereby, use sequential behaviors
to guide the search. In this work, we provide a formal
justification for such biasing, and further improve the decision
process using branching prefix sequences.

Outline: The rest of the paper is organized as follows: With
some background in Section II, we formalize the notion of
careset, and introduce our branching method in Section III. In
Section IV, we give an overview of software model checking.
For that application, we present a method to generate careset
variables automatically, and describe our branching technique
in Section V. This is followed by a formal exposition on proof
complexity of the method in Section VI, and its detailed ex-

perimental evaluation in Section VII. We give our conclusions
and future directions in Section VIII.

II. PRELIMINARIES

CNF. A CNF formulaF is defined as a conjunctive set, i.e.,
AND (·) of clauses where eachclauseis a disjunctive set, i.e.,
OR (+) of literals. A literal is a variablev (positive) or its
negationv̄ (negative). Letvars(F ) andclauses(F ) represent
the set of all variables and clauses inF , respectively. An
assignmentfor F is a Boolean functionα : V 7→ {0, 1}, where
V ⊆ vars(F ). We usev ∈ α to denote thatv is assigned
underα. We say an assignmentα is total if V = vars(F ),
otherwise, it ispartial. A literal l is false (true) under α
if α(l) = 0(1). A variable (and literal) isfree if it is not
assigned. A clause issatisfied if at least one of its literals
is true. A clause isconflicting if all its literals are false. An
assignmentα is satisfyingif all clauses inF are satisfied by
α, and not necessarily all variables be assigned. We use
F |α to denote the simplified formula where the corresponding
assigned variables(∈ α) are replaced with their assigned
values, and false literals and satisfied clauses are removed. A
maximal satisfiable subset(MSS) ofF corresponds to a subset
of clauses ofF that is maximally satisfiable, i.e., adding any
remaining clause would make it unsatisfiable. For a setS, we
use|S| to denote its cardinality.

A P-Solversolves a Boolean formulaF in polynomial time
if it acceptsF . For example, a 2SAT-Solver that solves 2SAT-
CNF (i.e., a set of clauses with at most of 2 literals) but rejects
all others, is aP -Solver. A non-empty set of variablesS is
a backdoor [19] in a satisfiableF if for some assignment
α : S 7→ {0, 1}, P -Solver can showF |α to be satisfiable. Such
a set isstrong if for all such α, P -Solver can solveF |α, i.e.,
show it to be sat/unsat. A set of variablesS is abackbone[30]
of satisfiableF if there is a unique partial assignmentα : S 7→
{0, 1} such thatF |α is satisfiable. Note, assigning opposite
value to a backbone variable would makeF |α unsatisfiable.
Circuit. We consider a Boolean circuitG represented

as a DAG where each node represents a circuit gate, i.e,OR,
AND, XOR, orNOT, and each edge connects a gate to its fanout
node. We define an assignment forG as a Boolean function
α : W 7→ {0, 1}, where W is the set of all gate outputs
and primary inputs ofG. We say a gate isjustified, when its
input values justify its output value. For example, forg =
AND(a, b), g = 0 can be justified by eithera = 0 or b = 0.
Note, a primary input and a gate with no output value are
always justified. We say a gate istotally justified, if its inputs
are also justified transitively; otherwise, it ispartially justified.

A constraint Boolean circuit is a pair〈G, τ〉 where some
gates inG are constrained with an assignmentτ . Note, without
a constraintτ , a Boolean circuit is always satisfiable. We
say〈G, τ〉 is satisfiable if there exists an assignment, referred
as justifying, which (i) preserves the input/output relation of
each gate, and (ii) each constraint gate is totally justified.
One can encode a constraint Boolean circuit〈G, τ〉 into an
equi-satisfiable CNF formulacnf(〈G, τ〉) in linear-time using
standard “Tseitin translation.”
CDCL. The basic DPLL procedure [2] has three main steps

applied repeatedly: branch on a literal, applyunit propagation
(UP) rule, i.e., forcing a free literal true when all the other
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literals in a clause are false, and backtrack chronologically
when a conflict is observed. It stops when either all clauses are
satisfied or all branches are explored. Conflict-driven Clause
learning [7] (CDCL) improves the basic procedure by learning
resolvent clauses after analyzing the causes of a conflict. In
the sequel, we use “CDCL” to denote any implementation of
the CDCL procedure, and use “a CDCL solver” to denote a
specific implementation.

III. C ARESET

Before we delve into the formal definition of careset, we
first defineminimally satisfying assignmentfor a satisfiable
Boolean formulaF for a givenP -Solver.

Definition 1 (Minimally Satisfying Assignment (MSA)):
We say an assignmentα of Boolean formulaF is minimally
satisfying for a givenP -Solver such that (i) UP rule cannot
be applied onF |α further, (ii) F |α can be shown to be
satisfiable by theP -Solver, and (iii) unassigning at least one
variable inα would violate the condition (i) or (ii). We use
MSA(F, P ) to denote the set of all MSAs ofF for a given
P -Solver.

Example 1:Let F be(a+x̄+d)(ā+x+c)(b+ȳ+d̄)(b̄+y+c̄).
Then,α = {x = 0, y = 0} is an MSA w.r.t. a 2SAT-Solver,
asF |α = (ā + c)(b̄ + c̄) is a 2SAT-CNF formula.

Definition 2 (Minimally Justifying Assignment (MJA)):
For a constraint Boolean circuit〈G, τ〉, we say an assignment
β is minimally justifying if un-assigning anyv ∈ β would
leave some constraint gate partially justified.
Example 2: All MJAs β1 − β4 for the constraint circuit
〈G, {(x = 1)}〉 are shown below: Consider aP -Solver

OR

OR

XOR

c

d

e

f

x=1
a

b

β1 = {x = 1, a = 1, b = 0, e = 0, f = 0, c = 1},
β2 = {x = 1, a = 1, b = 0, e = 0, f = 0, d = 1},
β3 = {x = 1, a = 0, b = 1, c = 0, d = 0, e = 1},
β4 = {x = 1, a = 0, b = 1, c = 0, d = 0, f = 1}.

that applies arbitrary values to a set of unassigned primary
input variables, and applies UP rule recursively on the circuit
clauses. Such a solver, referred asCktSim, can always satisfy
the gate clauses of an unconstraint Boolean circuit.

Proposition1: β is an MJA of〈G, τ〉 iff β is an MSA for
cnf(〈G, τ〉) w.r.t. aCktSim asP -solver.

One can verify thatβ1−β4 are MSAs forcnf(〈G, τ〉) w.r.t a
CktSim. Note thatα = {x = 1, a = 1, b = 0, e = 0, f = 0}
is an MSA w.r.t a 2SAT-Solver, but not w.r.t. aCktSim.

In the sequel, we useCktSim as the givenP -Solver, and
useMSA(F ) to denoteMSA(F,CktSim). We now formally
introduce the notion of careset for a satisfiable formulaF ,
given CktSim as a P -Solver. Let Fred denote a reduced
formula F after applying the UP rule recursively onF .

Definition 3 (Careset):A non-empty set S of variables(⊆
vars(F )) is a caresetfor a given formulaF , such that aS
variable is assigned in every MSA ofF , i.e., v ∈ S → ∀α ∈
MSA(F ). v ∈ α. Such a setS is maximumwhen it includes
all such variables, i.e.,S = {v | ∀α ∈ MSA(F ). v ∈ α}. We
sayS is non-trivial if ∃v ∈ S. v ∈ vars(Fred); otherwise, it
is trivial .

In the sequel, we usecareset(F ) to denote a non-trivial
careset ofF , which may not be maximum unless noted
otherwise. Intuitively, a careset is a set of variables that must
be assigned to “witness” a satisfying assignment.

Using Proposition 1, we define careset for a Boolean con-
straint circuit〈G, τ〉 as careset(F ) whereF = cnf(〈G, τ〉).
For Example 2, non-trivial caresets of〈G, (x = 1)〉 are
{x, a},{x, b}, and{x, a, b} asa, b, c are assigned in all MJAs,
i.e., β1 −β4. The set{x, a, b} is the maximum careset. These
caresets are non-trivial as values ona, b cannot be obtained
by unit propagation onx = 1, while {x} is a trivial careset.

We extend the definition of careset to an unsatisfiable
formula F by defining it on maximal satisfiable subsets of
F . Let MSS(F ) denote a set of all MSS ofF . Then,
careset(F ) := ∪F ′∈MSS(F )careset(F ′). Such a careset is
maximum, when careset for eachF ′ is maximum. Note, a
non-trivial careset(F ′) for any MSSF ′ of F is also a non-
trivial careset forF .

Comparing Careset, Backdoor, Backbone. In contrast to a
backbone set, where variables are necessarily set to unique val-
ues, careset variables only need to be assigned, not necessarily
to unique values, in any satisfying assignment. Compared to a
backdoor set, which is asufficientset, a careset is anecessary
set for solving a problem satisfiable. Such a necessary set is
arguably smaller than a backdoor set, and therefore can help
the decision engine prioritize better.

For Example 2, a backbone set is{x = 1}, a backdoor set is
{x, a, b, c, e, f} (asCktSim returns satisfiable for assignment
β1), a strong backdoor set is{c, d, e, f} (asCktSim returns
SAT/UNSAT for a total assignment on the primary inputs),
and a careset is{x, a, b}.

A. Branching Strategy using Careset

We observe that for a satisfiable instance, a complete
assignment on careset variables is a “gateway” to a satisfying
solution. Intuitively, for such instances we should branch on
careset variables first, before branching on the other variables.
Such a branching technique is also a good heuristic for
unsatisfiable instances as argued below.

Assume F is unsatisfiable. LetF ′ ∈ MSS(F ), and
C = clauses(F )\clauses(F ′). Let vars(α) denote the set of
variables assigned underα ∈ MSA(F ′) andαS denote values
of S variables under assignmentα. As F is unsatisfiable,
∃S ⊆ vars(α) such thatαS makes some clausec ∈ C
conflicting. We sayα is blocked byc. Any β ∈ MSA(F ′) is
also blocked byc ∈ C, if αS = βS . Since careset variables
must be assigned in any MSA ofF ′, branching on them first
can lead to early blockage of MSAs, and faster resolution.

We refer to such a branching technique asbranching prefix
sequence. In contrast to a backdoor set where the (ideal) goal
is to obtain the smallest set, our (ideal) goal is to obtain the
maximum careset. However, obtaining such a set is as hard
as finding all MSAs. For practical reasons, we would like to
obtain a careset as large as possible, not necessarily maximum.
We would like to answer three key questions:

• How can a non-trivial and useful careset be obtained?
• How can such a set be exploited in a CDCL solver?
• How can the strength of such a CDCL solver be accessed?
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In Sections IV-V, we answer the first two questions by
considering a software model checking application, and us-
ing the application-specific knowledge to derive a non-trivial
careset and exploit it in CDCL that is restricted with branching
prefix sequence. In Section VI, we compare the relative proof
complexity of restricted CDCL w.r.t. unrestricted CDCL. In
Section VII, we compare experimentally our restricted CDCL
solver against the state-of-the-art CDCL solvers that do not
exploit such application knowledge.

IV. A PPLICATION: MODEL CHECKING OF SOFTWARE

We briefly discuss our model building step (similar to [32])
from a given C program. We first obtain a simplified control
and data flow graph (CDFG) by flattening the structures and
arrays into scalar variables of simple finite types (Boolean, 32-
bit integer). We handle pointer accesses using direct memory
access on a finite heap model, and apply standard slicing
and constant propagation. We do not inline non-recursive
procedures to avoid blow up, but bound and inline recursive
procedures up to a user-defined depth. From the simplified
CDFG, we build a deterministic extended FSM (EFSM) where
each control state (or block) is identified with a uniqueid. We
use a program counterPC to track the control stateid. For
the ease of explanation, we focus on simplified CDFGs that
have a unique entry block (Src) and an error block (Err). We
are interested in checking reachability properties such as array
bounds violations, null pointer dereferencing, and assertion
failures; that is, whether there is an execution trace fromSrc
to Err block. We use EFSM and CDFG interchangeably to
mean the same structure.

Example 3: Consider a low-level C programfoo as shown
in Figure 1, with its EFSMM . The control states, shown as
boxes, correspond to control points in the program, as also
indicated by the line numbers. Note, each control state is
identified with a number in the attached small square box. For
example,Err block 10 corresponds to the assertion in line17.
Update transitions of data path expressions are shown at each
control state. A directed edge(a, b) between control statesa, b
corresponds to the control flow between the associated control
points in the program. Each directed edge is associated with
an enabling condition.

Based on such a CDFG, we encode the transition model
T of an EFSM symbolically asT := TC ∧ TD, whereTC

encodes (control) transition relation forPC, i.e., the guarded
transitions between the control states, andTD encodes (data)
update transition relation for datapath variables based on the
expressions assigned to the variables in various control states
in the model. We illustrate the translation ofT for Example 3.
We usev, v′ to denote current and next state variable,gij

to denote the guarded transition predicate at a directed edge
(i, j), and Br := (PC = r) to denote the control state
predicate. For ease of readability, we use C syntax ’?:’
to denote if-then-elseoperator, and other standard relation
operators. We obtain a Boolean encoding of the update and
the guarded transition relations under the assumption of
32-bit integer variables (not shown separately).

Transition relation for PC[TC(PC′, PC, a, b)]

PC′ := B1 ∧ g12 ? 2 : B1 ∧ g16 ? 6 : B2 ∧ g23 ? 3 :

B2 ∧ g24 ? 4 : · · · : 11

where∀r ∈ {1, · · · , 11} Br := (PC = r), and
g12 := (a ≥ b), g16 := (a < b), g23 := (a < b),
g24 := (b ≤ a), and so on.

Update transition relation[TD(a′, a, b′, b, PC)]
a′ := B1 ? a0 : B4 ? (a − b) : B7 ? (a − b) : a
b′ := B1 ? b0 : B3 ? (b − a) : B8 ? (b − a) : b

where a0, b0 are initial symbolic state values ofa, b, resp.,
i.e., 1 ≤ a0, b0 ≤ 10.

Bounded Model Checking.Let si denote a state atith step
from some initial states0, and T (si, si+1) denote the state
transition relation. A BMC instance (denoted asBMCk) com-
prises checking if an LTL (Linear Temporal Logic) property
φ can be falsified inexactlyk steps froms0, i.e.,

BMCk := I ∧ T 0,k ∧ ¬φ(sk) (1)

whereφ(sk) denotes the predicate thatφ holds in statesk,
and I denote the initial state predicate, andT 0,k denote the
unrolled transition relation

∧
0≤i<k T i,i+1 where T i,i+1 :=

T (si, si+1). Given a boundn, a BMC runcomprises checking
the satisfiability ofBMCk iteratively for 0 ≤ k ≤ n using a
SAT solver. In the sequel, we focus only on the reachability of
blockErr from blockSrc, i.e.,φ := F (PC = Err), whereF
is the eventually LTL operator, andI := (PC0 = Src)∧D0,
whereD0 is the initial state predicate on datapath variables.

A. Control Flow Reachability

We use CFG to denote a CDFG without the enabling
condition and update transitions. Acontrol pathis a sequence
of successive control states, denoted asγ0,k = (c0, . . . , ck),
where(ci, ci+1) is a directed edge in the CFG. We usec ∈ γ0,k

to denote thatc belongs to the sequence. Anunrolled CFG
for depthd is a DAG that corresponds to an unfolded CFG
where the transitions after depthd is removed, shown as an
example in Figure 1 ford = 7 . A control state reachability
(CSR) analysis is a breadth-first traversal of the unrolled CFG
where a control stateb is one step reachable froma iff there
is a directed edge(a, b). At a given sequential depthd, let
R(d) represent the set of control states that can be reached in
CFG in one step from the states inR(d−1), with R(0) = c0.

ComputingCSR for the unrolled CFG ofM (Figure 1),
we obtain the setR(d) for 0 ≤ d ≤ 7: R(0) = {1},
R(1) = {2, 6}, R(2) = {3, 4, 7, 8}, R(3) = {5, 9},
R(4) = {2, 10, 6, 11}, R(5) = {3, 4, 7, 8}, R(6) = {5, 9},
R(7) = {2, 10, 6, 11}.

We usefrom(r) andto(r) to denote set of blocks reachable
from and tor, respectively. The unrolled transition relation
T 0,k capture the following control flow constraintsimplicitly.
We usevd to denote the unrolled variablev in T d,d+1. Bd

r

refers to the Boolean control state predicate(PCd = r),
i.e., whetherPC at depthd is at control stater. It has been
shown that these constraints when added explicitly, improve
the search [33].

• Reachable Block Constraint (RBC): At least one block is
reachable atd i.e., ∃r ∈ R(d). (Bd

r ).
• Mutual Exclusion Constraint (MEC): At most one block

is reachable atd, i.e, ∀r 6= t. (Bd
r → ¬Bd

t )
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1. void foo(int a,
2. int b)
3. { /* precondition */
4. assume(1 ≤ a ≤ 10);
5. assume(1 ≤ b ≤ 10);
6. if (a≥b) {
7. do {
8. if (b≤a) a=a−b;
9. else b=b−a;
10. }while(b!=0);
11. }else {
12. do{
13. if (a≤b) b=b−a;
14. else a=a−b;
15. }while(a!=0);
16. }
17. assert(!(a==0 && b==0));
18.}
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SOURCE
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(lines 1-5)

6

7

1

(line 12)

a := a-b
(line 14)

b :=b-a 
(line 13)

(line 15)

a<b

9

8

2

3

(line 7)

b := b-a
(line 9)

a := a-b
(line 8)

(line 10)

b ≤ aa<b

5

4

ERROR
(line 17)

a≥b

b < a a ≤ b

b=0∧a=0

b≠0 a≠0

10

EFSM M

10 Error 
Block

b=0∧a=0

SINK (line 18)
a=0∧b≠0b=0∧a≠0

11

11 11

1111

Fig. 1. A sample C code, its EFSMM , and an unrolled CFG for depth7.

• Forward Reachable Block Constraint (FRBC): Ifr is
reachable atd < k, then t ∈ from(r) is reachable at
d + 1, i.e., ∃t ∈ from(r). (Bd

r → Bd+1
t ).

• Backward Reachable Block Constraint (BRBC): Ifr is
reachable atd > 0, thent ∈ to(r) is reachable atd − 1,
i.e., ∃t ∈ to(r). (Bd

r → Bd−1
t ).

V. GENERATING A CARESET FORBMC

As per Eqn 1,BMCk = B0
Src ∧D0 ∧ T 0,k ∧Bk

Err, where
D0 is initial state predicate on datapath variables. LetΓa,b

denote a set of all control pathsγ0,k between control states
a and b, i.e., {γ0,k | c0 = a, ck = b}. We saycd ∈ Γ0,k iff
cd ∈ γ0,k for someγ0,k ∈ Γ0,k. The following theorem will
provide a basis for generating a non-trivial careset forBMCk.

Theorem1: A non-trivial careset forBMCk is a set of
control state predicate variables in all the control paths from
Src to Err, i.e., {Bd

cd
| cd ∈ ΓSrc,Err, 0 ≤ d ≤ k}.

Proof. We consider two cases based on whetherBMCk is
satisfiable or not.

Case 1: BMCk is satisfiable. Clearly, ∃γ0,k s.t. γ0,k

witnesses the control reachability ofErr block from Src
block. Let α be the corresponding MJA ofBMCk. Then,
∀cd ∈ γ0,k. α(Bd

cd
) = 1, as otherwise,Bk

Err = true
would not be totally justified. As per MEC flow constraint,
∀cd, c

′
d ∈ R(d). Bd

cd
→ ¬Bd

c′
d

, i.e., control predicate variables

in the control paths other thanγ0,k are implied false. Thus,
the claim holds.

Case 2: BMCk is unsatisfiable. We construct an MSS
F ′ of BMCk as follows: Initially, F ′ = ∅. We include
the constraints(B0

Src ∧ Bk
Err), and add all the constraints

corresponding to the unrolled expressions forPC without the
guarded expressions, i.e, we treatgd

ij as free input variables.
Note, F ′ constructed so far captures only the control flow
constraints, and is therefore satisfiable. We then add the
remaining data path and guarded expressions untilF ′ becomes
an MSS ofBMCk. By definition of a careset and using the
argument as in Case 1, the claim follows.2

Based on the above theorem, we obtain acareset(BMCk)
by doing forward and backward traversal fromSrc andErr
blocks, resp. on the CFG, and includingBd

r corresponding
to a control stater ∈ R(d) that is visited by traversal in
both direction. For Example 3 (Figure 1),careset(BMC4) is
{B0

1 , B1
2 , B2

3 , B2
4 , B3

5 , B1
6 , B2

7 , B2
8 , B3

9 , B4
10}.

A. Branching Prefix Sequence

We introduce the notion of branching prefix sequence
(BPS)1, a kind of restrictive branching where every decision
path (starting at decision level 0) is prefixed with a given
ordered sequence of branching literals.

Definition 4: A branching prefix sequence(BPS) for a
formula F is an ordered sequenceσ = (l1, · · · lm) of literals
of F such that a CDCL solver always picks first free literal
li in σ (skips the assigned literals), and branches withli set
to true. If all the literals inσ are assigned, default branching
heuristic is applied. During backtracking, some of the literals
in σ can become free. At any decision level, the solver always
branches on the first free literal inσ, if one exists. However,
the literals ofσ are neither removed nor reordered. CDCL
using a BPS is referred to as CDCLbps.

We use thecareset(BMCk) variables to obtain a BPS. We
first define an ordering relation based on control distance of a
careset variableBd

r ∈ careset(BMCk).
Definition 5: A control distance of a careset variableBd

r ∈
careset(BMCk) is a function δ : careset(BMCk) 7→
{0, · · · , k} such thatδ(Bd

r ) = k − d.
For example,B1

6 ∈ careset(BMC4) has a control distance
δ(B1

6) = 4 − 1 = 3.
Definition 6: An increasing (decreasing) sequence of lit-

erals in careset(BMCk) is defined as a total order on the
careset variables (i.e., positive literals) with respective to a
non-decreasing (non-increasing) control distances. Variables
with the same control distances are ordered using some
heuristic such as literal count. We useISk (DSk) to denote
increasing (decreasing) sequence ofcareset(BMCk).

An increasing sequenceIS4 for careset(BMC4) is as fol-
lows: {B4

10(0), B3
5(1), B3

9(1), B2
3(2), B2

4(2), B2
7(2), B2

8(2),
B1

2(3), B1
6(3), B0

1(4)}, where the values in the brackets refer
to the respective control distances of the variables. Here we
broke the tie using the corresponding control stateid. In actual
implementation, we use the VSIDS [6] scores.

Intuitively, an ISk used as a BPS helps a CDCL solver
to prune theinfeasible local path segments that are closer
to Err block by learning useful clauses with fewer decisions.
We observed in our experiments that such an approach reduces
the average length of conflict clauses per conflict (denoted as

1The notion of BPS differs from branching sequence [23] where a literal
is chosen once, and may not be assigned on every decision path.
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AvgCL) and search tree size (i.e., number of decisions) by
1-2 orders of magnitude. In Section VII, we provide detailed
experimental results supporting our intuition. Now we discuss
the proof complexity of such an approach.

VI. PROOF COMPLEXITY OF CDCLbps

We use the notion of proof complexity [24] to compare the
relative power of proof inference systemsP andP ′ based on
the shortest proofsπ andπ′ they can produce, resp. Let|π| and
|π′| denote the respective proof sizes. We sayP ′ polynomially
simulatesP when |π′| ≤ 2O(logn)(= poly(n)) · |π| for all
families of formula overn variables; otherwise,P ′ cannot
polynomially simulateP . For example, it was shown [23] that
DPLL cannot polynomially simulate CDCL.

In CDCL and CDCLbps proof systems, we measure the size
of their shortest proofs in terms of their search tree, i.e., the
number of decisions. As CDCL is unrestricted, an identical
proof can be obtained in CDCL as in CDCLbps by applying
the same decision order in CDCL as applied in CDCLbps.
Thus, the following holds trivially.

Proposition2: CDCL polynomially simulates CDCLbps.
Unfortunately, we cannot claim in the other direction due

to branching restriction in CDCLbps. However, we provide a
worst case bound on the size of its shortest proof. For any
unsatisfiable formulaF over n variables, letS be a careset
of F , with |S| denoting its size. Letπbps(F ) (π(F )) and
|πbps(F )| (|π(F )| denote the shortest proof and its size, resp.,
obtained in CDCLbps (CDCL).

Theorem2: The shortest proof obtained in CDCLbps can-
not be greater than that obtained in CDCL by more than
a factor of f(S), i.e., |πbps(F )| ≤ f(S) · |π(F )|, where
f(S) = 2|S|.
Proof. Consider the search tree of CDCLbps. Let U =
{σ1 · · ·σm} represent a set of unique assignments made on
careset variables before a proof is generated in CDCLbps, i.e,
∀(i 6= j).∃v ∈ σi, v ∈ σj . σi(v) 6= σj(v). Clearly, asF is
unsatisfiable, each (partial) assignment onvars(F ) that ends
in conflict, includes exactly oneσi for somei. We claim that
|πbps(F )| = Σm

i |πbps(F |σi
)| = Σm

i |π(F |σi
)| ≤ Σm

i |π(F )| ≤
2|S| · |π(F )|. The first equality holds as assignments on careset
variables are made before the rest in CDCLbps. The second
equality holds as branching heuristics of CDCLbps and CDCL
are the same on non careset variables. The following inequality
holds as CDCL is a natural proof system. The last inequality
holds asm ≤ 2|S|. 2

In practice, we often see conflict before all the careset
variables are assigned. Moreover, all variables inS may not
be independent, i.e., some are implied by others inS, in
which casem ≪ 2|S|. Especially, forF = BMCk (Eqn 1),
S = careset(BMCk) (Theorem 1), andΓSrc,Err (denoting
a set of control paths fromSrc to Err), upper bound onU is
determined by the number of control paths, i.e.,|ΓSrc,Err|.

Corollary 1: |πbps(F )| ≤ |ΓSrc,Err| · |π(F )|.

VII. E XPERIMENTS

We experimented with eight sets of benchmarksE1-E8,
each with 1 to 3 properties. These correspond to software
models and properties generated using software verification
platform F-Soft [32] from real-world C programs such as

network protocol and mobile software. Our experiments were
conducted on a Linux box with Intel Pentium 4 CPU 3.2GHz,
2GB of RAM. On these models, we used a SAT-based
BMC [17], [33].

We used an incremental hybrid SAT solver [10], [17],
where a BMC instance is represented in And-Inverter circuit
graph (AIG) and the learnt clauses are represented in CNF. It
implements Chaff algorithm [6] using 1UIP clause learning
scheme [34], and VSIDS [6] for branching. Note, it does
not include many recent improvements such as preprocessing
(SATeLite [9]), learning binary clauses during BCP [8], smart
frequent restarts [4], and others (e.g. [11], [12]). Unlike a
pure CNF solver2, it has direct access to circuit information.
Optionally, it uses circuit-based branching heuristics [10], [14],
[18] (such as branching on the inputs of currently unjustified
gates only). We refer to this branching heuristic asCKT.

We also provide such a hybrid solver with a BPS. For each
BMCk instance, we automatically generate sequencesISk

andDSk (ref. Section V-A). We useiBPS (dBPS) to denote
the branching heuristic whereISk (DSk) is used as a BPS.

Combining the above heuristics, we consider following four
solversB1-B4 for performance comparison.

• B1:VSIDS The CDCL solver withVSIDS heuristic.
• B2:CKT+VSIDS The CDCL solver withCKT heuristic.

However, when there are many choices at a decision level,
the tie is broken withVSIDS heursitic.

• B3:iBPS+CKT+VSIDS The CDCL solver withiBPS
heuristic. When there is no free literal in the BPS, it
branches asB2 until the BPS has a free literal.

• B4:dBPS+CKT+VSIDS Similar to B3 but usesdBPS.

Experiment Set I. We compare the performance of the solvers
B1-B4 on benchmarksE1-E8 for each BMC run, comprising
solving BMCk for eachk ≥ 0 until time out. We gave a
timeout of 1200s for each BMC run. In each run, we generate
and solve BMC instances incrementally at depthk. Other than
branching, all other heuristics were kept the same. We show
the results in Figure 2.

In X-axis we show BMC depths analyzed before timeout
occurs, and inY-axis we show the cumulative solve time (in
sec) after each unrolled depth. We also labeled a few selected
graphs for better readability.

Clearly, B3 outperformsB1,B2,B4 by several orders of
magnitude.B4 outperformsB1 only in 3 cases, i.e.,E1, E3,
E7. This shows that branching order is equally important in a
CDCL solver. We do not see much improvement ofB2 over
B1. B3 finds two witnesses (at depths 43 and 63, resp.) in
E7 while B4 finds only the shorter witness (i.e., at depth 43).
B1 or B2 finds neither of them. Clearly, circuit information
does not provide much of guidance compared to system-level
information. We do not show separately the comparison data
with the solver used in [32], wherein the control state predicate
variables are given higher VSIDS scores initially. We observed
that the performance of such a solver is marginally better or
comparable to that ofB1 on these BMC runs.

We provide detailed comparison results betweenB2 andB3
in Table I. For each benchmark, we obtained a list ofBMCk

2In a CNF solver, one can use Cir-ODC CNF encoding [22] to exploit
circuit information, albeit with additional overhead compared to [10].
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instances that were solved byB2 and B3 in more than 5s
but less than 1200s. Note, all these instances are unsatisfiable.
After sorting them onk, we selectedminimum, median and
maximum instances from the list as shown in Columns 1-2.
The number of variables(#V ) in these instances are about
200k-1.3M, as shown in Column 3. In Columns 4-6, we
present the results ofB2: the number of decisions (#D), the
average conflict-clause length (AvgCL), and the time taken
(in sec) (T). In Columns 7-11, we present the results ofB3:
the size of careset as percentage of#V (#CV), the number of
decisions (#D), the number of decisions on careset variables
as the percentage of#D (#DCV), the average conflict-clause
lengthAvgCL, and the time takenT(s), resp. We observe that
baring a few cases,AvgCL is about an order of magnitude
smaller in B3, compared toB2. Clearly, iBPS guides the
solver B3 better in learning useful clauses earlier, thereby,
reducing the overall solve time significantly. We also find that
the number of careset variables is about 1-3% of the number
of variables, and in the most unsatisfiable instances, decisions
on them are sufficient to solve the instance.
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Fig. 2. BMC runs on E1-E8

Experiment Set II. We obtained DIMACS CNF format from
the BMC instances at different depths from Experiment Set
I. To keep our focus on hard instances, we included those
on which B3 solver takes more than 5 sec to solve. We
obtained a total of 130 instances; out of which 128 are

TABLE I
COMPARING B2 AND B3 ON (UNSAT) BMCk .

BMCk Instance B2: CKT+VSIDS B3: iBPS+CKT+VSIDS
Ex Depth #V #D AvgCL T #CV #D #DCV AvgCL T

k (’000) (#lit) (s) (%#V) (%#D) (#lit) (s)

min: 28 262 381 247 5 1.1 710 100 27 3
E1 med: 38 445 1533 691 56 1.1 1977 100 99 21

max: 43 522 1400 1081 62 1.1 595 100 251 25

min: 46 250 669 275 5 2.3 137 100 27 0
E2 med: 47 257 421 145 5 2.3 137 100 27 0

max: 49 271 909 223 9 2.3 124 100 30 0

min: 16 582 242 350 8 0.7 435 100 28 13
E3 med: 22 1121 1107 2076 61 0.7 557 100 35 17

max: 24 1323 413 5984 50 0.7 25 100 201 3

min: 42 194 855 75 5 1.3 46 100 30 0
E4 med: 49 239 1293 85 8 1.3 47 100 63 0

max: 80 440 2296 682 59 1.2 80 100 158 0

min: 23 442 249 1547 5 0.7 275 100 32 1
E5 med: 33 721 1844 1262 66 0.7 386 100 286 2

max: 36 804 1752 1773 65 0.7 198 100 246 1

min: 93 223 397 3980 5 1.4 280 25 499 0
E6 med: 100 241 550 4062 9 1.4 204 68 537 1

max: 130 320 1240 8773 88 1.4 320 77 675 2

min: 28 223 243 610 5 1.0 248 100 70 0
E7 med: 31 257 245 550 8 1.0 141 92 49 0

max: 40 359 973 1189 56 1.0 348 50 226 1

min: 33 231 766 76 5 1.0 121 100 9 0
E8 med: 35 250 807 124 6 1.0 109 100 8 0

max: 38 278 1021 67 8 1.0 109 100 10 0
#V: number of variables in thousands, #D: number of decisions

AvgCL: average conflict-clause length
#CV: careset size as % of #V, #DCV: % of #D on careset variabes)

TABLE II
NECLA SAT VS SAT2009WINNERS[25].

Solver SAT UNSAT Total
Time(s) Time(s) Time(s)

NECLA 24 2,042 2,066
SAT (2) (128) (130)

Preco- 468 18,367 18,835
SAT (2) (128) (130)

mini- 372 19,475 19,847
SAT (1) (91) (92)

1,601† (NECLA) (.) # solved cases (out of 130)
12,131† (Preco) within 1800 sec.

glucose 663 39,411 40,074 † Time taken on 92 solved
(1) (111) (112) cases ofminiSAT

1,789‡ (NECLA) ‡ Time taken on 112 solved
17,381‡ (Preco) cases ofglucose

unsatisfiable and 2 are satisfiable. The number of variables in
these instances ranges between 120K-2.2M, and the number
of clauses ranges between 350K-6.6M. These benchmarks are
also made publicly available [35].

We usedB3 solver without CKT heuristic, and refer it
as NECLA SAT solver3 (For the sake of fair comparison,
and to show the benefits ofiBPS exclusively, we disabled
circuit heuristics.) We compared this solver withPrecoSAT,
miniSAT, andglucose, the top-ranked solvers in SAT2009
competition under application category [25]. These solvers
use explicit or in-built preprocessor (e.g., SATeLite [9]),
and smart frequent restarts [4], whileNECLA SAT does not
include any of these techniques. We gave a time limit of 1800s
per instance. We provide a summary of the results in Table II.

In Column 1, we list the solvers we compared. In Column
2(3), we present the solve time (in sec) for SAT(UNSAT)
instances. In Column 4 we present the total time taken (in sec)
for the solved instances only. In Columns 2-4, we show the
number of instances solved by each solver in brackets. Where
the solved instances are less than 130, i.e., forglucose and

3NECLA SAT w/o iBPS corresponds toB1 solver.
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Fig. 3. NECLA SAT vs PrecoSAT: Cumm times, and # decisions

miniSAT, we also provide the total time taken byNECLA
SAT andPrecoSAT on those solved instances.
NECLA SAT andPrecoSAT solve all 130 instances, while

glucose and miniSAT solve 112 and 92 instances, re-
spectively. Clearly,NECLA SAT solver outperforms the rest
solvers by about an order of magnitude.

We also compareNECLA SAT and PrecoSAT in more
details as shown in Figure 3. In the left figure, we show
the instances solved (alongX-axis), and the cumulative
time taken in sec (alongY-axis). We observe thatNECLA
SAT outperformsPrecoSAT consistently by about an or-
der of magnitude. In the right figure, we present a scatter
plot comparing the number of decisions betweenNECLA
SAT (along X-axis) and PrecoSAT (along Y-axis) in
logarithmic scale, where each ‘x’ mark corresponds to an
instance solved. We observe that the number of decisions in
NECLA SAT are 1-2 orders of magnitude smaller than that
in PrecoSAT, as indicated by clustering of ‘x’ between
dotted lines namely,1-OM and 2-OM. All the marks on
X-axis (i.e., with 0 decision inPrecoSAT) are instances
solved by the in-built preprocessor [9] ofPrecoSAT. For
these instances,NECLA SAT takes about 5-10s, about the
same as the preprocessing time.NECLA SAT also requires an
order of magnitude fewer backtracks comparatively (not shown
separately). Clearly, benefit from usingiBPS outweighs many
heuristics inPrecoSAT.

VIII. C ONCLUSION AND FUTURE WORK

Branching plays a crucial role in a CDCL solver. We
introduce the notion of careset variables and branching prefix
sequence to guide the decision engine. We derive such a
careset from software model checking application, and use it
to improve the performance of a CDCL solver by an order of
magnitude compared to the latest best SAT solvers that do not
exploit system-level information. We also compared formally
the resolution power of restricted CDCL vis-a-vis unrestricted
CDCL. Overall, our results serve as a proof of concept that the
analysis of system behaviors can be used to improve a SAT
solver performance dramatically.

On the one hand, the current advanced SAT solvers do
not intend to take advantage of system-level information for
generality reasons, but on the other hand, the performance
penalty of not using such information could be in the orders
of magnitude, as observed in our software model checking
experiments. For a better trade-off, we believe that there
is a further scope in improving SAT-formulation where one
can generate SAT problems conducive for the state-of-the-art

solvers. In future, we would also like to detect careset during
runtime, in contrast to its static determination as presented.
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[16] R. Ostrowski,É. Grégoire, B. Mazure, and L. Sais. Recovering and
exploiting structural knowledge from cnf formulas. InCP, 2002.

[17] M. K. Ganai and A. Gupta.SAT-based Scalable Formal Verification
Solutions. Springer Science and Business Media, 2007.

[18] M. Järvisalo, T. A. Junttila, and I. Niemelä. Justification-based non-
clausal local search for sat. InECAI, 2008.

[19] R. Williams, C. P. Gomes, and B. Selman. Backdoors to typical case
complexity. InProc. of IJCAI, 2003.

[20] H. Kautz, D. Mcallester, and B. Selman. Exploiting variable dependency
in local search. InIn Abstracts of the Poster Sessions of IJCAI-97, 1997.

[21] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Solving
difficult sat instances in the presence of symmetry. InProc. of DAC,
2002.

[22] Z. Fu, Y. Yu, and S. Malik. Considering circuit observability don’t cares
in cnf satisfiability. InProc. of DATE, 2005.

[23] P. Beame, H. A. Kautz, and A. Sabharwal. Towards understanding and
harnessing the potential of clause learning.In Proc. of JAIR, 2004.

[24] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional
proof systems. InJournal of Symbolic Logic, 1977.

[25] SAT competiton 2009.http://www.satcompetition.org/2009/.
[26] J. M. Crawford and A. B. Baker. Experimental results on the application

of satisfiability algorithms to scheduling problems.Proc. of AAAI, 1994.
[27] M. Järvisalo and T. A. Junttila. Limitations of restricted branching in

clause learning.Constraints, 14(3), 2009.
[28] P. Kilby, J. K. Slaney, S. Thiébaux, and T. Walsh. Backbones and
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Abstract—In recent years, bit-precise reasoning has gained
importance in hardware and software verification. Of renewed
interest is the use of symbolic reasoning for synthesising loop
invariants, ranking functions, or whole program fragments and
hardware circuits. Solvers for the quantifier-free fragment of
bit-vector logic exist and often rely on SAT solvers for efficiency.
However, many techniques require quantifiers in bit-vector for-
mulas to avoid an exponential blow-up during construction.
Solvers for quantified formulas usually flatten the input to obtain
a quantified Boolean formula, losing much of the word-level
information in the formula. We present a new approach based on
a set of effective word-level simplifications that are traditionally
employed in automated theorem proving, heuristic quantifier
instantiation methods used in SMT solvers, and model finding
techniques based on skeletons/templates. Experimental results on
two different types of benchmarks indicate that our method
outperforms the traditional flattening approach by multiple
orders of magnitude of runtime.

I. INTRODUCTION

The complexity of integrated circuits continues to grow at
an exponential rate and so does the size of the verification and
synthesis problems arising from the hardware design process.
To tackle these problems, bit-precise decision procedures are a
requirement and oftentimes the crucial ingredient that defines
the efficency of the verification process.

Recent years also saw an increase in the utility of bit-
precise reasoning in the area of software verification where
low-level languages like C or C++ are concerned. In both
areas, hardware and software design, methods of automated
synthesis (e.g., LTL synthesis [23]) become more and more
tangible with the advent of powerful and efficient decision
procedures for various logics, most notably SAT and SMT
solvers. In practice, however, synthesis methods are often
incomplete, bound to very specific application domains, or
simply inefficient.

In the case of hardware, synthesis usually amounts to
constructing a module that implements a specification [23],
[20], while for software this can take different shapes: inferring
program invariants [16], finding ranking functions for termina-
tion analysis [28], [24], [8], program fragment synthesis [26],
or constructing bugfixes following an error-description [27]
are all instances of the general synthesis problem.

In this paper, we present a new approach to solving quanti-
fied bit-vector logic. This logic allows for a direct mapping of
hardware and (finite-state) software verification problems and
is thus ideally suited as an interface between the verification
or synthesis tool and the decision procedure.

In many practically relevant applications, support for un-
interpreted functions is not required and if this is the case,
quantified bit-vector formulas can be reduced to quantified
Boolean formulas (QBF). In practice however, QBF solvers
face performance problems and they are usually not able
to produce models for satisfiable formulas, which is crucial
in synthesis applications. The same holds true for many
automated theorem provers. SMT solvers on the other hand
are efficient and produce models, but usually lack complete
support for quantifiers.

The ideas in this paper combine techniques from automated
theorem proving, SMT solving and synthesis algorithms. We
propose a set of simplifications and rewriting techniques that
transform the input into a set of equations that an SMT solver
is able to solve efficiently. A model finding algorithm is then
employed to refine a candidate model iteratively, while we use
function or circuit templates to reduce the number of iterations
required by the algorithm. Finally, we evalutate a prototype
implementation of our algorithm on a set of hardware and
software benchmarks, which indicate speedups of up to five
orders of magnitude compared to flattening the input to QBF.

II. BACKGROUND

We will assume the usual notions and terminology of
first order logic and model theory. We are mainly interested
in many-sorted languages, and bit-vectors of different sizes
correspond to different sorts. We assume that, for each bit-
vector sort of size n, the equality =n is interpreted as the
identity relation over bit-vectors of size n. The if-then-else
(multiplexer) bit-vector term iten is interpreted as usual as
ite(true, t, e) = t and ite(false, t, e) = e. As a notational
convention, we will always omit the subscript. We call 0-
arity function symbols constant symbols, and 0-arity predicate
symbols propositions. Atoms, literals, clauses, and formulas
are defined in the usual way. Terms, literals, clauses and
formulas are called ground when no variable appears in them.
A sentence is a formula in which free variables do not occur.
A CNF formula is a conjunction C1 ∧ . . . ∧ Cn of clauses.
We will write CNF formulas as sets of clauses. We use a, b
and c for constants, f and g for function symbols, p and q
for predicate symbols, x and y for variables, C for clauses,
ϕ for formulas, and t for terms. We use x:n to denote that
variable x is a bit-vector of size n. When the bit-vector size
is not specified, it is implicitly assumed to be 32. We use
f :n1, . . . , nk → nr to denote to denote that function symbol
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f has arity k, argument bit-vectors have sizes n1, . . . , nk, and
the result bit-vector has size nr.

We use ϕ[x1, . . . , xn] to denote a formula that may contain
variables x1, . . . , xn, and similarily t[x1, . . . , xn] is defined for
a term t. Where there is no confusion, we denote ϕ[x1, . . . , xn]
by ϕ[x] and t[x1, . . . , xn] by t[x]. In the rest of this paper, the
difference between functions and predicates is trivial, and we
will thus only discuss functions except at a few places.

We use the standard notion of a structure (interpretation). A
structure that satisfies a formula F is said to be a model for
F . A theory is a collection of first-order sentences. Interpreted
symbols are those symbols whose interpretation is restricted
to the models of a certain theory. We say a symbol is free
or uninterpreted if its interpretation is not restricted by a
theory. We use BitVec to denote the bit-vector theory. In this
paper we assume the usual interpreted symbols for bit-vector
theory: +n, ∗n, concatm,n, ≤n, 0n, 1n, . . . . Where there is
no confusion, we omit the subscript specifying the actual size
of the bit-vector.

A formula is satisfiable if and only if it has a model. A
formula F is satisfiable modulo the theory BitVec if there is
a model for {F} ∪ BitVec.

III. QUANTIFIED BIT-VECTOR FORMULAS

A Quantified Bit-Vector Formula (QBVF) is a many-sorted
first-order logic formula where the sort of every variable
is a bit-vector sort. The QBVF-satisfiability problem is the
problem of deciding whether a QBVF is satisfiable modulo
the theory of bit-vectors. This problem is decidable because
every universal (existental) quantifier can be expanded into a
conjunction (disjunction) of potentially exponential, but finite
size. A distinguishing feature in QBVF is the support for
uninterpreted function and predicate symbols.

Example 1: Arrays can be easily encoded in QBVF using
quantifiers and uninterpreted function symbols. In the follow-
ing formula, the uninterpreted functions f and f ′ are used to
represent arrays from bit-vectors of size 8 to bit-vectors of the
same size, and f ′ is essentially the array f updated at position
a+ 1 with value 0:

f ′(a+ 1) = 0 ∧ (∀x : 8. x = a+ 1 ∨ f ′(x) = f(x)) .

Quantified Boolean formulas (QBF) are a generalization of
Boolean formulas, where quantifiers can be applied to each
variable. Deciding a QBF is a PSPACE-complete problem.
Note that any QBF problem can be easily encoded in QBVF
by using bit-vectors of size 1. The converse is not true, QBVF
is more expressive than QBF. For instance, uninterpreted
function symbols can be used to simulate non-linear quantifier
prefixes. The EPR fragment of first-order logic comprises
formulas of the form ∃∗∀∗ϕ, where ϕ is a quantifier-free
formula with predicates but without function symbols. EPR
is a decidable fragment because the Herbrand universe of a
EPR formula is always finite. The satisfiability problem for
EPR is NEXPTIME-complete.

Theorem 1: The satisfiability problem for QBVF is
NEXPTIME-complete.

QBVF can be used to compactly encode many practically
relevant verification and synthesis problems. In hardware
verification, a fixpoint check consists in deciding whether k
unwindings of a circuit are enough to reach all states of the
system. To check this, two copies of the k unwindings are
used: Let T [x, x′] be a formula encoding the transition relation
and I[x] a formula encoding the initial states of a circuit.
Furthermore, we define

T k[x, x′] ≡ T [x, x0] ∧

(
k−1∧
i=1

T [xi−1, xi]

)
∧ T [xk−1, x′] .

Then a fixpoint check for k unwindings corresponds to the
QBV formula

∀x, x′ . I[x] ∧ T k[x, x′]→ ∃y, y′ .I[y] ∧ T k−1[y, y′] ,

where x, x′, y, and y′ are (usually large) bit-vectors.
Of renewed interest is the use of symbolic reasoning for

synthesing code [26], loop invariants [7], [16] and ranking
functions [8] for finite-state programs. All these applications
can be easily encoded in QBVF. To illustrate these ideas,
consider the following abstract program:

pre
whi le ( c ) { T }
post

In the loop invariant synthesis problem, we want to synthe-
sise a predicate I that can be used to show that post holds after
execution of the while-loop. Let pre[x] be a formula encoding
the set of states reachable before the beginning of the loop,
c[x] be the encoding of the entry condition, T [x, x′] be the
transition relation, and post [x] be the encoding of the property
we want to prove. Then, a suitable loop invariant exists if the
following QBV formula is satisfiable.

∀x. pre[x]→ I(s) ∧
∀x, x′. I(x) ∧ c[x] ∧ T [x, x′]→ I(x′) ∧
∀x. I(x) ∧ ¬c[x]→ post [x]

An actual invariant can be extracted from any model that
satisfies this formula.

Similarly, in the ranking function synthesis problem, we
want to synthesise a function rank that decreases after each
loop iteration and that is bounded from below. The idea is
to use this function to show that a particular loop in the
program always terminates. This problem can be encoded as
the following QBVF satisfiability problem.

∀x. rank(x) ≥ 0 ∧
∀x, x′. c[x] ∧ T [x, x′]→ rank(x′) < rank(x)

Note that the general case of this encoding requires uninter-
preted functions. The call to rank can not be replaced with an
existentially quantified variable, as it is impossible to express
the correct variable dependencies in a linear quantifier prefix.
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IV. SOLVING QBVF

In this section, we describe a QBVF solver based on ideas
from first-order theorem proving, SMT solving and synthesis
tools. First, we present a set of simplifications and rewriting
rules that help to greatly reduce the size and complexity
of typical QBV formulas. Then, we describe how to check
whether a given model satisfies a QBVF and how to use this to
construct new models, using templates to speed up the process
(sometimes exponentially).

A. Simplifications & Rewriting

Modern first-order theorem provers spend a great part of
their time in simplifying/contracting operations. These opera-
tions are inferences that remove or modify existing formulas.
Our QBVF solver implements several simplification/contrac-
tion rules found in first-order provers. We also propose new
rules that are particularly useful in our application domain.

1) Miniscoping: Miniscoping is a well-known technique
for minimizing the scope of quantifiers [17]. We apply it
after converting the formula to negation normal form. The
basic idea is to distribute universal (existential) quantifiers over
conjunctions (disjunctions). This transformation is particularly
important in our context because it increases the applicability
of rules based on rewriting and macros. We may also limit
the scope of a quantifier if a sub-formula does not contain the
quantified variable. That is,

(∀x.F [x] ∨G) =⇒ (∀x.F [x]) ∨G

when G does not contain x. We use a similar rule for
existential quantifiers over disjunctions.

2) Skolemization: Similarly to first-order theorem provers,
in our solver, existentially quantified variables are eliminated
using Skolemization. A formula ∀x. ∃y. ¬p(x)∨q(x, y) is con-
verted into the equisatisfiable formula ∀x. ¬p(x)∨q(x, fy(x)),
where fy is a fresh function symbol.

3) A conjunction of universally quantified formulas: Af-
ter conversion to Negation Normal Form, miniscoping, and
skolemization, the QBV formula is written as a conjunction of
universally quantified formulas: (∀x. ϕ1[x])∧. . .∧(∀x. ϕn[x]).
This form is very similar to that used in first-order theorem
provers. However, we do not require each ϕi[x] to be a clause.

4) Destructive Equality Resolution (DER): DER allows us
to solve a negative equality literal by simply applying the
following transformation:

(∀x, y. x 6= t ∨ ϕ[x, y]) =⇒ (∀y. ϕ[t, y]) ,

where t does not contain x. For example, using DER, the
formula ∀x, y. x 6= f(y) ∨ g(x, y) ≤ 0 is simplified to
∀y. g(f(y), y) ≤ 0. DER is essentially an equality substitution
rule. This becomes clear when we write the clause on the left-
hand-side using an implication: ∀x, y. x = t → ϕ[x, y]. It is
straightforward to implement DER; a naive implementation
eliminates a single variable at a time. In our experiments,
we observed this naive implementation was a bottleneck in
benchmarks where hundreds of variables could be eliminated.

The natural solution is to eliminate as many variables simul-
taneously as possible. The only complication in this approach
is that some of the variables being eliminated may depend on
each other. We say a variable x directly depends on y in DER,
when there is a literal x 6= t[y]. In general we are presented
with a formula of the following form:

∀x1, . . . , xn, y. x1 6= t1 ∨ . . . ∨ xn 6= tn ∨ ϕ[x1, . . . , xn, y] ,

where each xi may depend on variables xj , j 6= i. First,
we build a dependency graph G where the nodes are the
variables xi, and G contains an edge from xi to xj whenever
xj depends on xi. Next, we perform a topological sort on G,
and whenever a cycle is detected when visiting node xi, we
remove xi from G and move xi 6= ti to ϕ[x1, . . . , xn, y].
Finally, we use the variable order xk1

, . . . , xkm
(m ≤ n)

produced by the topological sort to apply DER simultaneously.
Let θ be a substitution, i.e., a mapping from variables to terms.
Initially, θ is empty. For each variable xki we first apply θ to
tki producing t′ki

, and then update θ := θ ∪ {xki 7→ t′ki
}.

After all variables xki
were processed, we apply the resulting

substitution θ to ϕ[x1, . . . , xn, y].
As a final remark, the applicability of DER can be increased

using theory solvers. The idea is to rewrite inequalities of the
form t1[x, y] 6= t2[x, y], containing a universal variable x,
into x 6= t′[y]. This rewriting step is essentially equivalent to
a theory solving step, where t1[x, y] = t2[x, y] is solved for x.
In the case of linear bit-vector equations, this can be achieved
when the coefficient of x is odd [12].

5) Rewriting: The idea of using rewriting for performing
equational reasoning is not new. It traces back to the work
developed in the context of Knuth-Bendix completion [21].
The basic idea is to use unit clauses of the form ∀x. t[x] = r[x]
as rewrite rules t[x] ; r[x], when t[x] is “bigger than” r[x].
Any instance t[s] of t[x] is then replaced by r[s]. For example,
in the formula

(∀x. f(x, a) = x) ∧ f(h(b), a) ≥ 0,

the left conjunct can be used as the rewrite rule f(x, a) ; x.
Thus, the term f(h(b), a) ≥ 0 can be simplified to h(b) ≥ 0,
producing the new formula

(∀x. f(x, a) = x) ∧ h(b) ≥ 0 .

We observed that rewriting is quite effective in many QBVF
benchmarks, in particular, in hardware fixpoint check prob-
lems. Our goal is to use rewriting as an incomplete simplifica-
tion technique. So, we are not interested in computing critical
pairs and generating a confluent rewrite system. First-order
theorem provers use sophisticated term orderings to orient the
equations t[x] = r[x] (see, e.g., [17]). We found that any term
ordering, where interpreted symbols (e.g., +, *) are considered
“small”, works for our purposes. This can be realised, for
instance, using a Knuth-Bendix Ordering where the weight
of interpreted symbols is set to zero. The basic idea of this
heuristic is to replace uninterpreted symbols with interpreted
ones. For example, using f(x) ; 2x + 1, we can simplify
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f(a)− a to 2a+ 1− a, and then apply a bit-vector rewriting
rule and reduce it to a+ 1.

6) Macros & Quasi-Macros: A macro is a unit clause of the
form ∀x. f(x) = t[x], where f does not occur in t. Macros
can be eliminated from QBV formulas by simply replacing
any term of the form f(r) with t[r]. Any model for the
resultant formula can be extended to a model that also satisfies
∀x. f(x) = t[x]. For example, consider the formula

(∀x. f(x) = x+ a) ∧ f(b) > b .

After macro expansion, this formula is reduced to the equisat-
isfiable formula b+a > b. The interpretation a 7→ 1, b 7→ 0 is
a model for this formula. This interpretation can be extended
to

f(x) 7→ x+ 1, a 7→ 1, b 7→ 0 ,

which is a model for the original formula. This particular way
to represent models is described in more detail in section IV-B.

A quasi-macro is a unit clause of the form

∀x.f(t1[x], . . . , tm[x]) = r[x] ,

where f does not occur in r[x], f(t1[x], . . . , tm[x]) contains
all x variables, and the following system of equations can be
solved for x1, . . . , xn

y1 = t1[x], . . . , ym = tm[x] ,

where y1, . . . , ym are new variables. A solution of this system
is a substitution

θ : x1 7→ s1[y], . . . , xn 7→ sn[y] .

We use the notation ϕ ↓ θ to represent the application of the
substitution θ to the formula ϕ. Then, the quasi-macro can be
replaced with the macro

∀y.f(y) = ite(
∧
i

yi = ti[x], r[x], f
′(y)) ↓ θ

where f ′ is a fresh function symbol. Intuitively, the new
formula is saying that when the arguments of f are of the
form ti[x], then the result should be r[x], otherwise the value
is not specified. Now, the quasi-macro was transformed into a
macro, the quantifier can be eliminated using macro expansion.

Example 2 (Quasi-Macro): ∀x.f(x + 1, x − 1) = x is a
quasi-macro, because the system y1 = x + 1, y2 = x − 1
can be solved for x. A possible solution is the substitution
θ = {x 7→ y1 − 1}. Thus, we can transform this quasi-macro
into the macro:

∀y1, y2. f(y1, y2) = ite(y1 = x+ 1 ∧ y2 = x− 1,
x, f ′(y1, y2)) ↓ θ

After applying the substitution θ and simplifying the formula,
we obtain

∀y1, y2. f(y1, y2) = ite(y2 = y1 − 2, y1 − 1, f ′(y1, y2)) .

In our experiments, we observed that the solvability condition
is trivially satisfied in many instances, because all variables x
are actual arguments of f . Assume that variable xi is the ki-th

argument of f . Then, the substitution θ is of the form {x1 7→
yk1

, . . . , xn 7→ ykn
}. For example, in many benchmarks we

found quasi-macros that are bigger versions of

∀x1, x2. f(x1, x1 + x2, x2) = r[x1, x2] .

7) Function Argument Discrimination (FAD): We have
observed that after applying DER the i-th argument of many
function applications is always a bit-vector value such as: 0,
1, 2, etc. For any function symbol f and QBV formula ϕ, the
following macro can be conjoined with ϕ while preserving
satisfiability:

∀x, y. f(x, y) = ite(x = v, fv(y), f
′(x, y)) ,

where fv and f ′ are fresh function symbols, and v is a bit-
vector value. Now, suppose that the first argument of all f -
applications are bit-vector values. The macro above will reduce
f(v′, t) to fv(t) when v = v′, and f ′(v′, t) otherwise. The
transformation can be applied again to the f ′ applications if
their first argument is again a bit-vector value.

Example 3 (FAD): Let ϕ be the formula

(∀x. f(1, x, 0) ≥ x) ∧
f(0, a, 1) < f(1, b, 0) ∧ f(0, c, 1) = 0 ∧ c = a.

Applying FAD twice (for the values 0 and 1) on the first
argument of f , we obtain

(∀x. f1(x, 0) ≥ x) ∧
f0(a, 1) < f1(b, 0) ∧ f0(c, 1) = 0 ∧ c = a.

Applying FAD for the third argument of f1 and f0 results in

(∀x. f1,0(x) ≥ x) ∧
f0,1(a) < f1,0(b) ∧ f0,1(c) = 0 ∧ c = a.

Since FAD is based on macro definitions, the infrastructure
used for constructing interpretations for macros may be used
to build an interpretation for f based on the interpretations of
f1,0 and f0,1.

8) Other simplifications: As many other SMT solvers for
bit-vector theory ([6], [5], [2]), our QBVF solver implements
several bit-vector specific rewriting/simplification rules such
as: a − a =⇒ 0. These rules have been proved to be very
effective in solving quantifier-free bit-vector benchmarks, and
this is also the case for the quantified case.

From now on, we assume that there is a procedure
Simplify that, given a QBV formula ϕ, converts it into nega-
tion normal form, then applies miniscoping, skolemization,
and the other simplifications described in this section up to
saturation.

B. Model Checking Quantifiers

Given a structure M , it is useful to have a procedure MC that
checks whether M satisfies a universally quantified formula
ϕ or not. We say MC is a model checking procedure. Before
we describe how MC can be constructed, let us take a look
at how structures are encoded in our approach. We use BV
to denote the structure that assigns the usual interpretation to
the (interpreted) symbols of the bit-vector theory (e.g., +, ∗,
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concat , etc). In our approach, the structures M are based on
BV . We use |BV |n to denote the interpretation of the sort
of bit-vectors of size n. With a small abuse of notation, the
elements of |BV |n are {0n, 1n, . . . , 2n−1n }. Again, where there
is no confusion, we omit the subscript. The interpretation of
an arbitrary term t in a structure M is denoted by M [[t]], and
is defined in the standard way. We use M{x 7→ v} to denote a
structure where the variable x is interpreted as the value v, and
all other variables, function and predicate symbols have the
same interpretation as in M . That is, M{x 7→ v}(x) = v. For
example, BV {x 7→ 1}[[2 ∗ x+ 1]] = 3. As usual, M{x 7→ v}
denotes M{x1 7→ v1}{x2 7→ v2} . . . {xn 7→ vn}.

For each uninterpreted constant c that is a bit-vector of size
n, the interpretation M(c) is an element of |BV |n. For each
uninterpreted function (predicate) f :n1, . . . , nk → nr of arity
k, the interpretation M(f) is a term tf [x1, . . . , xk], which
contains only interpreted symbols and the free variables x1 :
n1, . . . , xk : nk. The interpretation M(f) can be viewed as a
function definition, where for all v in |BV |n1 × . . .×|BV |nk

,
M(f)(v) = BV {x 7→ v}[[tf [x]]].

Example 4 (Model representation): Let ϕa be the follow-
ing formula:

(∀x. ¬(x ≥ 0) ∨ f(x) < x) ∧
(∀x. ¬(x < 0) ∨ f(x) > x+ 1) ∧
f(a) > b ∧ b > a+ 1 .

Then the interpretation

Ma := {f(x) 7→ ite(x ≥ 0, x− 1, x+ 3), a 7→ −1, b 7→ 1}

is a model for ϕa. For instance, we have M [[f(a)]] = 2.
Usually, SMT solvers represent the interpretation of unin-
tepreted function symbols as finite function graphs (i.e.,
lookup tables). A function graph is an explicit representation
that shows the value of the function for a finite (and relatively
small) number of points. For example, let the function graph
{0 7→ 1, 2 7→ 3, else 7→ 4} be the interpretation of the
function symbol g. It states that the value of the function
g at 0 is 1, at 2 it is 3, and for all other values it is
4. Any function graph can be encoded using ite terms.
For example, the function graph above can be encoded as
g(x) 7→ ite(x = 0, 1, ite(x = 2, 3, 4)). Our approach for
enconding interpretations is symbolic and potentially allows
for an exponentially more succinct representation. For exam-
ple, assuming f is a function from bit-vectors of size 32,
the interpretation f(x) 7→ ite(x ≥ 0, x − 1, x + 3) would
correspond to a very large function graph.

When models are encoded in this fashion, it is straight-
forward to check whether a universally quantified formula
∀x. ϕ[x] is satisfied by a structure M [13]. Let ϕM [x] be
the formula obtained from ϕ[x] by replacing any term f(r)
with M [[f(r)]], for every uninterpreted function symbol f .
A structure M satisfies ∀x. ϕ[x] if and only if ¬ϕM [s] is
unsatisfiable, where s is a tuple of fresh constant symbols.

Example 5: For instance, in Example 4, the structure Ma

satisfies ∀x. ¬(x ≥ 0) ∨ f(x) < x because

s ≥ 0 ∧ ¬(ite(s ≥ 0, s− 1, s+ 3) < s)

is unsatisfiable. Let Mb be a structure identical to Ma in
Example 4, but where the interpretation Mb(f) of f is x+2.
Mb does not satisfy ∀x. ¬(x ≥ 0) ∨ f(x) < x in ϕa because
the formula s ≥ 0∧¬(s+2 < s) is satisfiable, e.g., by s 7→ 0.
The assignment s 7→ 0 is a counter-example for Mb being a
model for ϕa.

The model-checking procedure MC expects two arguments:
a universally quantified formula ∀x. ϕ[x] and a structure
M . It returns > if the structure satisfies ∀x. ϕ[x], and a
non-empty finite set V of counter-examples otherwise. Each
counter-example is a tuple of bit-vector values v such that
M{x 7→ v}[[ϕ[x]]] evaluates to false.

C. Template Based Model Finding

In principle, the verification and synthesis problems de-
scribed in section III can be attacked by any SMT solver that
supports universally quantified formulas, and that is capable
of producing models. Unfortunately, to the best of our knowl-
edge, no SMT solver supports complete treatment of univer-
sally quantified formulas, even if the variables range over
finite domains such as bit-vectors. On satisfiable instances,
they will often not terminate or give up. On some unsatisfiable
instances, SMT solvers may terminate using techniques based
on heuristic-quantifier instantiation [9].

It is not surprising that standard SMT solvers cannot handle
these problems; the search space is simply too large. Synthesis
tools based on automated reasoning try to constrain the search
space using templates. For example, when searching for a
ranking function, the synthesis tool may limit the search to
functions that are linear combinations of the input. This simple
idea immediately transfers to QBVF solvers. In the context of a
QBVF solver, a template is just an expression t[x, c] containing
free variables x, interpreted symbols, and fresh constants c.
Given a tuple of bit-vector values v, we say t[x, v] is an
instance of the template t[x, c]. A template can also viewed
as a parametric function definition. For example, the template
ax+b, where a and b are fresh constants, may be used to guide
the search for an interpretation for unary function symbols.
The expressions x+1 (a 7→ 1, b 7→ 1) and 2x (a 7→ 2, b 7→ 0)
are instances of this template.

We say a template binding for a formula ϕ is a mapping
from uninterpreted function (predicate) symbols fi, occurring
in ϕ, to templates ti[x, c]. Conceptually, one template per
uninterpreted symbol is enough. If we want to consider two
different templates t1[x, c1] and t2[x, c2] for an uninterpreted
symbol f , we can just combine them in a single template
t′[x, (c1, c2, c)] ≡ ite(c = 1, t1[x, c1], t2[x, c2]), where c is a
new fresh constant. This approach can be extended to construct
templates that are combinations of smaller “instructions” that
can be combined to construct a template for the desired class
of functions.

Without loss of generality, let us assume that ϕ contains
only one uninterpreted function symbol f . So, a template
based model finder is a procedure TMF that given a ground
formula ϕ and a template binding TB = {f 7→ t[x, c]}, returns
a structure M for ϕ s.t. the interpretation of f is t[x, v] for
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solver(ϕ, TB)
ϕ := Simplify(ϕ)
w.l.o.g. assume ϕ is of the form ∀x. φ[x]
ρ := HeuristicInst(φ[x])
loop

if SMT(ρ) = unsat return unsat
M := TMF(ρ, TB)
if M = ⊥ return unsat modulo TB

V := MC(ϕ,M)
if V = > return (sat, M )
ρ := ρ ∧

∧
v∈V φ[v]

Fig. 1. QBVF solving algorithm.

some bit-vector tuple v if such a structure exists. TMF returns ⊥
otherwise. Since we assume ϕ is a ground formula, a standard
SMT solver can be used to implement TMF. We just need to
check whether

ϕ ∧
∧

f(r)∈ϕ

f(r) = t[r, c]

is satisfiable. If this is the case, the model produced by the
SMT solver will assign values to the fresh constants c in
the template t[x, c]. When TMF(ϕ, TB) succeeds we say ϕ is
satisfiable modulo TB.

Example 6 (Template Based Model Finding): Let ϕ be the
formula

f(a1) ≥ 10 ∧ f(a2) ≥ 100 ∧ f(a3) ≥ 1000 ∧
a1 = 0 ∧ a2 = 1 ∧ a3 = 2

and the template binding TB be {f 7→ c1x + c2}. Then, the
corresponding satisfiability query is:

f(a1) ≥ 10 ∧ f(a2) ≥ 100 ∧ f(a3) ≥ 1000 ∧
a1 = 0 ∧ a2 = 1 ∧ a3 = 2 ∧
f(a1) = c1a1 + c2 ∧ f(a2) = c1a2 + c2 ∧
f(a3) = c1a3 + c2

The formula above is satisfiable, e.g., by the assignment c1 7→
1 and c2 7→ 1000. Therefore, ϕ is satisfiable modulo TB.

D. Solver Architecture

The techniques described in this section can be com-
bined to produce a simple and effective solver for non-
trivial benchmarks. Figure 1 shows the algorithm used in
our prototype. The solver implements a form of counter-
example guided refinement where a failed model-checking
step suggests new instances for the universally quantified
formula. This method is also a variation of model-based
quantifier instantiation [13] based on templates. The procedure
SMT is an SMT solver for the quantifier-free bit-vector and
uninterpreted function theory (QF UFBV in SMT-LIB [1]).
The procedure HeuristicInst(φ[x]) creates an initial set of
ground instances of φ[x] using heuristic instantiation. Note
that the formula ρ is monotonically increasing in size, so
the procedures SMT and TMF can exploit incremental solving
features available in state-of-the-art SMT solvers.

Theorem 2: The algorithm in Figure 1 is complete modulo
the given template TB.

The algorithm in Figure 1 is complete for QBVF if TMF

never fails, that is, M is never ⊥. This can be accomplished
using a template that simply covers all relevant functions:
Let us assume w.l.o.g. that every function in ϕ has only one
argument and it is a bit-vector of size 2n. Then, using the
template

ite(x = c1, a1, . . . , ite(x = c2n−1, a2n−1, a2n) . . .)

guarantees that TMF will never fail, where c1, . . . c2n−1, a1, . . . ,
a2n are the template parameters. Of course, it is impractical to
use this template in practice. Therefore, in our implementation,
we consider templates of increasing complexity. We essentially
use an outer-loop that automatically increases the size of the
templates whenever the inner-loop returns unsat modulo TB.

In many cases, using actual tuples of bit-vector values is
not the best strategy for instantiating quantifers. For example,
assume f is a function from bit-vectors of size 32 to bit-vectors
of the same size in

(∀x. f(x) ≥ 0), f(a) < 0 .

To prove this formula to be unsatisfiable, we should instantiate
the quantifier with a instead of the 232 possible bit-vector
values. Therefore, we use an approach similar to the one used
in [13]. Given a tuple (v1, . . . , vn) in V , if there is a term t
in ρ s.t. M [[t]] = vi, we use t instead of vi to instantiate the
quantifier. Of course, in practice, we may have several different
t’s to chose from. In this case we select the syntactically
smallest one, and break ties non-deterministically.

E. Additional Techniques for Solving QBVF

Templates may be used to eliminate uninterpreted function
(predicate) symbols from any QBV formula. The idea is to
replace any function application fi(r) (ground or not) in a
QBV formula ϕ with the template definition ti[r, c]. The
resultant formula ϕ′ contains only uninterpreted constants
and interpreted bit-vector operators. Therefore, bit-blasting
can be used to encode ϕ′ into QBF. This observation also
suggests that template model finding is essentially approxi-
mating a NEXPTIME-complete problem (QBVF satisfiability)
as a PSPACE-complete one (QBF satisfiability). Of course,
the reduction is effective iff the size of the templates are
polynomially bounded by the input formula size.

If the QBV formula is a conjunction of many universally
quantified formulas, a more attractive approach is quantifier
elimination using BDDs [3] or resolution and expansion [4].
Each universally quantified clause can be independently pro-
cessed and the resultant formulas/clauses are combined. An-
other possibility is to apply this approach only to a selected
subset of the universally quantified sub-formulas, and rely on
the approach described in section IV-D for the remaining ones.

Finally, first-order resolution and subsumption can also be
used to derive new implied QBV universally quantified clauses
and to delete redundant ones.
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Fig. 2. Hardware fixpoint checks: QuBE & sKizzo vs. Z3
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Fig. 3. Ranking function synthesis: QuBE & sKizzo vs. Z3

V. EXPERIMENTAL RESULTS

To assess the efficacy of our method we present an evalua-
tion of the performance of a preliminary QBVF solver based
on the code-base of the Z3 SMT solver [10]. Our prototype
first applies the simplifications described in section IV-A. It
then iterates model checking and model finding as described
in sections IV-B and IV-C. The benchmarks that we use for
our performance comparison are derived from two sources:
a) hardware fixpoint checks and b) software ranking function
synthesis [8]. It is not trivial to compare our QBVF solver
with other systems, since most SMT solvers do not perform
well in benchmarks containing bit-vectors and quantifiers. In
the past, QBF solvers have been used to attack these problems.
We therefore compare to the state-of-the-art QBF solvers
sKizzo [3] and QuBE [14].

Formulas in the first set exhibit the structure of fixpoint
formulas described in section III. The circuits that we use
as benchmarks are derived from a previous evaluation of
VCEGAR [18]1 and were extracted using a customized version
of the EBMC bounded Model Checker2, which is able to
produce fixpoint checks in QBVF and QBF form. In total,
this benchmark set contains 131 files.

Our second set of benchmarks cannot be directly encoded
in QBF because they contain uninterpreted function symbols.
So, we decided to consider only ranking functions that are
linear polynomials. By applying this template we can convert
the problem to QBF as described in section IV-E. Thus,
the problem here is to synthesise the coefficients for the
polynomial. Further details, especially on the size of the
coefficients, were described previously [8].

1These benchmarks are available at http://www.cprover.org/hardware/
2EBMC is available at http://www.cprover.org/ebmc/

All our benchmarks were extracted in two forms: in QBVF
form (using SMT-LIB format) and in QBF form (using the
QDIMACS format) and they were executed on a Windows
HPC cluster of AMD Athlon 2 GHz machines with a time
limit of 3600 seconds and a memory limit of 2 GB.

As indicated by Figure 2 our approach outperforms the QBF
solvers on all instances, sometimes by up to five orders of
magnitude and it solves almost all instances in the benchmark
set (110 out of 131). Most of the benchmarks solved in this
category (87 out of 110) are solved by our simplifications
and rewriting rules only. In the remaining cases, the model
refinement algorithm takes less then 10 iterations.

Figure 3 shows the results for the ranking function bench-
mark set. Again, our algorithm outperforms the QBF solvers
by up to five orders of magnitude. The number of iterations
required to find a model or prove non-existence of a model
in these benchmarks is again very small: almost all instances
require only one or two iterations and the maximum number
of iterations is 9. Even though our algorithm exhibits similar
speedups on both benchmark sets, the behaviour on the second
set is quite different: None of the instances in this set is
completely solved by the simplifications or rewriting rules.
The model finding algorithm is required on each of them.

VI. RELATED WORK

In practice it is often the case that uninterpreted functions
are not strictly required. In this case, QBVFs can be flattened
into either a propositional formula or a quantified Boolean
formula (QBF). This is possible because bit-vector variables
may be treated as a vector of Boolean variables. Operations on
bit-vectors may be bit-blasted, but this approach increases the
size of the formula considerably (e.g., quadratically for multi-
pliers), and structural information is lost. In case of quantified
formulas, universal quantifiers can be expanded since each is
a quantification over a finite domain of values. This usually
results in an exponential increase of the formula size and is
therefore infeasible in practice. An alternative method is to
flatten the QBV formula without expanding the quantifiers.
This results in a QBF and off-the-shelf decision procedures
(QBF solvers) like sKizzo [3], Quantor [4] or QuBE [14]
may be employed to decide the formula. In practice, the
performance of QBF solvers has proven to be problematic,
however.

One of the potential issues resulting in bad performance may
be the prenex clausal form of QBFs. It has thus been proposed
to use non-prenex non-clausal form [11], [15]. This has been
demonstrated to be beneficial on certain types of formulas,
but all known decision procedures fail to exploit any form of
word-level information.

A further problem with QBF solvers is that only few of them
support certification, especially the construction of models for
satisfiable instances. This is an absolute necessity for solvers
employed in a synthesis context.

SMT QF BV solvers. For some time now, SMT solvers
for the quantifier-free fragment of bit-vector logic existed.
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Usually, those solvers are based on a small set of word-
level simplifications and subsequent flattening (bit-blasting)
to propositional formulas. Some solvers (e.g., SWORD [29]),
try to incorporate word-level information while solving the
flattened formula. Some tools also have limited support for
quantifiers (e.g. BAT [22]), but this is usually restricted to
either a single quantifier or a single alternation of quantifiers
which may be expanded at feasible cost. Most SMT QF BV
solvers support heuristic instantiation of quantifiers based on
E-matching [9]. On some unsatisfiable instances, this may
terminate with a conclusive result, but it is of course not a
solution to the general problem. The method that we propose
uses SMT solvers for the quantifier-free fragment to decide
intermediate formulas and therefore represents an extension
of SMT techniques to the more general QBV logic.

Synthesis tools. Finally, there is recent and active interest
in using modern SMT solvers in the context of synthesis
of inductive loop invariants [25] and synthesis of program
fragments [19], such as sorting, matrix multiplication, de-
compression, graph, and bit-manipulating algorithms. These
applications share a common trait in the way they use their
underlying symbolic solver. They search a template vocabulary
of instructions, that are composed as a model in a satisfying
assignment. This approach was the main inspiration for the
template based model finder described in section IV-C.

VII. CONCLUSION

Quantified bit-vector logic (QBV) is ideally suited as an
interface between verification or synthesis tools and underlying
decision procedures. Decision procedures for different frag-
ments of this logic are required in virtually every verification
or synthesis technique, making QBV one of the most practi-
cally relevant logics. We present a new approach to solving
quantified bit-vector formulas based on a set of simplifications
and rewrite rules, as well as a new model finding algorithm
based on an iterative refinement scheme. Through an evalu-
ation on benchmarks that stem from hardware and software
applications, we are able to demonstrate that our approach is
up to five orders of magnitude faster when compared to a
popular approach of flattening the formula to QBF.
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Abstract—This paper focuses on data structures for multi-
core reachability, which is a key component in model checking
algorithms and other verification methods. A cornerstone of
an efficient solution is the storage of visited states. In related
work, static partitioning of the state space was combined with
thread-local storage. This solution leaves room for improvements.
This paper presents a solution with a shared state storage. It is
based on a lockless hash table implementation and scales better.
The solution is specifically designed for the cache architecture
of modern CPUs. Because model checking algorithms impose
loose requirements on the hash table operations, their design
can be streamlined substantially compared to related work on
lockless hash tables. The resulting speedups are analyzed and
compared with related tools. Our implementation outperforms
two state-of-the-art multi-core model checkers, SPIN (presented
at FMCAD 2006) and DiVinE, by a large margin, while placing
fewer constraints on the load balancing and search algorithms.

I. INTRODUCTION

Many verification problems are highly computational inten-
sive tasks that can benefit from extra speedups. Considering the
recent hardware trends, these speedups can only be delivered
by exploiting the parallelism of the new multi-core CPUs.

Reachability, or full exploration of the state space, is a
subtask of many verification problems [6], [8]. In model
checking, reachability has in the past been parallelized using
distributed systems [6]. With shared-memory systems, these
algorithms can benefit from the low communication costs as
has been demonstrated already [1]. In this paper, we show how
the performance of state-of-the-art multi-core model checkers,
like SPIN [13] and DiVinE [1], can be greatly improved using a
carefully designed concurrent hash table as shared state storage.

Motivation: Holzmann and Bošnacki used a shared hash
table with fine-grained locking in combination with the stack-
slicing algorithm in their multi-core extension of the SPIN
model checker [12], [13]. This shared storage enabled the
parallelization of many of the model checking algorithms in
SPIN: safety properties, partial order reduction and reachability.
Barnat et al. implemented the same method in the DiVinE
model checker [1]. They chose to implement the classic method
of static state space partitioning, as used in distributed model
checking [3]. They found the static partitioning method to scale
better on the basis of experiments. The authors also mention
that they were not able to develop a potentially better solution
for shared state storage, namely the use of a lockless hash
table. Thus it remains unknown whether reachability, based on
shared state storage, can scale.

Worker 1 Worker 2

Worker 3 Worker 4
QueueQueue

QueueQueue

store store

storestore

(a) Static partitioning

store

Worker 1 Worker 2

Worker 4 Worker 3

Stack

Stack

Stack

Stack

(b) Stack slicing

Fig. 1. Different architectures for model checkers

TABLE I
DIFFERENCES BETWEEN ARCHITECTURES

Arch. Sync. points Pros / Cons
Fig. 1(a) Queue local (cache efficient) storage / static load

balancing, high comm. costs, limited to BFS
Fig. 1(b) Shared store,

stack
low comm. costs / specific load balancing,
limited to (pseudo) DFS

Shared
store

Shared store,
(queue)

low comm. costs, flexible load balancing, flexi-
ble exploration algorithm / scalability?

Using a shared state storage has further benefits. Fig. 1 shows
the different architectures discussed thus far. Their differences
are summarized in Table I and have been extensively discussed
by Barnat et al. [3]. They also investigate a more general
architecture with a shared storage and arbitrary load-balancing
strategy (not necessarily stack-slicing). Such a solution is both
simpler and more flexible, in the sense that it allows for more
freedom in the choice of the exploration algorithm, including
(pseudo) DFS, which enables fast searches for deadlocks and
error states [20]. Holzmann already demonstrates this [12],
but could not show desirable scalability of SPIN (as we will
demonstrate). The stack-slicing algorithm [12], is a specific
case of load balancing that requires DFS. In fact, any well-
investigated load-balancing solution [21] can be used and
tuned to the specific environment, for example, to support
heterogeneous systems or BFS exploration. Inggs and Barringer
use a lossy shared hash table [14], resulting in reasonable
speedups at the cost of precision (states can potentially be
revisited), but give little details on the implementation.

Contribution: We present a data structure for efficient
concurrent storage of states. This enables scaling parallel
implementations of reachability for many desirable exploration
algorithms. The precise needs which parallel model checking
algorithms impose on shared state storage are evaluated and a
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fitting solution is proposed given the identified requirements.
Experiments show that our implementation of the shared storage
scales significantly better than an implementation using static
partitioning, but also beats state-of-the-art model checkers. By
analysis, we show that our design will scale beyond current
state-of-the-art multi-core processors. The experiments also
contribute to a better understanding of the performance of the
latest versions of SPIN and DiVinE.

Overview: Section II presents background on reachability,
load balancing, hashing, parallel algorithms and multi-core
systems. Section III presents the lockless hash table, which we
designed for shared state storage. But only after we evaluated
the requirements that fast parallel algorithms impose on such
a shared storage. In Section IV, the performance is evaluated
against that of DiVinE 2 [2] and SPIN. A fair comparison can
be made between the three model checkers on the basis of a
set of models from the BEEM database which report the same
number of states for both SPIN and DiVinE. We end this paper
by putting the results we obtained into context, and an outlook
on future work (Section V).

II. PRELIMINARIES

Reachability in Model Checking: In model checking, a
computational model of the system under verification (hardware
or software) is constructed, which is then be used to compute all
possible states of the system. The exploration of all states can be
done symbolically, e.g., using binary decision diagrams (BDDs)
to represent sets of states, or by enumerating and explicitly
storing all states. While symbolic methods are attractive for a
certain set of models, they are not a silver bullet: due to BDD
explosion, sometimes plain enumerative methods are faster. In
this paper, we focus on enumerative model checking.

Enumerative reachability analysis can be used to check for
deadlocks and invariants and also to store the whole state
space and verify multiple properties of the system at once.
Reachability is an exhaustive search through the state space.
The algorithm calls for each state the next-state function to
obtain its successors until no new states are found (Alg. 1).
We use an open set T , which can be implemented as a stack
or queue, depending on the preferred exploration order: depth
or breadth-first. The initial state s0 is obtained from the model
and added to T . In the loop starting on Line 1, a state is taken
from T , its successors are computed using the model (Line 3)
and each new successor state is put into T again for later
exploration. To determine which state is new, a closed set V
is used. V can be implemented with a hash table.

Possible ways to parallelize Alg. 1 have been discussed in the
introduction. A common denominator of all these approaches is
that the strict BFS or DFS order of the sequential algorithm is
sacrificed in favor of thread-local open sets (fewer contention
points). When using a shared state storage (in a general setup
or with stack-slicing), a thread-safe set V is required, which
will be discussed in the following section.

Load Balancing: A naive parallelization of reachability
can be realized as follows: perform a depth-limited sequential
BFS exploration and hand off the found states to several threads

Data: Sequence T = {s0}, Set V = ∅
1 while state ← T.get() do
2 count ← 0;
3 for succ in next-state(state) do
4 count ← count + 1;
5 if V.find-or-put(succ) then
6 T.put(succ);

7 if 0 == count ... report deadlock ...
Algorithm 1: Reachability analysis

that start executing Alg. 1 (T = {part of BFS exploration} and
V is shared). This is called static load balancing. For many
models this will work due to common diamond-shaped state
spaces. However, models with synchronization points or strict
phase structure sometimes exhibit helix-shaped state spaces.
Hence, threads run out of work when they reach a converge
point in their exploration. A well-known problem that behaves
like this is the Towers of Hanoi puzzle; when the smallest disk
is on top of the tower only one move is possible.

Sanders [21] describes dynamic load balancing in terms
of a problem P , a (reduction) operation work and a split
operation. Proot is the initial problem. Sequential execution
takes Tseq = T (Proot) time units. A problem is (partly) solved
when calling work(P, t), which takes min(t, T (P )) units of
time. For parallel reachability, work(P, t) is Alg. 1, where t
has to be added as an extra input that limits the number of
iterations of the while loop on Line 1 (and Proot = T = {s0}).
When threads become idle, they can poll others for work. The
receiver will then split its own problem instance (split(P ) =
{P1, P2}, T (P ) = T (P1)+T (P2)) and send one of the results
to the polling thread.

Parallel architectures: We consider multi-core x86 server
and desktop systems. These systems can process a large number
of instructions per second, but have a relatively low memory
bandwidth. Multiple levels of cache are used to continuously
feed the cores with data. Some of these caches are shared
among multiple cores (often L2) and others are local (L1),
depending on the architecture of the CPU and number of CPUs.
The cache coherence protocol ensures that each core in each
CPU has a global view of the memory. It transfers blocks of
memory to local caches and synchronizes them if a local block
is modified by other cores. Therefore, if independent writes are
performed on subsequent memory locations (on the same cache
line), a problem known as cache line sharing (false sharing)
occurs, causing gratuitous synchronization and overhead.

The cache coherence protocol cannot be preempted. To
efficiently program these machines, few options are left. One
way is to completely partition the input [3], thus ensuring
per-core memory locality at the cost of increased inter-die
communication. An improvement of this approach is to pipeline
the communication using ring buffers, this allows prefetching
(explicit or hardwired). This scheme was explored, e.g., by
Monagan and Pearce [17]. The last alternative is to minimize
the memory working set of the algorithm [19]. We define
the memory working set as the number of different memory
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locations that the algorithm updates in the time window that
these usually stay in local cache. A small working set minimizes
coherence overhead.

Locks: It is common to ensure mutual exclusion for a
critical section of code by locks. However, for resources with
high contention, locks become infeasible. Lock proliferation
improves on this by creating more locks on smaller resources.
Region locking is an example of this, where a data structure is
split into separately locked regions based on memory locations.
However, this method is still infeasible for computational tasks
with very high throughput. This is caused by the fact that
the lock itself introduces another synchronization point; and
synchronization between processor cores takes time.

Lockless Algorithms: For high-throughput systems, lock-
free algorithms (without mutual exclusion) are preferred. Lock-
free algorithms guarantee system-wide progress, i.e., always
some thread can continue. If an algorithm does not strictly
provide progress guarantees (only statistically), but otherwise
avoids explicit locks by the same techniques as used in lock-
free solutions, it is called lockless. Lockless algorithms often
have considerably simpler implementations, at no performance
penalty. Lastly, Wait-free algorithms guarantee per-thread
progress, i.e., all threads can continue.

Many modern CPUs implement a Compare & Swap opera-
tion (CAS) which ensures atomic memory modification while
at the same time preserving data consistency if used in the
correct manner. This can be done by reading the value from
memory, performing the desired computation on it and writing
the result back using CAS (Alg. 2). If the latter returns true,
the modification succeeded, if not, the computation needs to
be redone with the new value, or some other form of collision
resolution should be applied.

Pre: word 6= null
Post:(∗wordpre = testval⇒ ∗wordpost = newval)∧

(∗wordpre 6= testval⇒ ∗wordpost = ∗wordpre)
atomic bool CAS(int *word, int testval, int newval)

Algorithm 2: “Compare&Swap” specification

Lockless algorithms can achieve a high level of concurrency.
However, an instruction like CAS easily costs 100–1000
instruction cycles depending on the CPU architecture. Thus,
abundant use defies its purpose.

Quantifying Parallelism: Parallelism is usually quanti-
fied by normalizing the performance gain with regard to a
sequential run (speedup): S = Tseq/Tpar. Linear speedups
grow proportional to the number of cores and indicate that an
algorithm scales well. Ideal speedup is achieved when S ≥ N .
For a fair comparison of scalability, it is important to use the
fastest tool for Tseq , or speedups will not be comparable, since
better optimized code is harder to scale (e.g., [13]).

Hashing: A well-studied method for storing and retrieving
data with amortized time complexity O(1) is hashing [16]. A
hash function h is applied to the data, yielding an index in
an array of buckets that contain the data or a pointer to the
data. Since the domain of data values is usually unknown and

much larger than the image of h, hash collisions occur when
h(D1) = h(D2), with D1 6= D2. Structurally, collisions can be
resolved either by inserting lists in the buckets (chaining) or by
probing subsequent buckets (open addressing). Algorithmically,
there is a wealth of options to maintain the “chains” and
calculate subsequent buckets [9]. The right choice depends
entirely on the requirements dictated by the algorithms that
use the hash table.

III. A LOCKLESS HASH TABLE

In principle, Alg. 1 seems easy to parallelize, in practice
it is difficult to do this efficiently because of its memory
intensive behavior, which becomes more obvious when looking
at the implementation of set V . In this section, we present an
overview of the options in hash table design. There is no silver
bullet design and individual design options should be chosen
carefully considering the requirements stipulated by the use of
the hash table. Therefore, we evaluate the demands that the
parallel model checking algorithms place on the state storage
solution. We also mention additional requirements stemming
from the targeted hardware and software systems. Finally, we
present a specific hash table design.

A. Requirements on the State Storage

Our goal is to realize an efficient shared state storage for
parallel model checking algorithms. Traditional hash tables
associate a piece of data to a unique key in the table. In model
checking, we only need to store and retrieve state vectors,
therefore the key is the state vector itself. Henceforth, we
will simply refer to it as data. Our specific model checker
implementation introduces additional requirements, discussed
later. First, we list the definite requirements on the state storage:

• The storage needs only one operation: find-or-put.
This operation inserts the state vector if it is not found or
yields a positive answer without side effects. We require
find-or-put to be concurrently executable to allow
sharing the storage among the different threads. Other
operations are not necessary for reachability algorithms,
since the state space is growing monotonically. By
exploiting this feature we can simplify the algorithms,
thus lowering the strain on memory, and avoiding cache
line sharing. Our choice is in sharp contrast to standard
literature on concurrent hash tables, which often favors a
complete solution, which is optimized for more general
access patterns [7], [19].

• The storage should not require continual memory allo-
cation, for the obvious reasons that this behavior would
increase the memory working set.

• The use of pointers on a per-state basis should be avoided.
Pointers take a considerable amount of memory when
large state spaces are explored (more than 108 states are
easily reachable with today’s model checkers), especially
on 64-bit machines. In addition, pointers increase the
memory working set.

• The time efficiency of find-or-put should scale with
the number of processes executing it in parallel. Ideally,
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the individual operations should — on average — not be
slowed down by other operations executing at the same
time, thus ensuring close-to linear speedup. Many hash
table algorithms have a large memory working set due
to their probing behavior or reordering behavior upon
insertions. They suffer performance degradation in high
throughput situations as is the case for us.

Specifically, we do not require the state storage to be
resizable. The available memory on a system can safely be
claimed for the table, because the largest part will be used for
it eventually anyway. In sequential operation and especially in
presence of a delete operation (shrinking tables), one would
consider resizing for the obvious reason that it improves locality
and thus cache hits. In a concurrent setting, however, these
cache hits have the opposite effect of causing the earlier
described cache line sharing among CPUs. We experimented
with lockless and concurrent resizing mechanisms and observed
large decreases in performance.

Furthermore, the design of the LTSmin tool [5], which we
extended with a multi-core reachability, also introduces some
specific requirements:

• The storage data consists only of integer arrays or vectors
of known and fixed length. This is the encoding format
for state vectors employed by our language front-ends.

• The storage is targeted at common x86 architectures, using
only the available (atomic) instructions.

While the compatibility with the x86 architecture allows for
concrete analysis, the applicability of our design is not limited
to it. Lessons learned here are transferable to other architectures
with similar memory hierarchy and atomic operations.

B. Hash Table Design

We determined that a low memory working set is one of
the key factors to achieve maximum scalability. Also, we
opt for simplicity whenever the requirements allow for it.
From experience we know that complexity of a solution
arises automatically when introducing concurrency. These
considerations led us to the following design choices:

• Open addressing, since the alternative chaining hash
table design would incur in-operation memory allocation
or pre-allocation at different addresses, both leading to a
larger memory working set.

• Walking-the-line is the name we gave to linear probing
on a cache line, followed by double hashing (also
employed elsewhere [7], [11]). Linear probing allows
a core to benefit fully from a loaded cache line, while
double hashing realizes better distribution.

• Separated data (vectors) in an indexed data array (of
size buckets × |vector|) ensures that the bucket array
stays short1 and subsequent probes can be cached.

• Hash memoization speeds up probing, by storing the
hash (or part of it) in a bucket. This avoids expensive
lookups in the data array as much as possible [7].

1E.g., 1 GB for a 32-bit memoized hash and 228 buckets

• Lockless operation on the bucket array using a dedicated
value to indicate unused buckets. One bit of the hash can
be used to indicate whether the vector was already written
to the data array or whether writing is still in progress [7].

• Compare-and-swap is used as an atomic primitive on
the buckets, which are precisely in either of the following
distinguishable states: empty, being written and complete.

C. Hash Table Operations

Alg. 3 shows the find-or-put operation. Buckets are
represented by the Bucket array, the separate data by the Data
array and hash functions used for double hashing by hashi.
Probing continues (Line 4) until either a free bucket is found
for insertion (Line 8–10), or the data is found to be in the hash
table (Line 14). Too many probes indicate a table size mismatch,
which simply causes the application to abort. The for loop on
Line 5 handles the walking-the-line probing behavior (Alg. 4).
The other code inside this loop handles the synchronization
among threads. We explain this part of the algorithm now in
detail.

Buckets store memoized hashes and the write status bit of
the data in the Data array. The possible values of the buckets
are thus: EMPTY, 〈h, WRITE〉 and 〈h, DONE〉, where h is the
memoized hash. If an empty bucket is encountered on a probe
sequence, the algorithm tries to claim it by atomically writing
〈h, WRITE〉 to it (Line 7). After finishing the writing of the
data, 〈h, DONE〉 is written to the bucket (Line 9). Non-empty
buckets prompt the algorithm to compare the memoized hashes
(Line 11). Only if they match, the value in the data array is
compared with the vector (Line 13).

Data: size, Bucket[size], Data[size]
input : vector
output : seen

1 count ← 1;
2 h ← hashcount(vector);
3 index ← h mod size;
4 while count < THRESHOLD do
5 for i in walkTheLineFrom(index) do
6 if EMPTY = Bucket[i] then
7 if CAS(Bucket[i], EMPTY, 〈h, WRITE〉) then
8 Data[i]← vector;
9 Bucket[i]← 〈h, DONE〉;

10 return false;

11 if 〈h,−〉 = Bucket[i] then
12 while 〈−, WRITE〉 = Bucket[i] do ..wait.. done
13 if Data[i] = vector then
14 return true;

15 count ← count + 1;
16 index ← hashcount(vector) mod size;

Algorithm 3: The find-or-put algorithm

Several aspects of the algorithm guarantee correct lockless
operation:
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Data: cache line size, Walk[cache line size]
input : index
output : Walk[cache line size]

1 start← bindex/cache line sizec× cache line size;
2 for i ← 0 to cache line size− 1 do
3 Walk[i]← start + (index + i) mod cache line size;

Algorithm 4: Walking the (cache) line

• Whenever a write started for a hash value, the state of
the bucket can never become empty again, nor can it be
used for any other hash value. This ensures that the probe
sequence remains deterministic and cannot be interrupted.

• The CAS operation on Line 7 ensures that only one thread
can claim an empty bucket, marking it as non-empty with
the hash value to memoize and with state WRITE.

• The while loop on Line 12 waits until the write to the
data array has been completed.

Critical synchronization between threads occurs when multi-
ple threads try to write to an empty bucket. The CAS operation
ensures that only one will succeed. The others carry on in
their probing sequence, either finding another empty bucket
or finding the state vector in another bucket. This design can
be seen as a lock on the lowest possible level of granularity
(individual buckets), but without a true locking structure and
associated additional costs. The algorithm implements the “lock”
as while loop, which resembles a spinlock (Line 12). Although
it could be argued that this algorithm is therefore not lock-
free, it is possible to ensure local progress in the case that
the “blocking” thread dies or hangs (making the algorithm
wait-free). Wait-freeness is commonly achieved by making
each thread fulfil local invariants, whenever they are not (yet)
met by other threads [10]. Our measurements show, however,
that under normal operation the loop on Line 12 is rarely hit
due to the preceding hash memoization check (Line 11). Thus,
we took the pragmatic choice of keeping the implementation
as simple as possible.

Our implementation of the described algorithm requires exact
guarantees from the underlying memory model. Reordering of
operations by compilers and processors needs to be avoided
across the synchronization points, otherwise the implementation
becomes incorrect. It is, for example, a common optimization
to execute the body of an if statement before the actual
branching instruction. Such a speculative execution would
keep the processor pipeline busy, but would be a disastrous
reordering when applied to Line 7 and Line 8: the actual
writing of the data would happen before the bucket is marked
as full, allowing other threads to write to the same bucket.
Likewise, reordering Line 8 and Line 9 would prematurely
indicate that writing the data has completed.

Unfortunately, the ANSI C99 standard does not state any
requirements on the memory model. The implementation would
depend on the combination of CPU architecture and compiler.
Our implementation uses the GNU gcc compiler for 64-bit x86
target platforms. A gcc built-in is used for the CAS operation
and reads and writes from and to buckets are marked volatile.

Alg. 3 was modeled in PROMELA and checked for dead-
locks with SPIN. One bug concerning the combination of write
bit and memoized hash was found and corrected.

IV. EXPERIMENTS

A. Methodology

We implemented the hash table of the previous section in our
own model checking toolset LTSmin, which we discuss further
in the following section. For our experiments, we reuse not only
the input models, but also the next-state implementation
of DiVinE 2.2. Therefore, a fair comparison with DiVinE 2.2
can be made. Furthermore, we performed experiments with
the latest multi-core capable version of the model checker
SPIN 5.2.4 [13] (DiVinE models were mechanically translated
to SPIN’s PROMELA input language). For our experiments,
we chose full state space exploration via reachability as load
generator for our state storage. Reachability exhibits similar
access patterns as more complex verification algorithms, but
reduces the code footprint and therefore potential pollution of
our measurements with noise.

All model checkers were configured for maximum
performance. For all tools, we compiled models to C with
high optimization settings (-O3) (DiVinE also contains
a model interpreter). SPIN’s models were compiled
with the following flags: -O3 -DNOCOMP -DNOFAIR
-DNOREDUCE -DNOBOUNDCHECK -DNOCOLLAPSE
-DNCORE=N -DSAFETY -DMEMLIM=100000; To run the
models we used the options: -m10000000 -c0 -n -w28.

We performed our experiments on AMD Opteron 8356 16-
core servers with 64 GB RAM, running a patched Linux 2.6.32
kernel.2 All tools were compiled using gcc 4.4 in 64-bit mode
with maximal compiler optimizations (-O3).

A total of 31 models from the BEEM database [18] have been
used in the experiments (we filtered out models which were
too small to be interesting, or too big to fit into the available
memory). Every run was repeated at least four times, to exclude
any accidental fluctuation in the measurements. Special care
has been taken to keep all the parameters across the different
model checkers the same. Especially SPIN provides a rich
set of options with which models can be tuned to perform
optimal. Using these parameters on a per-model basis could
give faster results than presented here. It would, however, say
little about the scalability of the core algorithms. Therefore,
we decided to leave all parameters the same for all the models.
We avoid resizing of the state storage in all cases by increasing
the initial hash table size to accommodate 228 states (enough
for all benchmarked input models).

B. Results

Figure 2 shows the run times of only three models for all
model checkers. We observe that DiVinE is the fastest model

2Experiments showed large regressions in scalability on newer 64-bit Linux
kernels (degrading runtimes with 10+ cores). Despite being undetected since
at least version 2.6.20 (released in 2007!), they were easily exhibited by our
model checker. With a repeatable test case, the Linux developers quickly
provided a patch: https://bugzilla.kernel.org/show bug.cgi?id=15618
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checker for sequential reachability. Since the last published
comparison between DiVinE and SPIN [1], DiVinE has been
improved with a model compiler. SPIN is only slightly slower
than DiVinE and shows the same linear curve but with a gentler
slope. We suspect that the gradual performance gains are caused
by the cost of the inter-thread communication (see Table I).

Fig. 2. (Log-scale) Runtimes in SPIN, LTSmin and DiVinE 2 (3 models)

LTSmin is slower in the sequential cases. We verified that
the allocation-less hash table design causes this behavior; with
smaller hash table sizes the sequential runtimes match those of
DiVinE. We did not bother optimizing these results, because
with two cores, LTSmin is already at least as fast as DiVinE.

Fig. 7, 8 and 9 show the speedups measured with LTSmin3,
DiVinE and SPIN (note that we normalize with Tseq of DiVinE,
the fastest sequential tool). On 16 cores, LTSmin shows a two-
fold improvement over DiVinE and a four-fold improvement
over SPIN. We attribute the difference in scalability for DiVinE
to the extra synchronization points needed for the inter-process
communication by DiVinE. Recall that the model checker uses
static state space partitioning, hence most successor states are
enqueued at other cores than the one which generated them.
Another disadvantage of DiVinE is its use of a management
thread, which causes the regression at 8 and 16 cores.

SPIN shows inferior scalability even though it uses (like
LTSmin) a shared hash table. SPIN also balances load based on
stack slicing. We can only guess that the locking mechanism
used in SPIN’s hash table (region locking) are not as efficient
as our lockless hash table. However, in LTSmin we obtained
far better results even with the slower pthread locks. It
might also be that stack slicing does not have a consistent
granularity, because it uses the (irregular) search depth as a
time unit (using the terms from Sec. II: T (work(P0, depth))�
T (work(P1, depth))).

Remark. A potential reason for the limited scalability of
SPIN could be a memory bandwidth bottleneck. We tested this
hypothesis by enabling SPIN’s smaller, collapsed state vectors
(-DCOLLAPSE). We carried out a full SPIN benchmark run

3Additional figures and more detail can be found in extended report [15].

Fig. 3. Total runtime/speedup of SPIN, DiVinE 2.2 and LTSmin

with collapsing enabled and saw little improvement compared
to the speedup results without COLLAPSE.4 These results are
consistent with the observation that LTSmin is faster, despite
generally producing larger state vectors than both, SPIN and
DiVinE (Table II): in LTSmin, each state variable gets 32-bit
aligned (for API reasons, not performance).

Fig. 3 shows the total times and average speedups over all
models and for all model checkers. Nineteen models could
only be used because only for those, all tools report similar
state counts (less than 20% difference; recall that for SPIN,
models are translated from DVE to PROMELA).

C. Shared Storage Parameters

To verify our claims about the hash table design, we collected
internal measurements and performed synthetic benchmarks
for stress testing. First, we measured how often the write
“lock” was hit. Fig. 4 plots the lock hits against the number of
cores for several different sized models. For readability, only
the worst-performing, and thus most interesting, models were
chosen. Even then, the number of lock hits is a very small
fraction of the number of find-or-put calls (equal to the
number of transitions, typically in the hundreds of millions).

4http://fmt.cs.utwente.nl/∼laarman/spin/
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Fig. 4. Counting how often the algorithm “locks”

Fig. 5. Effect of fill rate and r/w-ratio on average throughput

We measured how the average throughput of Alg. 3 (number
of find-or-put calls) is affected by the table fill rate, the
table size and the read/write ratio. Fig. 5 illustrates the effects
of different read/write ratios on the hash table using synthetic
input data. The average throughput remains largely unaffected
by a high fill rate, even up to 95 % (as for Fig. 6 in the
Appendix, which plots the same lines for different table sizes).
We conclude that the asymptotic time complexity of open-
addressing hash tables poses little real problems in practice.
However, an observable side effect of oversized hash tables
is lower throughput for low fill rates due to increased cache
misses. Our hash table design amplifies this effect because it
uses a pre-allocated data array and no pointers. This explains
the lower sequential performance of LTSmin.

We also measured the effect of varying the state vector size
and did not find any noticeable change in the speedup behavior
(except for the expected lower throughput due to higher data
movement). This shows that hash memoization and a separate
data array perform well. Walking-the-line probing shows better
performance and scalability than double hashing alone, due to
cache effects. Although slower on average, walking-the-line
followed by double hashing beats simple linear probing at fill-

rates above 95 % (in particular, on slower memory subsystems),
because it leads to better distribution and thus fewer probes.

V. DISCUSSION AND CONCLUSIONS

We designed a hash table suitable for application in reacha-
bility analysis. We implemented it as part of a model checker
together with different exploration algorithms (pseudo BFS and
pseudo DFS) and explicit load-balancing. We demonstrated the
efficiency of the complete solution by comparing the absolute
speedups to SPIN 5.2.4 and DiVinE 2.2, both leading tools in
this field. We claim two times better scalability than DiVinE and
four times better than SPIN on average (Fig. 3), with individual
results far exceeding these numbers. We also investigated the
behavior of the hash table under different fill rates and found
it to live up to the imposed requirements.

Limitations: Without the use of pointers the current design
cannot easily cope with variably sized state vectors. In our
model checker, this does not pose a problem because states are
always represented by a vector of a static length. Our model
checker LTSmin5 can handle different front-ends. It connects to
DiVinE-cluster, DiVinE 2.2, PROMELA (via NIPSVM [22]),
mCRL, mCRL2 and ETF (internal symbolic representation of
state spaces). Some of these input languages require variably
sized vectors (NIPS). We solve this by an initial exploration
which continues until a vector of stable size is found, and
aborts when none can be found up to a fixed bound. So far,
this limitation did not pose a problem.

For LTSmin, the results in the sequential case turn out to be
around 20% slower than DiVinE 2.2. One of the culprits for
this performance loss are the already mentioned suboptimal
utilization of cache effects for small models (we verified that
larger models suffer much less from this effect). Embracing
pointers and allocation could be a potential remedy, however, it
is unclear whether such a solution still scales when it actually
matters (i.e., for large models).

Further performance is lost in an extra level of indirection
(function calls) due to the design of LTSmin, which strictly
separates the language front-end from the exploration algo-
rithms. We are willing to pay this price in exchange for the
increased modularity of our tool.

Discussion: We make several observations:
• We provide evidence that centralized state storage can

be made to scale at least as well as static state space
partitioning, contrary to prior belief [3].

• We also show that scalability is not as dependent on long
state vectors and transition delays as earlier thought [12].
In fact, we argue that a scaling implementation performs
better with smaller state vectors, because the number of
operations performed per loaded byte is higher, thus closer
to the strengths of modern multi-core systems.

• Shared state storage is also more flexible [3], for example
allowing pseudo DFS (like the stack-slicing algorithm)
and fast deadlock/invariant searches [20]. Moreover, it
facilitates explicit load balancing algorithms, enabling the

5http://fmt.cs.utwente.nl/tools/ltsmin/
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exploitation of heterogeneous systems. From preliminary
experiments with load balancing we conjecture that
overhead is negligible compared to static load balancing.

• Performance-critical parallel software needs adaptation to
modern architectures (steep memory hierarchies). The per-
formance difference between DiVinE, SPIN and LTSmin
is an indication. DiVinE uses an architecture which is
directly derived from distributed model checking and the
goal of SPIN was for “these new algorithms [. . . ] to
interfere as little as possible with the existing algorithms
for the verification of safety and liveness properties” [12].
With LTSmin, we had the opportunity to tune our design
to the architecture of our target machines, with excellent
pay-off. We noticed that avoiding cache line sharing and
keeping a simple design was instrumental in the outcome.

• Holzmann conjectured that optimized sequential code does
not scale well [13]. In contrast, our parallel implementation
is faster in absolute numbers and also exhibits excellent
scalability. We suspect that the (entirely commendable)
design choice of SPIN’s multi-core implementation to
support most of SPIN’s existing features unchanged is
detrimental to scalability.
Applicability: The components of our reachability can

be reused directly for other model checking applications.
The hash table and the load balancing algorithms can be
reused to realize scalable multi-core (weak) LTL model
checking [1], [2], symbolic exploration and space-efficient
enumerative exploration. We experimented with the latter using
tree compression [4] based on our hash table. Results are very
promising and we intend to follow up on that.

Future work: By exploring the possible solutions and
gradually improving this work, we found a wealth of variables
hiding in the algorithms and the models of the BEEM database.
As can be seen from the figures, different models show different
scalability. A valid question is how much this can be improved.

By now we have some ideas where these differences come
from. For example, an initial version of the exploration
algorithm employed static load balancing by means of an
initial BFS exploration and handing off the states from the
last level to all threads. Several models where insensitive to
this static approach, others, like hanoi and frogs, are very
sensitive due to the shape of their state spaces. Dynamic load
balancing did not come with a noticeable performance penalty
for the other models, but hanoi and frogs are still in the
bottom of the figures. However, we have yet to see the options
exhausted to improve these results by shared-memory load
balancing techniques, at least to the point that the shape of the
state space of these models allow.

We did not consider other types of hash tables, like Cuckoo
hashing or Hopscotch hashing [11]. Cuckoo hashing is an
unlikely candidate, since it requires updates on many locations
upon inserts, easily resulting in extraneous cache coherence
overhead. Hopscotch hashing could be considered because it
combines a low memory working set with constant lookup times
even under higher load factors. However, Hopscotch hashing
increases the memory working set for insertions, potentially

sacrificing some speedup. It would still be interesting to
investigate its performance relative to our hash table.

VI. ACKNOWLEDGEMENTS

We thank Anton Starikov and the CMS group at UTwente
for making their cluster available for our experiments. We
thank Petr Ročkai and Jiřı́ Barnat for their support on the
DiVinE toolkits, and for reading a draft of this paper. Cliff
Click and Gerard Holzmann also gave helpful comments on
a draft version. Elwin Pater implemented the bridge between
DiVinE and LTSmin. The Linux developers provided patches
remedying performance regressions on newer kernels.

REFERENCES
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Additional analysis can be found in an extended report [15].

Fig. 6. Effect of size vs r/w-ratio on average throughput

TABLE II
MODEL DETAILS FOR DIVINE, LTSMIN AND SPIN

BEEM Model
Reachable States State Vector Size [Byte]

DiVinE, LTSmin SPIN DiVinE SPIN LTSmin

anderson.6 18,206,917 18,206,919 25 68 76
at.5 31,999,440 31,999,442 20 68 56
at.6 160,589,600 — 20 — 56
bakery.6 11,845,035 11,845,035 24 48 80
bakery.7 29,047,471 27,531,713 24 48 80
blocks.4 104,906,622 88,987,772 23 44 88
brp.5 17,740,267 — 24 — 72
cambridge.7 11,465,015 — 60 — 208
elevator_planning.2 11,428,767 11,428,769 36 52 140
firewire_link.5 18,553,032 — 66 — 200
fischer.6 8,321,728 8,321,730 27 92 72
frogs.4 17,443,219 17,443,221 33 68 120
frogs.5 182,772,126 182,772,130 38 68 140
hanoi.3 14,348,907 14,321,541 63 116 228
iprotocol.6 41,387,484 — 43 — 148
iprotocol.7 59,794,192 — 47 — 164
lamport.8 62,669,317 62,669,317 22 52 68
lann.6 144,151,628 — 28 — 80
lann.7 160,025,986 — 35 — 100
leader_filters.7 26,302,351 26,302,351 36 68 120
loyd.3 239,500,800 214,579,860 18 44 64
mcs.5 60,556,519 53,779,475 26 68 84
needham.4 6,525,019 — 51 — 112
peterson.7 142,471,098 142,471,100 30 56 100
phils.6 14,348,906 13,956,555 45 140 120
phils.8 43,046,720 — 48 — 128
production_cell.6 14,520,700 — 42 — 104
szymanski.5 79,518,740 79,518,740 30 60 100
telephony.4 12,291,552 12,291,554 24 56 80
telephony.7 21,960,308 21,960,310 28 64 96
train-gate.7 50,199,556 — 43 — 128

Fig. 7. Speedup of BEEM models with LTSmin (DiVinE as base case)

Fig. 8. Speedup of BEEM models with DiVinE 2.2 (DiVinE as base case)

Fig. 9. Speedup of BEEM models with SPIN (DiVinE as base case)
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Abstract—We propose invariant-based techniques for the effi-
cient verification of safety and deadlock properties of concurrent
systems. We assume that components and component interactions
are described within the BIP framework, a tool for component-
based design. We build on a compositional methodology in which
the invariant is obtained by combining the invariants of the
individual components with an interaction invariant that takes
concurrency and interaction between components into account.
In this paper, we propose new efficient techniques for computing
interaction invariants. This is achieved in several steps. First, we
propose a formalization of incremental component-based design.
Then we suggest sufficient conditions that ensure the preservation
of invariants through the introduction of new interactions. For
cases in which these conditions are not satisfied, we propose
methods for generation of new invariants in an incremental
manner. The reuse of existing invariants reduces considerably
the verification effort. Our techniques have been implemented
in the D-Finder toolset. Among the experiments conducted, we
have been capable of verifying properties and deadlock-freedom
of DALA, an autonomous robot whose behaviors in the functional
level are described with500000 lines of C Code. This experiment,
which is conducted with industrial partners, is far beyond the
scope of existing academic tools such as NuSMV or SPIN.

I. I NTRODUCTION

Model Checking [10, 14] of concurrent systems is a chal-
lenging problem. Indeed, concurrency often requires com-
puting the product of the individual systems by using both
interleaving and synchronization. In general, the size of this
structure is prohibitive and cannot be handled without manual
interventions. In a series of recent works, it has been advocated
that compositional verification techniquescould be used to
cope with state explosion in concurrent systems. Component-
based design techniques confer numerous advantages, in par-
ticular, through reuse of existing components. A key issue
is the existence of composition frameworks ensuring the
correctness of composite components. We need frameworks
allowing us not only reuse of components but also reuse of
their properties for establishing global properties of composite
components from properties of their constituent components.
This should help cope with the complexity of global mono-
lithic verification techniques.

Compositionality allows us to infer global properties of
complex systems from properties of their components. The
idea of compositional verification techniques is to apply
divide-and-conquer approaches to infer global properties of
complex systems from properties of their components. They

are used to cope with state explosion in concurrent systems.
Nonetheless, we also should consider the behavior and prop-
erties resulted from mutually interacting components. A com-
positional verification method based on invariant computation
is presented in [3, 2]. This approach is based on the following
rule:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧

i Φi) ∧ Ψ ⇒ Φ
‖γ{Bi}i < Φ >

The rule allows to prove invariance of propertyΦ for
systems obtained by using an n-ary composition operation
|| parameterized by a set of interactionsγ. It uses global
invariants that are the conjunction of individual invariants
Φi of individual componentsBi and aninteraction invariant
Ψ. The latter expresses constraints on the global state space
induced by interactions between components. In [3], we have
shown thatΨ can be computed automatically from abstractions
of the system to be verified. These are the composition of
finite state abstractionsBα

i of the componentsBi with respect
to their invariantsΦi. The approach has been implemented
in the D-Finder toolset [2] and applied to check deadlock-
freedom on several case studies described in the BIP (Be-
havior, Interaction, Priority) [1] language. The results of these
experiments show that D-Finder is exponentially faster than
well-established tools such as NuSMV [9].

Incremental system design methodologies often work by
adding new interactions to existing sets of components. Each
time an interaction is added, one may be interested to verify
whether the resulting system satisfies some given property.
Indeed, it is important to report an error as soon as it appears.
However, each verification step may be time consuming,
which means that intermediary verification steps are generally
avoided. The situation could be improved if the result of the
verification process could be reused when new interactions
are added. Existing techniques, including the one in [3], do
not focus on such aspects. In a very recent work [6], we
have proposed a new fixed point based technique that takes
incremental design into account. This technique is generally
faster than the one in [3] for systems with an acyclic topology.
For systems with a cyclic topology, the situation may however
be reversed. There are also many case studies that are beyond
the scope of these techniques.

In this paper, we continue the quest for efficient incremental
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Fig. 1. A simple example

techniques for computing invariants of concurrent systems. We
present a detailed methodology for incremental construction
and verification of component-based systems. This is achieved
in several steps. First, we propose a formalization of incre-
mental component-based design. Then we suggest sufficient
conditions that ensure the preservation of invariants through
the introduction of new interactions. For cases in which these
conditions are not satisfied, we propose methods for generation
of new invariants in an incremental manner. The reuse of
existing invariants reduces considerably the verification effort.
Contrary to the technique in [6], our technique, which relies on
a relation between behaviors of components and interactions,
turns out to be efficient for both cyclic and acyclic topologies.

Our techniques have been implemented as extensions of
the D-Finder toolset [2] and applied on several case studies.
Our experiments show that our new methodology is generally
much faster than the ones proposed in [3, 6]. In particular, we
have been capable of verifying deadlock-freedom and safety
properties of DALA, an autonomous robot whose behaviors in
the functional level are described with500000 lines of C Code.
This experiment, which is conducted with industrial partners,
is far beyond the scope of [3, 6] and of existing academic
tools such as NuSMV or SPIN.

Structure of the paper. In section II, we recap the concepts
that will be used through the paper as well as the incremental
methodology introduced in [6]. Section III discusses suffi-
cient conditions for invariant preservation while Section IV
presents our incremental construction for invariants. Section V
discusses the experiments. Finally, Section VI concludes the
paper. Due to space limitation, some proofs and model descrip-
tions are available from http://www-verimag.imag.fr/∼yan/.

II. PRELIMINARIES

In this section, we present concepts and definitions that
will be used through the rest of the paper. We start with the
concepts ofcomponents, parallel composition of components,
systems, and invariants. In the second part of the section,
we will recap a very recent methodology [6] we proposed for
incremental designof composite systems.

A. Components, Interactions, and Invariants
In the paper, we will be working with a simplified model

for component-based design. Roughly speaking, an atomic
component is nothing more than a transition system whose
transitions’ labels are calledports. These ports are used to
synchronize with other components. Formally, we have the
following definition.

Definition 1 (Atomic Component). An atomic component is
a transition systemB = (L, P, T ), where:

• L = {l1, l2, . . . , lk} is a set of locations,
• P is a set of ports, and
• T ⊆ L × P × L is a set of transitions.

Givenτ = (l, p, l′) ∈ T , l andl′ are thesourceanddestination
locations, respectively. In the rest of the paper, we use•τ and
τ• to compute the source and destination ofτ , respectively.

Example 1. Figure 1 presents two atomic components.
The ports of componentB1 are p1 and q1. B1 has two
locations: l1 and l2 and two transitions:τ1 = (l1, p1, l2) and
τ2 = (l2, q1, l1).

We are now ready to define parallel composition between
atomic components. In the incremental design setting, the
parallel composition operation allows to build bigger com-
ponents starting fromatomic components. Any composition
operation requires to define a communication mode between
components. In our context, components communicate via
interactions, i.e., by synchronization on ports. Formally, we
have the following definition.

Definition 2 (Interactions). Given a set ofn components
B1, B2, . . . , Bn with Bi = (Li, Pi, Ti), an interactiona is a
set of ports, i.e., a subset of

⋃n
i=1

Pi, such that∀i = 1, . . . , n.

|a ∩ Pi| ≤ 1.

By definition, each interaction has at most one port per
component. In the figures, we will represent interactions by
link between ports. As an example, the set{p1, p2} is an
interaction between ComponentsB1 andB2 of Figure 1. This
interaction describes a synchronization between Components
B1 and B2 by Portsp1 and p2. Another interaction is given
by the set{q1, q2}. The idea being that a parallel composition
is entirely defined by a set of interactions, which we call a
connector. As an example the connector forB1 andB2 is the
set {{p1, p2}, {q1, q2}}. In the rest of the paper, we simplify
the notations and writep1p2 . . . pk instead of{p1, . . . , pk}.
We also writea1 + . . . + am for the connector{a1, . . . , am}.
As an example, notation for the connector{{p1, p2}, {q1, q2}}
is p1 p2 + q1 q2.

We now propose our definition for parallel composition. In
what follows, we useI for a set of integers.

Definition 3 (Parallel Composition). Given n atomic com-
ponentsBi = (Li, Pi, Ti) and a connectorγ, we define the
parallel compositionB = γ(B1, . . . , Bn) as the transition
system(L, γ, T ), where:

• L = L1 × L2 × . . . × Ln is the set ofglobal locations,
• γ is a set of interactions, and
• T ⊆ L × γ × L contains all transitions τ =

((l1, . . . , ln), a, (l′1, . . . , l
′
n)) obtained by synchronization

of sets of transitions{τi = (li, pi, l
′
i) ∈ Ti}i∈I such that

{pi}i∈I = a ∈ γ and l′j = lj if j 6∈ I.

The idea is that components communicate by synchronization
with respect to interactions. Given an interactiona, only those
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components that are involved ina can make a step. This is
ensured by following a transition labelled by the corresponding
port involved ina. If a component does not participate to the
interaction, then it has to remain in the same state. In the
rest of the paper, a component that is obtained by composing
several components will be called acomposite component.
Consider the example given in Figure 1, we have a composite
componentγ(B1, B2), whereγ = p1 p2 + q1 q2. Observe
that the componentγ⊥(B1, . . . , Bn), which is obtained by
applying the connectorγ⊥ =

∑n
i=1

(
∑

pj∈Pi
pj), is the

transition system obtained by interleaving the transitions of
atomic components. Observe also that the parallel composition
γ(B1, . . . , Bn) of B1, . . . , Bn can be seen as a1-safe Petri
net (the number of tokens in all places is at most one) whose
set of places is given byL =

⋃n
i=1

Li and whose transitions
relation is given byT . In the rest of the paper,L will be called
the set of locations ofB, while L is the set ofglobal states.
We now define the concept of invariants, which can be used
to verify properties of (parallel composition of) components.
We first propose the definition ofsystemthat is a component
with an initial set of states.

Definition 4 (System). A systemS is a pair 〈B, Init〉 where
B is a component andInit is a state predicate characterizing
the initial states ofB.

In a similar way, we distinguish invariants of a component
from those of a system such that the invariants of a system
S = 〈B, Init〉 can be obtained from those ofB according
to the constraintInit. Therefore we define invariants for a
component and for a system separately.

Definition 5 (Invariants). Given a componentB = (L, P, T ),
a predicateI onL is an invariant ofB, denoted byinv(B, I),
if for any location l ∈ L and any portp ∈ P , I(l) and
l

p
−→ l′ ∈ T imply I(l′), whereI(l) means thatl satisfiesI.

For a systemS = 〈B, Init〉, I is an invariant ofS, denoted
by inv(S, I), if it is an invariant ofB and if Init ⇒ I.

Clearly, if I1, I2 are invariants ofB (respectivelyS) then
I1 ∧ I2 andI1 ∨ I2 are also invariants ofB (respectivelyS).

Let γ(B1, . . . , Bn) be the composition ofn components
with Bi = (Li, Pi, Ti) for i ∈ 1 . . . n. In the paper,
an invariant onBi is called acomponent invariantand an
invariant onγ(B1, . . . , Bn) is called aninteraction invariant.
To simplify the notations, we will assume that interaction
invariants are predicates on

⋃n
i=1

Li.

B. Incremental Design
In component-based design, the construction of a composite

system is both step-wise and hierarchical. This means that
a system is obtained from a set of atomic components by
successive additions of new interactions also calledincrements.
In a very recent work [6], we have proposed a methodology
to add new interactions to a composite component without
breaking the synchronization. The techniques we will propose
to compute and reuse invariants intensively build on this
methodology, which is described hereafter.

First, when building a composite system in a bottom-up
manner, it is essential that some already enforced synchroniza-
tions are not relaxed when increments are added. To guarantee
this property, we propose the notion offorbidden interactions.

Definition 6 (Closure and Forbidden Interactions). Let γ be
a connector.

• The closureγc of γ, is the set of the non empty in-
teractions contained in some interaction ofγ. That is
γc = {a 6= ∅ | ∃b ∈ γ. a ⊆ b}.

• The forbidden interactionsγf of γ is the set of the
interactions strictly contained in all the interactions of
γ. That isγf = γc − γ.

It is easy to see that for two connectorsγ1 and γ2, we have
(γ1 + γ2)

c = γc
1 + γc

2 and(γ1 + γ2)
f = (γ1 + γ2)

c − γ1 − γ2.
In our theory, a connector describes a set of interactions

and, by default, also those interactions in where only one
component can make progress. This assumption allows us to
define new increments in terms of existing interactions.

Definition 7 (Increments). Consider a connectorγ over
B and let δ ⊆ 2γ be a set of interactions. We sayδ is
an increment overγ if for any interactiona ∈ δ we have
interactionsb1, . . . , bn ∈ γ such that

⋃n
i=1

bi = a.

In practice, one has to make sure that existing interactions
defined by γ will not break the synchronizations that are
enforced by the incrementδ. For doing so, we remove from
the original connectorγ all the interactions that are forbidden
by δ. This is done with the operation ofLayering, which
describes how an increment can be added to an existing set
of interactions without breaking synchronization enforced by
the increment. Formally, we have the following definition.

Definition 8 (Layering). Given a connectorγ and an
incrementδ over γ, the new set of interactions obtained by
combining δ and γ, also called layering, is given by the
following setδγ = (γ − δf ) + δ the incremental construction
by layering, that is, the incremental modification ofγ by δ.

The above definition describes one-layer incremental con-
struction. By successive applications of the rule, we can
construct a system with multiple layers. Besides the fusion
of interactions, incremental construction can also be obtained
by first combining the increments and then apply the result
to the existing system. This process is calledSuperposition.
Formally, we have the following definition.

Definition 9 (Superposition). Given two incrementsδ1, δ2

over a connectorγ, the operation of superposition betweenδ1

and δ2 is defined byδ1 + δ2.

Superposition can be seen as a composition between incre-
ments. If we combine the superposition of increments with
the layering proposed in Definition 8, then we obtain an
incremental construction from a set of increments. Formally,
we have the following proposition.

Proposition 1. Let γ be a connector overB, the incremental
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construction by the superposition ofn increments{δi}1≤i≤n

is given by

(

n∑
i=1

δi)γ = (γ − (

n∑
i=1

δi)
f ) +

n∑
i=1

δi (1)

The above proposition provides a way to transform incre-
mental construction by a set of increments into the separate
constituents, whereγ − (Σn

i=1δi)
f is the set of interactions

that are allowed during the incremental construction process.

III. I NVARIANT PRESERVATION IN INCREMENTAL DESIGN

In Section II-B, we have presented a methodology for the
incremental design of composite systems. In this section, we
study the concept ofinvariant preservation. More precisely, we
propose sufficient conditions to guarantee that already satisfied
invariants are not violated when new interactions are added to
the design.

We start by introducing thelooser synchronization preorder
on connectors, which we will use to characterize invariant
preservation. As we have seen, interactions characterize the
behavior of a composite component. We observe that if two
interactions do not contain the same port, the execution of one
interaction will not block the execution of the other interaction.
Formally, we have the following definition.

Definition 10 (Conflict-free Interactions). Given a connector
γ, let a1, a2 ∈ γ, if a1 ∩ a2 = ∅, we say that there is no
conflict betweena1 anda2. If there is no conflict between any
interactions ofγ, we say thatγ is conflict-free.

We now propose a preorder relation that allows to guarantee
the absence of conflicts when new interactions are added.
Formally, we have the following definition.

Definition 11 (Looser Synchronization Preorder). We define
the looser synchronization preorder4⊆ 22

P

× 22
P

. For two
connectorsγ1, γ2, γ1 4 γ2 if for any interactiona ∈ γ2, there
exist interactionsb1, . . . , bn ∈ γ1, such thata =

⋃n
i=1

bi and
there is no conflict between anybi andbj , where1 ≤ i, j ≤ n

and i 6= j. We simply say thatγ1 is looser thanγ2.

The above definition requires that the stronger synchronization
should be obtained by the fusion of conflict-free interactions.
The reason is that the execution of interactions may be
disturbed by two conflict interactions, i.e., the execution of
one interaction could block the transitions issued from the
other interaction. However, if we fuse them together, it means
that the transitions of both interactions can be executed, which
violates the constraints of the previous behavior. It is easy to
see that ifγ1, γ2, γ3, γ4 are connectors such thatγ1 4 γ2,
andγ3 4 γ4, then we haveγ1 + γ3 4 γ2 + γ4.

We now propose the following proposition which establishes
a link between the looser synchronization preorder and invari-
ant preservation.

Proposition 2. Let γ1, γ2 be two connectors overB. If
γ1 4 γ2, we haveinv(γ1(B), I) ⇒ inv(γ2(B), I).

The above proposition, which will be used in the incremental
design, simply says that if an invariant is satisfied, then it
will remain when combinations of conflict-free interactions
are added (following our incremental methodology) to the
connector. This is not surprising as the tighter connector can
only restrict the behaviors of the composite system.

We now switch to the more interesting problem of providing
sufficient conditions to guarantee that invariants are preserved
by the incremental construction.

Proposition 3. Let γ be a connector overB and δ be an
increment ofγ such thatγ 4 δ, then we haveγ 4 δγ.

The above proposition, together with Proposition 2, says that
the addition of an increment preserves the invariant if the
initial connector is looser than the increment.

We continue our study and discuss the invariant preserva-
tion between the components obtained from superposition of
increments and separately applying increments over the same
set of components. We use the following definition.

Definition 12 (Interference-free Connectors). Given two
connectorsγ1, γ2, for any a1 ∈ γ1, a2 ∈ γ2, if either a1

and a2 are conflict-free ora1 = a2, we say thatγ1 and γ2

are interference-free.

This definition considers a relation between two connec-
tors. We observe that two interference-free connectors will
not break or block the synchronizations specified by each
other. Though we require that the interactions betweenγ1

and γ2 are conflict-free,γ1 or γ2 respectively can contain
conflict interactions. For example, consider two connectors
γ1 = p1 p2 + p2 p3, γ2 = p4 p5. γ1 is not conflict-free,
but γ1 andγ2 are interference-free.

We now present the main result of the section.

Proposition 4. Consider two incrementsδ1, δ2 over γ such
that γ 4 δ1 and γ 4 δ2, if δ1 and δ2 are interference-free,
and inv(δ1γ(B), I1), inv(δ2γ(B), I2), we haveinv((δ1 +
δ2)γ(B), I1 ∧ I2).

The above proposition considers a set of increments{δi}1≤i≤n

over γ that are interference-free. The proposition says that
if for any δi the separate application of increments over
componentδiγ(B) preserves the original invariants ofγ(B),
then the system obtained from considering the superposition of
increments overγ preserves the conjunction of the invariants
of individual increments.

We now briefly study the relation between the looser
synchronization preorder andproperty preservation. Figure 2
shows the three ingredients of the BIP language, that are (1)
priorities, which we will not use here, (2) interactions, and (3)
behaviors of components. We shall see that the looser synchro-
nization preorder preserves invariants (Proposition 4). This
means that the preorder preserves the so-called reachability
properties. On the other hand, the preorder does not preserve
deadlocks. Indeed, adding new interactions may lead to the
addition of new deadlock conditions. Given two connectors
γ1 andγ2 over componentB such thatγ2 is tighter thanγ1,
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Fig. 2. Invariant preservation for looser synchronization relation

i.e., γ1 4 γ2, we can conclude that ifγ2(B) is deadlock-free,
thenγ1(B) is deadlock-free. However, we can still reuse the
invariant of γ1(B) as an over-approximation of the one of
γ2(B).

Discussion.Though we can reuse invariants to save compu-
tation time, the invariants of the system with a looser connector
may be too weak with respect to a new system obtained with a
tighter connector. Consider the example given in Figure 1 and
let γ = p1+p2+q1+q2, δ1 = p1 p2, andδ2 = q1 q2. By using
the technique presented in the next section, we shall see that
the invariant forδ1γ(B) and δ2γ(B) is (l1 ∨ l2) ∧ (l3 ∨ l4).
By applying Proposition 4, we obtain that this invariant is
preserved for(δ1 + δ2)γ(B). This invariant is weaker than the
invariant(l1∨ l2)∧(l3∨ l4)∧(l1∨ l4)∧(l2∨ l3) that is directly
computed on(δ1 + δ2)γ(B). To overcome the above problem,
we will now propose an approach that can be used to compute
invariants in an incremental manner.

IV. EFFICIENT INCREMENTAL COMPUTATION OF

INVARIANTS

In Section II-B, we have proposed a methodology to build
a composite system by successive addition of increments. We
now propose a methodology that allows to reuse existing
interaction invariants when new interactions are added to the
system. The section is divided in two subsections. In the
first subsection, we recap the concept ofBoolean Behavioral
Constraints[3, 6], which can be used to characterize inter-
action invariants. In the second subsection, we propose our
incremental methodology.

A. Boolean Behavioral Constraints (BBCs)
In [3], we have presented a verification method for

component-based systems. The method uses a heuristic to
symbolically compute invariants of a composite component.
These invariants capture the interactions between components,
which are the cause of global deadlocks. For this, it is
sufficient to find an invariant that does not contain deadlock
states. In this section, we improve the presentation of the result
of [3] and prepare them for the incremental version that we
will present in the next subsection.

Interactions describe the communication between different
components, and transitions are the internal behavior of com-
ponents. Here we unify these two types of behavioral descrip-
tion by introducingBoolean Behavioral Constraints(BBCs).
We takeaτ = {{τi}i∈I | (∀i.τi ∈ Ti)∧ ({port(τi)}i∈I = a)}.

That is,aτ consists of sets of component transitions involved
in interaction a. As an example, consider the components
given in Figure 1. Givenγ = p1 p2 + q1 q2, we have
(p1 p2)τ = {{τ1, τ3}}, and(q1 q2)τ = {{τ2, τ4}}.

Locations of components will be viewed as Boolean vari-
ables. We useBool[L] to denote the free Boolean algebra
generated by the set of locationsL. We also extend the notation
•τ , τ• to interactions, that is•a = {•τ |τ ∈ Ti∧port(τ) ∈ a},
anda• = {τ• |τ ∈ Ti ∧ port(τ) ∈ a}.

Definition 13 (Boolean Behavioral Constraints (BBCs)).
Let γ be a connector over a tuple of componentsB =
(B1, · · · , Bn) with Bi = (Li, Pi, Ti) and L =

⋃n
i=1

Li. The
Boolean behavioral constraints for componentγ(B) are given
by the function| · | : γ(B) → Bool[L] such that

|γ(B)| =
∧

a∈γ

|a(B)|,

|a(B)| =
∧

{τi}i∈I∈aτ

(
∧

l∈{•τi}

(l ⇒
∨

l′∈{τ•
i
}

l′))

If γ = ∅, then |γ(B)| = true, which means that no
interactions between the components ofB will be considered.

Roughly speaking, one implicationl ⇒
∨

l′∈{τ•
i
} l′ in

|γ(B)| describes a constraint onl that is restricted by an
interaction ofγ issued froml.

In what follows, we usēl for the complement ofl, i.e.,¬l.

Example 2. Consider the components in Figure 1. Consider
also the following connectorγ = p1 + p2 + q1 + q2. Two
increments overγ are δ1 = p1 p2 and δ2 = q1 q2. According
to Definition 8, we haveδ1γ = p1 p2 + q1 + q2 when we
only consider incrementδ1 over γ. For δ1γ(B), the BBC
|p1 p2(B)|, |q1(B)| and |q2(B)| are respectively given by:

|p1p2(B)| = (l1 ⇒ l2 ∨ l4) ∧ (l3 ⇒ l2 ∨ l4),
|q1(B)| = (l2 ⇒ l1), |q2(B)| = (l4 ⇒ l3)

The BBC forδ1γ(B) is |δ1γ(B)| = |p1p2(B)| ∧ |q1(B)| ∧
|q2(B)| = (l1 ⇒ l2 ∧ l4) ∧ (l3 ⇒ l2 ∧ l4) ∧ (l2 ⇒ l1) ∧ (l4 ⇒
l3) = (l̄1 ∧ l̄2 ∧ l̄3 ∧ l̄4) ∨ (l̄4 ∧ l1 ∧ l2) ∨ (l̄2 ∧ l3 ∧ l4) ∨ (l1 ∧
l2 ∧ l3) ∨ (l1 ∧ l3 ∧ l4).

When we consider two increments together, we have(δ1 +
δ2)γ(B) = p1 p2 + q1 q2 by Definition 8 and 9. Because
the BBC for interactionq1 q2 over B is (l2 ⇒ l1 ∨ l3) ∧
(l4 ⇒ l1 ∨ l3), we obtain that the BBC for(δ1 + δ2)γ(B)
is |(δ1 + δ2)γ(B)| = |p1p2(B)| ∧ |q1q2(B)| = (l1 ⇒ l2 ∨
l4) ∧ (l2 ⇒ l1 ∨ l3) ∧ (l3 ⇒ l2 ∨ l4) ∧ (l4 ⇒ l1 ∨ l3) =
(l̄1 ∧ l̄2 ∧ l̄3 ∧ l̄4) ∨ (l1 ∧ l2) ∨ (l2 ∧ l3) ∨ (l1 ∧ l4) ∨ (l3 ∧ l4).

Example 2 shows that any BBC|γ(B)| can be rewritten
into a disjunctive normal form (DNF), where every conjunctive
form is called amonomial. Any satisfiable monomial of|γ(B)|
is a solution of|γ(B)|. In fact, the enumeration of the clause
of any monomial corresponds to an interaction invariant.

Theorem 1. Let γ be a connector over a set of components
B = (B1, · · · , Bn) with Bi = (Li, Pi, Ti) and L =

⋃n
i=1

Li,
and v : L → {true, false} be a Boolean valuation different
from false. Ifv is a solution of|γ(B)|, i.e., |γ(B)|(v) = true,
then

∨
v(l)=true l is an invariant ofγ(B).
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The above theorem gives a methodology to compute interac-
tion invariants ofγ(B) directly from the solutions of|γ(B)|.
In the rest of the paper, we will often use the termBBC-
invariant to refer to the invariant that corresponds to a single
solution of the BBC.

Since locations are viewed as Boolean variables, a location
in a BBC is either a variable or the negation of a variable.
As an example,l is a positive variable and¬l is a negative
variable. However, as observed in Theorem 1, invariants are
derived from positive variables of the solution of|γ(B)|. This
suggests that all the negations should be removed. In general,
due to incremental design and implementation (see Proposition
6 and Section V), these valuations can be removed gradually.
We now propose a general mapping on removing variables
with negations that do not belong to a given set of variables.

Definition 14 (Positive Mapping). Given two sets of
variablesL and L′ such thatL′ ⊆ L, we define a mapping
p(L′) over a disjunctive normal form formula that removes
all the variables not inL′ and with negations from the
formula, such that

(
∧

li∈L

li ∧
∧

lj∈L′

l̄j ∧
∧

lk∈L−L′

l̄k)p(L′
) =

∧
li∈L

li ∧
∧

lj∈L′

l̄j

(f1 ∨ f2)
p(L′

) = f
p(L′

)

1 ∨ f
p(L′

)

2

wheref1 and f2 are in disjunctive normal form.

If L′ is empty, then the positive mapping will remove all the
negations from a DNF formulaf , which we will denote by
fp. Notice that(

∧
i∈I l̄i)

p = false.
We are now ready to propose an interaction invariant that

takes all the solutions of the BBCs into account. We first
introduce the notatioñf that stands for the dual off , by
replacing the AND operators with ORs (and vice versa) and
the constant0 with 1 (and vice versa). As we have seen, BBCs
can be rewritten as a disjunction of monomials. By dualizing
a monomial, one can obtain an interaction invariant. If one
wants the strongest invariant that takes all the solution into
account, one simply has to dualize the BBC. This is stated
with the following theorem.

Theorem 2. For any connectorγ applied to a tuple of
componentsB = (B1, · · · , Bn), the interaction invariant of
γ(B) can be obtained as the dual of|γ(B)|p, denoted by
˜|γ(B)|p.

Example 3. We consider the components, connectors, and
BBCs introduced in Example 2. The positive mapping removes
variables with negations from|δ1γ(B)| and |(δ1 + δ2)γ(B)|.

We obtain that ˜|δ1γ(B)|p = (l1 ∨ l2) ∧ (l3 ∨ l4), and
˜|(δ1 + δ2)γ(B)|p = (l1∨l2)∧(l3∨l4)∧(l1∨l4)∧(l2∨l3). If we

specifyInit = l1∧l3, every invariant of system〈δ1γ(B), Init〉
and 〈(δ1 + δ2)γ(B), Init〉 should contain eitherl1 or l3.
Therefore(l1 ∨ l2) ∧ (l3 ∨ l4) is the interaction invariant of
〈δ1γ(B), Init〉, and (l1 ∨ l2) ∧ (l3 ∨ l4) ∧ (l1 ∨ l4) ∧ (l2 ∨ l3)
is the interaction invariant of〈(δ1 + δ2)γ(B), Init〉.

p1

p1 p2

p2

q1

q1

q2

q2

p3

p3

q3

q3

p4

p4

q4

q4

l0

l1 l2

l3

l4

l5

l6

Fig. 3. An example for incremental computation of invariants

B. Incremental Computation of BBCs
In the previous section, we have shown that interaction

invariants can be computed from the solutions of Boolean
Behavioral Constraints. In this section, we show how to reuse
existing invariants when new increments are added to the
system. We first give a decomposition form for BBC and then
show how this decomposition can be used to save computation
time.

Proposition 5. Let γ be a connector overB, the Boolean
behavioral constraint for the composite component obtained
by superposition ofn increments{δi}1≤i≤n can be written as

|(
n∑

i=1

δi)γ(B)| = |(γ − (

n∑
i=1

δi)
f )(B)| ∧

n∧
i=1

|δi(B)| (2)

Proposition 5 provides a way to decompose the computation
of BBCs with respect to increments. The decomposition is
based on the fact that different increments describe the interac-
tions between different components. To simplify the notation,
γ − (Σn

i=1δi)
f is represented byδ0. We have the following

example.

Example 4. [Incremental BBC computation] In the example
of Figure 3, letγ = p1 + p2 + p3 + p4 + q1 + q2 + q3 + q4.
Two increments overγ are δ1 = p1 p3 + q1 q3 and δ2 =
p2 p4+q2 q4. The new connector obtained by applyingδ1 and
δ2 to γ is given by(δ1 + δ2)γ = p1 p3 + q1 q3 +p2 p4 + q2 q4.
The BBC|δ1(B)| and |δ2(B)| are respectively given by:

|δ1(B)| = (l0 ⇒ l1 ∨ l4) ∧ (l1 ⇒ l0 ∨ l3)∧
(l3 ⇒ l1 ∨ l4) ∧ (l4 ⇒ l0 ∨ l3),

|δ2(B)| = (l0 ⇒ l2 ∨ l6) ∧ (l2 ⇒ l0 ∨ l5)∧
(l5 ⇒ l2 ∨ l6) ∧ (l6 ⇒ l0 ∨ l5)

Sinceγ−(δ1+δ2)
f = ∅, we have|(δ1+δ2)γ(B)| = |δ1(B)|∧

|δ2(B)|.

We now switch to the problem of computing invariants
while taking incremental design into account. We propose the
following definition that will help in the process of reusing
existing invariants.

Definition 15 (Common Location VariablesLc). The set of
common location variables of a set of connectors{γi}1≤i≤n is
defined byLc =

⋃
i,j∈[1,n]∧i6=j support(γi) ∩ support(γj),

wheresupport(γ) =
⋃

a∈γ
•a∪a•, the set of locations involved

in some interactiona of γ.

Our incremental method assumes that an invariant has
already been computed for a set of interactions (We useIδ
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to denote the BBC-invariant of|δ(B)|). This information is
exploited to improve the efficiency. The idea is as follows. Ac-
cording to Equation 1, the superposition of a set of increments
{δi}1≤i≤n over a connectorγ can be regarded as separately
applying increments over theirs constituents. We propose the
following proposition, which builds on Equation 2.

Proposition 6. Consider a composite componentB. Letγ be
a connector forB and assume a set of increments{δi}1≤i≤n

over γ(B). Let δ0 = γ − (
∑n

i=1
δi)

f , Iδi
=

∧
k∈Ii

φk,
for i = 0, . . . , n, be the BBC-invariants for each|δi(B)|,
Sδi

=
∨

k∈Ii
mk, for i = 0, . . . , n, be the corresponding BBC-

solutions, and let

• Lφ be the set of location variables in invariantφ,
• Lc be the common location variables between

{δ0, δ1, . . . , δn}.

Then the interaction invariant of(Σn
i=1δi)γ(B) is obtained as

follows:

I =




n∧
i=0

∧
k∈Ii∧

Lc∩Lφk
=∅

φk


 ∧


 ∧

(ki1,...,kir)∈D

r∨
j=1

φkij




where
D = {(ki1, . . . , kir)| (∀j = 1 . . . r∧kij ∈ Iij)∧(Lφkij

∩Lc 6=

∅) ∧ (
∧r

j=1
mkij

6= false) ∧ ((ki1, . . . , kir) is maximal)}.

The proposition simply says that one can take the conjunctions
of BBC-invariants that do not share common variables, while
one has to take the disjunction of the remaining invariants.
This is to guarantee that common location variables will not
change the satisfiability of the formulae. Observe that each
non common variable occurs only in the solutions of one
BBC. This allows deleting the non common variables with
negations separately by using the positive mapping of common
variables in every BBC-solutions, which reduces complexity
of computation significantly.

Example 5. [Incremental invariant computation] In Example
4, we have computed the BBCs for the two increments. Here
we show how to compute the invariants from BBC-invariants
of the increments. By Definition 15, we obtain thatLc = {l0}.
Let Sδ1

, Sδ2
be the BBC-solutions for|δ1(B)| and |δ2(B)|

respectively, andIδ1
, Iδ2

be their BBC-invariants, we have:
Sδ1

= (l̄0 ∧ l̄1 ∧ l̄3 ∧ l̄4)∨ (l0 ∧ l1)∨ (l1 ∧ l3)∨ (l0 ∧ l4)∨ (l3 ∧ l4),

Sδ2
= (l̄0 ∧ l̄2 ∧ l̄5 ∧ l̄6)∨ (l0 ∧ l2)∨ (l2 ∧ l5)∨ (l0 ∧ l6)∨ (l5 ∧ l6),

Iδ1
= (l0 ∨ l1) ∧ (l0 ∨ l4) ∧ (l1 ∨ l3) ∧ (l3 ∨ l4),

Iδ2
= (l0 ∨ l2) ∧ (l0 ∨ l6) ∧ (l2 ∨ l5) ∧ (l5 ∨ l6)

BecauseI(δ1+δ2)γ(B) = I((γ−(δ1+δ2)
f )+δ1+δ2)(B) and γ −

(δ1 + δ2)
f = ∅, we haveI(δ1+δ2)γ(B) = I(δ1+δ2)(B).

Among the BBC-invariants,(l1∨ l3), (l3∨ l4), (l2∨ l5), (l5∨
l6) do not contain any common location variables, so they
will remain in the global computation. BBC-invariants(l0 ∨
l1), (l0 ∨ l4), (l0 ∨ l2) and (l0 ∨ l6) contain l0 as the common
location variable, and the conjunction between every mono-
mial from two groups of solutions are not false. So the final

Fig. 4. D-Finder tool

result is (l0 ∨ l1 ∨ l2) ∧ (l0 ∨ l4 ∨ l6) ∧ (l0 ∨ l1 ∨ l6) ∧ (l0 ∨
l2 ∨ l4) ∧ (l1 ∨ l3) ∧ (l3 ∨ l4) ∧ (l2 ∨ l5) ∧ (l5 ∨ l6).

V. EXPERIMENTS

Our methodology for computing interaction invariants and
deciding invariant preservation has been implemented in the
D-Finder toolset [2].

In this section, we start with a brief introduction to the
the D-Finder tool and explain what are the modifications that
have. Then we show the experimental results obtained by
implementing the methods discussed in this paper.

A. D-Finder Structure
D-Finder is an extension of the BIP toolset [7] – BIP can

be used to define components and component interactions. D-
Finder can verify both safety and deadlock-freedom properties
of systems by using the techniques of this paper and of [3, 6].

We useglobal to refer to the method of [3],FP for the
incremental method of [6], andIncr to refer to our new
incremental technique.

The tool provides symbolic-representations-based methods
for computing interaction invariants, namely theIncr methods
presented in this paper, the fixed point based method and
its incremental methodFP proposed in [6] as well as the
global method presented in [3] and discussed in Section II.
D-Finder relies on the CUDD package [15] and represents
sets of locations by BDDs. D-Finder also proposes techniques
to compute component invariants. Those techniques, which
are described in [3], relies on the Yices [11] and Omega [16]
toolsets for the cases in where a component can manipulate
data. A general overview of the structure of the tool is given
in Figure 4.

D-Finder is mainly used to check safety properties of
composite components. In this paper, we will be concerned
with the verification of deadlock properites. We letDIS be the
set of global states in where a deadlock can occur. The tool will
progressively find and eliminate potential deadlocks as fol-
lows. D-Finder starts with an input a BIP model and computes
component invariantsCI by using the technique outlined in
[3]. From the generated component invariants, it computes an
abstraction of the BIP model and the corresponding interaction
invariantsII. Then, it checks satisfiability of the conjunction
II ∧CI ∧DIS. If the conjunction is unsatisfiable, then there
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is no deadlock else either it generates stronger component
and interaction invariants or it tries to confirm the detected
deadlocks by using reachability analysis techniques1.

B. Implementation of the Incremental Method

We build on the symbolic implementation of the method in
[3] that computes the interaction invariant of an entire system
with all the interactions within the connector. The implemen-
tation relies on the CUDD package [15] and represents sets
of locations by BDDs.

We have employed the following steps to integrate the
incremental computation into the D-Finder tool. First we
compute a set of common location variables from all the
increments. Then we compute the BBC-solutions for every
increment instead of computing the solutions for the connector
in global method, and apply positive mapping to remove the
location variables with negations that do not belong to the set
of common location variables, to reduce the size of BDDs
for BBC-solutions. We can either integrate existing solutions
from the already computed BBCs progressively or integrate
all the solutions when all the increments have been explored.
Finally we apply positive mapping to remove all the remaining
common location variables with negations and call the dual
operation to obtain interaction invariant.

C. Experimental Results

We have compared the performance of the three methods on
several case studies. All our experiments have been conducted
with a 2.4GHz Duo CPU Mac laptop with 2GB of RAM.

We started by considering verification of deadlock proper-
ties. The case studies we consider are the Gas Station [12],
the Smoker [13], the Automatic Teller Machine (ATM) [8]
and the classical example of Producer/Consumer. Regarding
the Gas Station example, we assume that every pump has 10
customers. Hence, if there are 50 pumps in a Gas Station,
then we have 500 customers and the number of components
including the operator is thus 551. In the ATM example,
every ATM machine is associated to one user. Therefore,
if we have 10 machines, then the number of components
will be 22 (including the two components that describe the
Bank). The computation times and memory usages for the
application of the three methods on these case studies are
given in Table I. Regarding the legend of the table,scale

is the “size” of examples;location denotes the total number
of control locations;interaction is for the total number of
interactions. The computation time is given in minutes. The
timeout, i.e., “-” is one hour. The memory usage is given in
Megabyte (MB). Our technique is always faster thanglobal.
This means that we are also faster than tools such as NuSMV
and SPIN that are known to be much slower thanglobal on
these case studies [3, 2]. OurIncr technique is faster than
FP except for the Gas Station and it always consumes less
memory.

1 D-Finder is also connected to the state-space exploration tool of the BIP
platform, for finer analysis when the heuristic fails to prove deadlock-freedom.

TABLE I
COMPARISON FOR ACYCLIC TOPOLOGIES.

Component information Time (minutes) Memory (MB)
scale location interaction global FP Incr global FP Incr

Gas Station
50 pumps 2152 2000 0:50 0:17 0:49 48 53 47
100 pumps 4302 4000 2:58 0:52 1:51 76 52 47
200 pumps 8602 8000 11:34 1:55 2:26 135 65 47
400 pumps 17202 16000 47:38 3:51 5:43 270 93 76
500 pumps 21502 20000 - 4:43 7:21 - 101 86
600 pumps 25802 24000 - 5:53 9:05 - 115 97
700 pumps 30102 28000 - 7:14 11:44 - 138 107

Smoker
300 smokers 907 903 0:07 0:07 0:07 44 11 7
600 smokers 1807 1803 0:13 0:14 0:13 46 26 8
1500 smokers 4507 4503 1:38 0:44 0:34 65 54 18
3000 smokers 9007 9003 6:21 1:57 1:14 113 86 28
6000 smokers 18007 18003 27:03 5:57 3:24 222 172 55
7500 smokers 22507 22503 41:38 8:29 4:51 270 209 60
9000 smokers 27007 27003 - 11:36 6:34 319 247 96

ATM
50 machines 1104 902 10:49 2:20 1:23 81 86 22
100 machines 2204 1802 43:00 6:00 1:57 142 271 44
250 machines 5504 4002 - 17:16 4:46 - 670 65
350 machines 7704 6302 - 27:54 8:18 - 938 77
600 machines 13204 10802 - - 24:14 - - 119

Producer/Consumer
2000 consumers 4004 4003 0:27 0:33 0:31 57 16 11
4000 consumers 8004 8003 1:27 1:18 1:05 90 28 20
6000 consumers 12004 12003 3:01 2:32 2:03 126 37 31
8000 consumers 16004 16003 5:35 4:22 2:33 164 40 35
10000 consumers 20004 20003 8:44 6:12 3:15 218 66 56
12000 consumers 24004 24003 12:06 8:37 5:38 257 75 66

TABLE II
COMPARISON BETWEEN DIFFERENT METHODS ONDINING PHILOSOPHERS

Component information Time (minutes) Memory (MB)
scale location interaction global FP Incr global FP Incr

500 philos 3000 2500 4:01 9:18 0:34 61 60 29
1000 philos 6000 5000 17:09 - 2:04 105 - 60
1500 philos 9000 7500 39:40 - 3:09 148 - 74
2000 philos 12000 10000 - - 4:14 - - 96
4000 philos 24000 20000 - - 8:37 - - 192
6000 philos 36000 30000 - - 14:26 - - 382
9000 philos 53000 45000 - - 24:16 - - 581

In Table II, we also provide results on checking deadlock-
freedom for the dining philosopher algorithm. Contrary to the
above examples, the dining philosopher algorithm has a cyclic
topology, which cannot be efficiently managed withFP (this
is the only case for whichglobal was faster thanFP .

Our results have also been applied on a complex case
study that directly comes from an industrial application. More
precisely, we have been capable of checking safety and
deadlock-freedom properties on the modules in the functional
level of theDALA robot [5]. DALA is an autonomous robot
with modules described in the BIP language running at the
functional level. Every module is in a hierarchy of composite
components.

All together the embedded code of DALA in the functional
level contains more than 500 000 lines of C code. The topology
of the modules and the description of the behaviors of the
components are complex. This is beyond the scope of tools
such as NuSMV or SPIN. We first checked deadlock properties
of individual modules. Bothglobal andFP fail to check for
deadlock-freedom (Antenna is the only module that can be
checked by usingglobal ). However, by usingIncr , we can
always generate the invariants and check the deadlock-freedom
of all the modules. Table III shows the time consumption in
computing invariants for deadlock-freedom checking of seven
modules by the incremental method; it also gives the number
of states per module. In these modules we have successively
detected (and corrected) two deadlocks within Antenna and
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TABLE III
DEADLOCK-FREEDOM CHECKING ONDALA BY Incr METHOD

module component location interaction states time (minutes)
SICK 43 213 202 220

× 329
× 34 1:22

Aspect 29 160 117 217
× 323 0:39

NDD 27 152 117 222
× 314

× 5 8:16
RFLEX 56 308 227 234

× 335
× 1045 9:39

Battery 30 176 138 222
× 317

× 5 0:26
Heating 26 149 116 217

× 314
× 145 0:17

Platine 37 174 151 219
× 322

× 35 0:59

NDD, respectively.
Aside from the deadlock-freedom requirement, some mod-

ules also have safety property requirements such as causality (a
service can be triggered only after a certain service has been
running successfully, i.e., only if the variable corresponding
to this service is set to true). In checking the causality
requirement between different services, we need to compute
invariants according to different causality requirement. In-
spired from the invariant preservation properties introduced in
Section III, we removed some tight synchronizations between
some components2 that would not synchronize directly with
the components involved in the property and obtained a
module with looser synchronized interactions. As the invariant
of the module with looser synchronizations is preserved by the
one with tighter synchronizations, if a property is satisfied in
the former, then it is satisfied in the latter. Based on this fact,
we could obtain the satisfied causality property in 17 seconds,
while it took 1003 seconds before using the preorder. A more
detailed description of DALA and other properties verified
with our Incr and invariant preservation methods can be found
in [4].

VI. CONCLUSION
We present new incremental techniques for computing in-

teraction invariants of composite systems defined in the BIP
framework. In addition, we propose sufficient conditions that
guarantee invariant preservation when new interactions are
added to the system. Our techniques have been implemented
in the D-Finder toolset and have been applied to complex case
studies that are beyond the scope of existing tools.

As we have seen in Section V, our new techniques and
the ones in [3, 6] are complementary. As a future work, we
plan to set up a series of new experiments to give a deeper
comparison between these techniques. This should help the
user to select the technique to be used depending on the case
study. Other future works include to extend our contribution
to liveness properties and abstraction.
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Abstract—Efficient virtualization of translation lookaside
buffers (TLBs), a core component of modern hypervisors, is
complicated by the concurrent, speculative walking of page tables
in hardware. We give a formal model of an x64-like TLB,
criteria for its correct virtualization, and outline the verification
of a virtualization algorithm using shadow page tables. The
verification is being carried out in VCC, a verifier for concurrent
C code.

I. INTRODUCTION

Virtual addressing is the most common way for a host
program (typically an OS or hypervisor), to virtualize the
memory of a guest program. In a typical implementation,
the translation from virtual addresses (VAs) to physical ad-
dresses (PAs) is controlled by page tables (PTs) in memory;
the hardware concurrently walks these page tables, setting
accessed (A) and dirty (D) bits in the page table entries (PTEs)
as appropriate, and caching the translations in a translation
lookaside buffer (TLB). When the guest addresses memory,
the processor uses the TLB to translate virtual to physical
addresses. If a suitable translation is not available, a hardware
page fault (#PF) throws control to the host, giving it an
opportunity to intercede. The processor automatically flushes
the TLB in certain circumstances (e.g., on an address space
switch), but it is generally up to the host to manage the
coherency of the TLB.

Virtual addressing does not in itself provide correct virtu-
alization for guests that edit their own page tables, such as
operating systems. A standard solution1 to this problem is
to control guest address translation using a separate set of
shadow page tables (SPTs), invisible to the guest, each of
which “shadows” one of the guest page tables (GPTs). When
a guest memory access results in a #PF, the host #PF handler
walks the GPTs (simulating the TLB hardware), setting A and
D bits in the GPT entries, and caching the translation (perhaps
with an additional level of translation) in the SPTs. This allows
the hardware to subsequently walk the SPTs to cache the SPT
translations into the hardware TLB (HTLB). Thus, the SPTs,
the #PF handler, and the HTLB act in concert to provide a
virtual TLB (VTLB) to the guest.

Because walking the page tables slows down program exe-
cution, high-performance memory managers running in a guest
are often very aggressive in their use of the TLB, flushing
translations only when absolutely necessary, allowing the TLB

1Recent Intel and AMD processors provide a hardware alternative, in the
form of an extra address translation layer not visible to the guest OS [1], [2].

to cache stale translations to some extent, with its correctness
depending on fine details of the TLB semantics (e.g., exactly
when A bits are set). High performance hypervisors are equally
aggressive in flushing translations from the SPTs and HTLB
only when necessary; for example, the SPT algorithm in
the Hyper-VTM [3] hypervisor shares SPTs between different
processors and address spaces, and selectively write-protects
GPTs from guest edits to keep them in sync with their SPTs
(so that they don’t have to be flushed on a guest address-space
switch) [4]. This combination makes SPT algorithms difficult
to test (particularly since an error is likely to manifest in a
guest failure long after the SPT entry leading to it has been
flushed); for example, one bug in the aforementioned SPT
algorithm required seven thread switches to manifest. This
makes SPT algorithms an ideal target for formal verification.

We describe the verification of a simple shadow page table
algorithm. We formulate the main invariants and present a veri-
fication pattern in VCC, an automatic verification environment
for concurrent C code (available at http://vcc.codeplex.com/).

II. TLB VIRTUALIZATION PROBLEM

A. Hardware Model

The type of n-bit strings {0, 1}n is denoted by Bn. We
interpret a string a ∈ B64 either as a 64-bit string, a natural
number, or a PTE. We consider a word (64 bits) addressable
memory, 45-bit long VAs, and PAs 49 bits long. We call the
top-most 36 bits (for the VAs) or 40 bits (for the PAs) the
page frame number (PFN). We decompose a virtual address
a ∈ B45 into page table indices a.px[i] for i ∈ [1 : 4] of 9 bits
each and a 9-bit physical page displacement a.px[0].

An x64 multi-core/multi-processor machine is modeled with
the record h :: x64conf , where h.p[i] denotes the hardware
configuration of the processor i, and h.mm :: B49 7→ B64

represents the shared memory of the system. A processor
configuration consists of a register CR3 giving the address of
the root PT, a (processor local) TLB tlb, and an uninterpreted
variable state encapsulating the rest of the processor state.
A PT consists of 512 PTEs, each being a struct with five
fields: the SPT page frame number pfn at which the entry
is pointing, accessed and dirty bits a and d, a present bit p,
and the set of access rights r (e.g., writing access r[rw]).
We define the less-or-equal operator on set of rights as
r1 ≤ r2 = ∀j.r1[j] ≤ r2[j].

The TLB state is modeled as a set of page table walks,
each of which summarizes a partial or complete traversal of
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TABLE I: Semantics of the Abstract TLB

Transition name Guard on the configuration h Resulting configuration h′

createwtlb(i, va, r) h/{.p[i].tlb = h.p[i].tlb ∪ {winit(h.p[i].CR3 , va, r)}
deletewtlb(i, w) w ∈ h.p[i].tlb h/{.p[i].tlb = h.p[i].tlb \ {w}}
extendwtlb(i, w) w ∈ h.p[i].tlb ∧ pte(h,w).a ∧ pte(h,w).p h/{.p[i].tlb = h.p[i].tlb ∪ {wext(h,w)}}

∧ (pte(h,w).d ∨ w.l > 1 ∨ ¬w.r[rw]) ∧ w.l > 0
setaccesstlb(i, w) w ∈ h.p[i].tlb ∧ w.l > 0 ∧ pte(h,w).p h/{.mm[w.pfn][w.va.px[w.l]].a = 1}
setdirtytlb(i, w) w ∈ h.p[i].tlb ∧ w.l = 1 ∧ ¬fault(h,w) h/{.mm[w.pfn][w.va.px[w.l]].d = 1}

∧ w.r[rw] ∧ pte(h,w).r[rw] ∧ pte(h,w).a
mov2cr3cpu(i, pto) h.p[i].tlb = ∅ ∧ instr(h.p[i]) = mov2cr3 h/{.p[i].state = step(h, i), .p[i].CR3 = pto}
invlpgcpu(i, va) h.p[i].tlb ∩ {w | w.va = va ∨ w.l > 0} = ∅ h/{.p[i].state = step(h, i, va)}

∧ instr(h.p[i].state) = invlpg
transl okcpu(i, va, r, pa) w ∈ h.p[i].tlb ∧ w.va = va ∧ w.l = 0 h/{.p[i].state = step(h, i, pa)} ∧ pa = w.pfn ◦ va.px[0]

∧ r ≤ w.r ∧ instr(h.p[i]) = mem instr
transl pfcpu(i, va, r, f) w ∈ h.p[i].tlb ∧ w.va = va ∧ fault(h,w) h/{.p[i].state = step(h, i, f)} ∧ f

∧ r ≤ w.r ∧ instr(h.p[i]) = mem instr

the page tables for a given VA. Each walk is given by a virtual
address va, a level l giving the number of page table levels
remaining to be walked,2 the page frame number pfn of the
next page table to be used for translation, and a set r of access
rights giving all rights not denied by the walk gathered thus
far. A walk is complete if its level is 0, and partial otherwise.

The function winit(pfn, va, r) returns a walk with level 4
and the other components initialized according to the given
parameters. The extension wext(h,w) of a walk w in the
hardware configuration h is defined as follows (s/{.c = v}
denotes update of field c of struct s to value v):

pte(h,w) = h.mm[w.pfn ◦ w.va.px[w.l]]
fault(h,w) = ¬pte(h,w).p ∨ ¬(w.r ≤ pte(h,w).r)
wext(h,w) =

w/{ .pfn = pte(h,w).pfn,

.l = w.l − 1,

.r = λi. w.r[i] ∧ pte(h.w).r[i] }

A complete walk can be used to address memory iff the walk’s
VA matches the requested VA and the walk provides rights
(write, execute, etc.) at least equal to those requested. A #PF
can be generated only from a partial walk leading to a PTE
that is non-present or provides insufficient rights.

Table I gives the behavior of our TLB model, expressed
as a transition relation on the hardware configuration h. For
some operations we introduce additional parameters, such that
virtual address va, physical address pa, and #PF flag f in
case of a CPU address translation. While the first five actions
(indexed with tlb) model autonomous behavior of the TLB, the
last four actions (indexed with cpu) abstractly model the CPU
behavior, using the uninterpreted function step() to update
the CPU state. Note also that operations such as INVLPG that
flush the TLB are modeled instead as blocking when the TLB
contains offending entries; these models are equivalent because
the TLB is allowed to delete walks at any time.

2To simplify the presentation, we do not consider large pages and legacy
addressing modes here, so each complete walk goes through exactly four page
tables. Also, we do not consider tagged TLBs or global page translations.

B. Correctness Criteria

A hypervisor provides to each guest the illusion of running
on its own private memory, processors and TLBs. In the
following we provide this illusion for a single guest,3 modeled
as a virtual machine g :: x64conf .This guest g is implemented
on a single host machine running the hypervisor code, linked
to this implementation by a coupling invariant. Hypervisor
correctness is established by proving that execution of the
host machine preserves this invariant, and that g behaves
accordingly—in particular, that (i) the VTLBs g.p[j].tlb of the
guests satisfy the transition relation of Table I, and (ii) that any
virtual memory access of this virtual processor is justified by
a complete walk in its VTLB.

Given the transitive closure →∗tlb of permissible TLB steps
as defined in Table I, we can formulate the first property in
form of forward simulation:

Invariant 1: Let h and h′ be pre and post states of a host
step, and g and g′ be the abstracted guest machine states
respectively. Then the changes to the TLB of any virtual
processor (VP) j form a valid TLB transition:

g.p[j].tlb→∗tlb g′.p[j].tlb (1)

To formulate the second invariant we need to introduce
parts of the coupling invariant. The function vp2hp(j) de-
fines for a VP j on which host processors it is currently
scheduled to run. The memory of the guest is mapped to
some region of the shared memory of the hardware machine.
Then, the memory mapping is defined by the injective function
gpa2hpa :: B40 7→ B40, which maps a guest physical PFN into
the host physical PFN.

The second invariant establishes a relation between the
VTLB and the implementation model. The walks contained
in the HTLB should be present in the VTLB with respect to
the guest memory projection. A function hw2gw(w) translates
a complete host walk w into a respective guest walk applying
the gpa2hpa−1 mapping to the field w.pfn and leaving the
other fields of the walk w unchanged.

3This can be easily generalized to multiple guests mapped to disjoint host
memory portions.
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The VTLB is given by the result of an abstraction function
on the host configuration. In this case it will usually contain
more complete walks than the HTLB. Nevertheless, every
complete walk present in the HTLB should correspond to a
complete walk in the VTLB.

Invariant 2: Let a complete walk w be present in the
HTLB. Then a VTLB contains the walk hw2gw(w).

w ∈ h.p[i].tlb ∧ w.l = 0 =⇒ (2)
∃j. vp2hp(j) = i ∧ hw2gw(w) ∈ g.p[j].tlb

In order to infer the second invariant after a TLB step we
also need an invariant dealing with partial walks in the HTLB.
The statement of this invariant depends on the definition of
the VTLB. Note, that the VTLB is not obliged to store partial
walks, because their presence in the TLB is not mandatory.

III. SPT ALGORITHM

In this section we describe a basic implementation of a
shadow page table algorithm, define the abstracted VTLBs,
and state the required invariants to prove the correctness
criteria from the previous section.

A. Overview on the Implementation
We assume that the gpa2hpa map is static, and that appro-

priate data structure and functions are given to store and query
it. The SPTs are located in an array SPT[0 : (n−1)]. We define
the functions i2a :: N 7→ B40 to return the host PFN of the SPT
stored in each array element, and the function a2i :: B40 7→ N
as the inverse function on these PFNs. Every SPT may either
be free or in use by a single VP j (more precisely the HTLB
of the host processor it runs on). For each VP j we let gwo(j)
denote the current value of its CR3 register, and hwo(j) denote
the CR3 used on the host when the guest is actually running.
The latter CR3 designates the top-level SPT used for VP j in
the SPT array. We organize the SPTs for each VP as a tree
of SPTs, and assign to each SPT a level ranging from 4 (top-
level) to 1 (terminal) and a VA range for the addresses of the
walks that might go through to this SPT (prefix of the SPT).
The entries of non-terminal SPTs point to other SPTs, while
the entries of terminal SPTs point to memory of the guest
(under the gpa2hpa map). The predicate walks to(i, px, j)
denotes that SPT with index i points to SPT j.

walks to(i, px, j) = (SPT[i][px].pfn = i2a(j))

Guest instructions and exceptions that operate on the TLBs
are intercepted so that they can be virtualized in the SPTs.

Every SPT has an additional Page Table Info (PTI) data
structure associated with it, which keeps auxiliary information
about SPTs. The fields of PTI[i] include gpfn (the guest
physical PFN of the GPT) and l (the level of the SPT).

The algorithm maintains the SPTs by handling the following
intercepts:

1) Flushing/Switching of CR3: Flushes of the guest (e.g.,
by executing mov2cr3) are intercepted by the hypervisor. The
intercept is handled by freeing all the VP’s SPTs, allocating
a fresh top-level SPT (which has all its entries set to non-
present), and executing an HTLB flush.

2) #PF intercept: When a host #PF is intercepted, the
hypervisor walks the GPTs to determine the reason for the
fault. If a GPTE is reached that has insufficient rights for the
page-faulting operation or has the present bit not set, a page
fault is injected into the guest (and the hypervisor returns).
Simultaneously with walking the GPTs, the hypervisor also
walks the associated SPTs down from the top-level SPT. If
a non-present (non-terminal) SPTE is encountered during the
walk, we update the SPTE to point to a newly allocated, zero-
filled SPT; the new SPT shadows the GPT referenced by the
corresponding GPTE. For a present SPTE we check whether
rights and PFN still correspond to the GPTE. If not, the old
SPT subtree is detached (and a hardware INVLPG executed on
the faulty VA) before allocating, initializing, and pointing to
a new SPT as before. A GPTE’s A bit is set when the #PF
handler walks it; A bits in SPTEs are always set. Note that
all not dirty terminal SPT entries are kept write protected to
propagate a D bit to the guest before it is set by the HTLB.

3) INVLPG intercept: The implementation walks down the
SPTs for the INVLPG address and, when reaching a terminal
SPTE, marks it non-present. Then it performs a hardware
INVLPG on the faulty VA.

B. VTLB Abstraction

To define the virtual TLB abstraction and verify the in-
variants we introduce ghost fields in the PTI structure, which
are used only for verification but are ignored by the imple-
mentation. The field vpid stores the index of the VP using
the associated SPT, the field vpfn stores the SPT’s prefix, the
field r stores the accumulated rights from the top-level SPT
to the given SPT, the reachability bit re distinguishes whether
the HTLB can walk the SPT, and for terminal SPTs, the array
gp[0 : 511] in the PTI stores the ghost present bits of the
terminal PTEs denoting whether the complete walks through
the PTEs might be present in the HTLB.

Next, we define the coupling invariant. Every guest com-
ponent is abstracted from the hardware machine h. General
purpose registers of the VP j are either loaded into the
hardware registers of the processor vp2hp(j) or are stored
in some implementation data structure.

We define the VTLB as the set of walks corresponding to
the complete walks that might be cached by HTLB. Formally,
we use the ghost fields of the PTI data structure to construct
the set walks(i), containing walks sitting on the SPT i.

walks(i) = {w | w.r ≤ PTI[i].r ∧ w.pfn = i2a(i)

∧ w.l = PTI[i].l ∧ ∀j ∈ [PTI[i].l + 1 : 4]. w.va.px[j]

= PTI[i].vpfn[9 · j − 1 : 9 · (j − 1)]}

We define the set of indices of the terminal SPTs belonging
to the VP j by

tSPT (j) = {i | PTI[i].l = 1 ∧ PTI[i].vpid = j}.

The set of complete walks of the VP j is defined as follows:

cwalks(j) = {wext(h,w) | w ∈ walks(i) ∧ i ∈ tSPT (j)
∧PTI[i].gp[w.va.px[0]] ∧ w.r ≤ SPT[i][w.va.px[0]].r}
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The VTLB is defined as a translation of complete shadow
walks into the respective walks over the GPTs:

g.p[j].tlb = {hw2gw(w) | w ∈ cwalks(j)}

Note, that the VTLB definition does not use the implemen-
tation SPTE present bit, because some complete walks through
present SPTEs may be flushed out of the HTLB by INVLPG.

C. Invariants

In this section we specify implementation dependent invari-
ants used to prove Invariants 1 and 2.

We introduce the notion of reachable SPTs, to mark those
SPTs which may have been walked by the HTLB since the last
flush. Thus we store where partial HTLB walks may reside.

We maintain reachability using the ghost flag PTI[i].re and
the following invariants.

∀j. PTI[a2i(gwo(j))].re (3)
PTI[i].re ∧ walks to(i, px, i′) =⇒ PTI[i′].re (4)
w ∈ h.p[k].tlb ∧ w.l > 0 (5)
=⇒ w ∈ walks(a2i(w.pfn)) ∧ PTI[a2i(w.pfn)].re
PTI[i].re ∧ SPT[i][px].p =⇒ PTI[i].gp[px] (6)

Invariant 3 states that the top level SPT is always reachable.
Invariant 4 states that if a SPT is reachable then its descendants
in the SPT tree are also reachable. Invariant 5 states about the
partial walks in the HTLB, namely that all partial walks in the
HTLB are sitting on the reachable SPTs. Invariant 6 states a
connection between the reachable bit of the terminal SPT and
the ghost present bits of the terminal SPTEs. It states that if
a present bit in the SPTE of a reachable terminal SPT is set,
then the ghost present bit for this entry is also set. Note, that
for maintaining the invariants, whenever we detach a shadow
subtree we have to perform a hardware INVLPG and reset the
reachability bits for the SPTs in the subtree.

IV. VERIFICATION

To verify the C implementation of the algorithm we use
VCC, a deductive verifier for concurrent C code.VCC extends
C with ghost data (possibly of non-C types, such as mathemati-
cal integers and maps), ghost functions, function contracts, and
(2-state) data invariants that constrain how fields of a “valid”
object are allowed to change in a legal system step. The use
of 2-state invariants both allows us to model abstract automata
(like TLBs) and to prove forward simulations internally (via
code annotation), rather than at the meta-level.

In VCC, the TLB state and its transition relation can be
specified as a ghost type and a ghost predicate. These are
used at two places: (i) we represent the HTLB as a C struct
type with a field of this type storing its contents and the TLB
transition relation used as a 2-state invariant on this field.
(ii) we use the TLB transition relation on the abstracted VTLB
state as a 2-state invariant of the SPT structures, obliging VCC
to show that SPT updates satisfy TLB semantics.

Next, we (very briefly) sketch the correctness arguments for
INVLPG handling and HTLB steps.

1) INVLPG intercept: The INVLPG intercept handler with
annotations is shown below:

Walk ws[4]; Pte pte;
ws[4] = initwalk(gwo[j], va, r); y = 4;
while (ws[y].l && !ws[y].f) {

atomic (SPT) { /∗ atomic read ∗/
pte = SPT[a2i(ws[y].pfn)][px(va,y)]; }

ws[y−1] = wext(pte, ws[y]);
y = y−1; }

if (l == 0)
atomic (SPT) { /∗ atomic write ∗/

SPT[a2i(ws[1].pfn)][px(va,0)].p = 0; }
asm invlpga(va);
spec( /∗ ghost code ∗/

for(k = 0; k < n; k++) {
if (PTI[k].l == 1 && PTI[k].vpfn == pfn(va) && PTI[k].vpid == j)

PTI[k].gp[px(va,0)] = 0; } )

The ghost construct atomic(o) checks that the subsequent
block of statements is being executed atomically by the
implementation, with no updates other than on volatile fields
of the designated object o. The spec(. . .) wraps regular ghost
code—in our case the code that resets the ghost present bits for
the invalidated VA by iterating over all terminal SPTs. Since
the VTLB abstraction depends on both ghost present bits and
terminal SPT entries, the above ghost and implementation code
implicitly alters the VTLB content.

The intercept handler emulates the following guest steps
preserving Invariant 1: (i) for each w ∈ g.p[j].tlb such that
w.va = va do deletewtlb(j, w), and (ii) invlpgcpu(j, va).

The other invariants hold due to the fact that after the
hardware INVLPG is performed every walk belonging to HTLB
is a walk that was sitting there before the intercept happened.

2) Hardware TLB steps: The HTLB can add walks, extend
walks, remove walks, set A and D bits. The VTLB in this case
remains unchanged. Invariant 5 follows from Invariants 3 and
4. Invariant 2 follows from Invariants 5 and 6, and the VTLB
definition, specifically from the fact that VTLB contains all
complete walks over the SPTs accessible by the VP.

The verification of the complete SPT algorithm in VCC is
an ongoing effort.
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Abstract—Formal Analysis has been living in its own world. Its 
impact on the mainstream simulation was limited. In particular 
the results and metrics generated by Formal could not be 
factored into the simulation flow. In IEV we include a mechanism 
to translate formal result into simulation results and therefore 

enable contributions from the Formal Analysis effort to be 
accounted for in the simulation flow. In the demonstration we 
show the effects of this translation and how it can help to improve 
simulation coverage.   
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Abstract—The Systems Analysis & Verification Department at
NEC Labs engages in foundational as well as applied research in
the areas of verification and analysis of software and embedded
systems. We have developed several tools and frameworks for
scalable and precise analysis of programs, some of which are
now used within the company on large software projects. This
extended abstract highlights their main features and provides
pointers to published papers with more details.

I. F-SOFT

F-Soft is a platform for verifying source code programs [3],
[4]. It can check C programs for runtime errors (such as pointer
access violations, buffer overflow, memory leaks), standard
library API usage, and other user-defined assertions. It can be
used to check programs globally, or as an annotation checker
to check user-written contracts. We have successfully analyzed
large benchmark examples to find previously unknown bugs
using F-Soft. An in-house product based on F-Soft, called
VARVEL, is currently in use in NEC. We are now extending
F-Soft to handle C++ programs.

Overall, F-Soft provides a cooperative, staged framework of
various static analyses (including abstract interpretation) and
model checking techniques, where the size and complexity
of the model and the number of properties are successively
reduced across the stages. This enables efficient use of high-
precision analyses when needed, and is very effective for
handling large programs with hundreds of (automatically in-
strumented) properties.

II. COBE (CONCURRENCY BENCH)

CoBe is a tool for finding concurrency-related bugs in multi-
threaded C programs, such as data races, deadlocks, atomicity
violations, and missed notifies. It leverages a combination
of static analysis, dataflow analyses, and symbolic model
checking.

CoBe starts by using statically computed lockset and lock
acquisition history information [7], [5], as well as happens-
before constraints induced by synchronization primitives and
properties [9] to generate bug warnings. Each warning is
then analyzed by employing a series of static analyses in
a ‘telescoping’ fashion, i.e., in increasing order of precision
but decreasing order of scalability to decide, as cheaply as
possible, whether the warning is bogus. These static analyses
exploit both static constraints, i.e., interleaving constraints aris-
ing from the use of synchronization primitives like Wait/Notify

(rendezvous), Wait/NotifyAll (broadcasts), etc., and semantic
constraints resulting from data flow. The semantic constraints
are generated by deriving sound invariants, using abstract
interpretation on domains with increasing precision (range,
octagonal, and polyhedral analyses). These two classes of
analyses, when used in conjunction, can weed out a large
fraction of the bogus warnings [8]. Finally, symbolic model
checking is leveraged to generate concrete error traces for
the remaining warnings [6]. Telescoping greatly enhances the
efficacy of the overall process by ensuring scalability without
compromising on precision. We have successfully handled
many large examples, including Linux device drivers.

III. FUSION

Fusion is a platform for combining dynamic and static
verification techniques, for the purpose of finding bugs in
concurrent C/C++ programs. Given a test case, it executes
the program to derive a Concurrent Trace Program (CTP)
that captures that trace. The CTP can be used for exploration
of alternate thread schedules, which is difficult to do in
standard testing where the thread schedule is controlled by
the operating system. Specifically, we have used CTPs to
combine an explicit search (in the style of dynamic partial
order reduction) with SMT-based analysis to improve its
performance and coverage [11]. We have also used CTPs for
symbolic predictive analysis, where we can detect assertion
violations or atomicity violations in alternate interleavings of
the same events observed in the given trace [12], [13].

For long traces, exploring all interleavings of the events
can be prohibitively expensive. We are investigating additional
static analysis techniques that can quickly prune away some
warnings [9]. We are also studying coverage-based metrics to
guide systematic testing to explore only high-risk interleavings
that are likely to lead to bugs.

IV. CONTESSA

Testing of multi-threaded programs poses enormous chal-
lenges. To improve the coverage of testing, we present a
framework named CONTESSA [10] that augments conven-
tional testing (concrete execution) with symbolic analysis
in a scalable and efficient manner to explore both thread
interleaving and input data space. It works on CTPs generated
by Fusion. It utilizes partial-order reduction techniques [1] to
generate verification conditions with reduced size and search
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space [2]. These verification conditions are checked by an
SMT-solver that can generate witness traces for bugs. The tool
also provides visual support for debugging the witness traces.
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Abstract— OneSpin Solutions presents recent advances in formal 

assertion-based verification (ABV) that speed-up verification 

closure. We present a formal verification methodology called 

Operational ABV, which simplifies verification planning, eases 

assertion writing working from timing diagrams and enables an 

exhaustive formal coverage analysis ensuring that no design 

behavior is missed during verification. The formal coverage 

analysis automatically uncovers holes in the verification plan, 

detects unverified design functionality, and identifies errors and 

omissions in design specifications. The approach is demonstrated 

using an AHB2Wishbone bus bridge and OneSpin’s 360 MV 

formal verification tool.  

We also demonstrate how to prevent X-related bugs through new 

exhaustive 4-state formal analysis techniques. The use of 

unknown or undefined values (X’s) can improve RTL verification 

and synthesis. But unintended X-propagation in designs can 

cause data corruption and breaking of control paths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We show recent enhancement of 360 MV for 4-state-logic formal 

analysis, where signals can explicitly become X and Z – extending 

the 0/1-models commonly used in formal verification tools. This 

X-aware formal analysis enables an exhaustive pre-synthesis X-

analysis and X-verification, detecting,  e.g., unintended X-

propagation caused by uninitialized registers, and ensuring safe 

use of X’s for verification and synthesis optimization in general.   

Both, Operational ABV with formal coverage analysis and 4-

state-logic  formal X-analysis enable faster verification closure 

with significantly higher verification confidence. 

For more information about OneSpin Solutions and 360 MV 

please visit http://www.onespin-solutions.com.  
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Abstract—PINCETTE is a STREP project under the European
Community’s 7th Framework Programme [FP7/2007-2013]. The
project focuses on detecting failures resulting from software
changes, thus improving the reliability of networked software sys-
tems. The goal of the project is to produce technology for efficient
and scalable verification of complex evolving networked software
systems, based on integration of static and dynamic analysis and
verification algorithms, and the accompanying methodology. The
resulting technology will also provide quality metrics to measure
the thoroughness of verification. The PINCETTE consortium is
composed of the following partners: IBM Israel, University of
Oxford, Universita della Svizzera Italiana (USI), Universita degli
Studi di Milano-Bicocca (UniMiB), Technical Research Center of
Finland (VTT), ABB, and Israeli Aerospace Industries (IAI).

I. OVERVIEW OF PINCETTE PROJECT

The PINCETTE project targets the problem of analyzing
and validating complex systems upgrades. Currently, each
change usually requires an expensive revalidation of the whole
system or is simply not checked thoroughly, thus potentially
introducing new errors into the system design. This problem
stems from the fact that the state-of-the-art testing and formal
verification tools are not optimized to validate system changes
and upgrades, but instead focus on a single program version
only.

In PINCETTE, we aim to extend the state-of-art in several
ways, as we detail below. PINCETTE will introduce pioneer-
ing technologies to enable systematic component substitutabil-
ity checks focusing on various classes of upgrades that are
not solved by other approaches. One of the main innovations
of the PINCETTE approach is the integration of technologies
that work at different abstraction levels, addressing different
classes of problems and sharing a common solution frame-
work. Another advantage of our approach for upgrade analysis
is that models of the software system will be automatically
extracted from either the source code (written in C or C++) or
by monitoring system execution at run-time. Driven by these
models, the PINCETTE paradigm will unify and employ the
various system upgrade checks throughout the system lifecycle
from the design phase to the system deployment. It will thus
ensure strong coverage of our analysis of safety and security
issues of the evolving networked systems. The results of the
analysis will be accompanied by quality metrics, allowing the
user to measure the degree of confidence in these results, and
to estimate the need for further analysis.

The project results will be validated in the following ap-
plications, which cover Europe’s power grid operation, ITER
fusion reactor maintenance, and aeronautics systems:

• ABB: development and maintenance of networked high
reliability software. The software is written in C++ and
focuses on the areas of high-voltage and medium-voltage
substation automation, as well as various automation
products, e.g., motor control or low-voltage switch-gear
systems, or robot controllers. The smooth operation of the
system is essential for ensuring power supply to several
European countries. The system is widely distributed
geographically; upgrades are made to every substation
separately and in a different timeframe.

• VTT: Divertor Test Platform (DTP2) is a full-scale
mockup facility to verify several of the remote main-
tenance operations of ITER fusion reactor. At DTP2,
real-time and safety critical control system for remotely
operated devices is developed and validated. The control
system is implemented using C, LabVIEW and IEC
61131 programming languages and is distributed across
the network. The control system is expected to go through
constant upgrades during the entire lifecycle of the reac-
tor.

• IAI: development of software for operating autonomous
aircrafts for environmental monitoring, specifically, de-
velopment of the Multi-sensors Stabilized Electro-Optic
System (MSEOS) for forest fire detection, search for
missing people on the ground and in the sea, snow,
and airport runway monitoring in all weather conditions,
written in C. The system has installations around the
world, and due to the variety of customers, tailoring
and upgrades are frequently required in order to meet
customers’ needs. The average time for upgrades to be
deployed on the whole system is 6 months, during which
time different versions of the software must co-exist in
the same network.

This work is partially supported by the European Community’s 7th Framework Programme [FP7/2007-2013] under
grant agreement no. 257647 – project PINCETTE. The authors are solely responsible for the content. It does not represent
the opinion of the European Community, and the European Community is not responsible for any use that might be made
of data appearing therein.
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