
Formal Verification of Arbiters using Property
Strengthening and Underapproximations

Gadiel Auerbach Fady Copty
IBM Haifa Research Laboratory, Haifa, Israel. e-mail: gadiel,fadyc@il.ibm.com

Viresh Paruthi
IBM Systems and Technology Group, Austin, TX, USA. e-mail: vparuthi@us.ibm.com

Abstract—Arbiters are commonly used components in elec-
tronic systems to control access to shared resources. In this
paper, we describe a novel method to check starvation in ran-
dom priority-based arbiters. Typical implementations of random
priority-based arbiters use pseudo-random number generators
such as linear feedback shift registers (LFSRs) which makes
them sequentially deep precluding a direct analysis of the design.
The proposed technique checks a stronger bounded-starvation
property; if the stronger property fails, we use the counter-
example to construct an underapproximation abstraction. We
next check the original property on the abstraction to check for
its validity. We have found the approach to be a very effective
bug hunting technique to reveal starvation issues in LFSR-
based arbiters. We describe its successful application on formal
verification of arbiters on a commercial processor design.

I. INTRODUCTION

Arbiters [4] are widely used in electronic systems such as
microprocessors and interconnects. Arbiters restrict access to
shared resources when the number of requests exceeds the
maximum number of requests that can be satisfied concur-
rently. For example, an arbiter that regulates access to a bus
selects which requestors would be granted access to the bus
if there are more concurrent requests than the bus can handle.
Arbiters use various arbitration schemes in the form of a
priority function to serialize access to the shared resource by
the requestors. The priority function decides which requestor
to grant next. Examples of priority functions include round
robin (rotate priority amongst requestors), queue-based (first-in
first-out), or random priority (select next requestor randomly).

Random priority-based arbiters [8] have been gaining in
popularity because of their high potential for fair arbitration,
unlike other techniques such as round robin or queue-based
which can be unfair because of their fixed order of arbitration.
This arbitration scheme allows any request to have the highest
priority at random. A random priority-based arbiter uses a
pseudo-random number generator to select or influence the
selection of the next requestor. A common implementation of
such arbiters uses a Linear Feedback Shift Register (LFSR) [7]
to generate a pseudo-random sequence of numbers. An LFSR
is a cyclic shift register whose current state is a linear function
of its previous state, and it generates a sequence of numbers
which is statistically similar to a truly-random sequence. In
this paper we focus on formal verification of such LFSR-based
random priority arbiters.

The main concern in verification of an arbiter is checking for
starvation. Starvation is a special case of liveness properties,

Figure 1. LFSR-based arbiter

in which any request must have a grant eventually. Liveness
properties are often computationally hard to verify even on
medium-sized designs. To alleviate this, it is common to check
for starvation by replacing liveness properties with bounded
properties – “request will be granted within N cycles”, for
some constant N . If a bounded property passes, it implies
the correctness of the original liveness property. Even so, the
sheer size of LFSR-based industrial arbiters may preclude an
exhaustive analysis of the bounded property.

We describe a method to uncover bugs leading to long
latencies before requestors are granted in such complex ar-
biters. If the bounded property fails, we study the counter-
example and attempt to either fix the problem by increasing the
bound, or to use the information from the counter-example to
underapproximate the original design. The concepts presented
in this paper can be easily generalized to other schemes
(besides LFSRs) to implement a random priority function.
The presented technique can, in fact, be generalized to model
checking of general-purpose systems, and we briefly present
such a generalization.

II. LFSR-BASED ARBITERS

An LFSR-based arbiter grants access to a pending request
based on the random number generated by the LFSR at any
given point in time. Figure 1 shows a schema of an LFSR-
based arbiter. An LFSR of length N generates a deterministic
cyclic sequence whose period is 2N − 1, where all numbers
from 1 to 2N − 1 are visited. The initial value of an LFSR
is called the seed, and the sequence of numbers generated by
the LFSR is completely determined by the value of its seed.
An LFSR of length N may be used to arbitrate between M
requestors, where M � 2N , by sampling a subset log(M) bits
of the LFSR to select the next request to be granted. Such a
scheme helps to amortize the cost of implementing an LFSR in
hardware by way of the same LFSR serving multiple arbiters
with different tap points. E.g., N may be 16, while M is 8
requiring 3-bits of the 16-bits of the LFSR to be tapped.

Figure 2. 16-bit LFSR

Figure 2 depicts a 16-bit LFSR from one of our case studies,
the I_arbiter. The register shifts bits from left to right with
some bits XORed with the most significant bit. The LFSR seed
is configurable, and may be assigned any value between 1 and
216 − 1 = 65535. Formal verification environments typically
assign a non-deterministic value to the seed.

III. FORMAL VERIFICATION OF LFSR-BASED ARBITERS

Verification of arbiters entails checking for starvation, which
may be formulated as a liveness property. E.g., the following
PSL [6] property specifies that whenever signal request is
asserted, signal grant is asserted some time in the future.

always request -> eventually! (grant)

A counter-example for such a property is a trace showing a
path leading to an infinite loop. In an LFSR-based arbiter,
this constitutes a cycling through of all the valuations of the
LFSR. The LFSR minimal loop length is 2N − 1, thus any
loop showing a counter-example of the liveness property must
be at least of that length. Hence, finding a trace for such a
property of an LFSR-based arbiter is very hard. An easier yet
more useful alternative to the above correctness property is to
check for a request to be granted within a specified number of
cycles, determined by the arbiter specification. In other words,
we check to see if the request is granted within k cycles [8],
[5]. In addition to verifying that a request is granted, such a
formulation gives insights into the performance aspects of the
arbiter, which is quite useful given the critical role arbiters
play in the overall performance of electronic systems. The
following property expresses a bounded-starvation condition.

always request-> next_e[1..k](grant)

Exhaustive verification of above properties to guarantee lack
of bugs on is becoming increasingly challenging, if not impos-
sible, for arbiters in real-world systems due to their sheer size
and complexity. This calls for bug hunting methods to detect
as many bugs as possible using scalable underapproximate
techniques and (semi-) formal analysis. Such methods are
more practical and provide concrete traces, rather than a
suspicious bounded pass due to suspect abstractions.

Related work

As stated above, typical approaches to verify arbiters check
for eventual grant of resources to the requests without much
attention to performance aspects. Krishnan et. al. [8] studied
starvation and performance of random priority-based arbiters
extensively. They proposed a three-step verification process
for computing an upper bound on the request-to-grant delay.
In the first step they compute the maximum length Complete
Random Sequence (CRS) comprising all random numbers (in
the context of the sampled bits) the LFSR can assume. Next
they compute the maximum number of CRSes needed for a

request to be granted by the arbiter standalone with replacing
the LFSR with a random-number generator. In the third step,
the two values computed are combined to give the worst-case
request-to-grant delay in clock cycles. A drawback of this
method is the decoupling of the LFSR from the arbiter in
the second step; a CRS can complete without being sampled
by the arbiter. This produces a theoretical worst-case request-
to-grant delay yielding very high bounds at times, much
higher than the bounds stated in the model specification to
be useful. Moreover, the trace produced by this technique is
not representative of the overall system comprising the LFSR
and the arbiter.

Our proposed technique compliments the above solutions
by providing an effective bug hunting method for the actual
LFSR-based arbiter, without any simplification thereof which
may render the treatment (results) removed from the real
logic. The effectiveness of the method has been proven on
highly complex arbitration systems where it was leveraged
to find real bugs. The method dynamically chooses between
property strengthening and underapproximations in order to
find a failure faster. The method can be easily generalized to
create property-based underapproximations.

IV. BUG HUNTING IN LFSR-BASED ARBITERS

The complexity of property checking is a function of the
property and the design-under-test (DUT). Our bug hunting
approach considers both the property and the DUT. In this
section we describe how we construct easier-to-check under-
approximate abstractions of LFSR-based arbiters.

Underapproximation and overapproximation techniques are
commonly used to falsify properties or prove their correctness
[3]. An abstract system is easier to check than the concrete
system because it has fewer states and fewer transitions. Since
our focus is bug hunting of safety properties we leverage
underapproximations to obtain traces falsifying the property,
which are then validated on the concrete/original model.

The seed of an N -bit LFSR may range between 1 and
2N − 1. The seed fully determines the LFSR sequence, so
a run of the arbiter is based on one of 2N − 1 possible seeds.
To underapproximate the arbiter we fix the LFSR seed by
assigning it a constant N -bit number. A fixed-seed arbiter
underapproximates the nondeterministic-seed arbiter as every
run of a fixed-seed arbiter corresponds to a single LFSR
sequence. If a bounded-starvation property fails in a fixed-
seed arbiter then it definitely fails in the nondeterministic-seed
arbiter; additionally, a counter-example that demonstrates a
fail of a safety property in a fixed-seed arbiter is valid in the
nondeterministic-seed arbiter. If a bounded-starvation property
holds in a fixed-seed arbiter we cannot ascertain if it holds in
the concrete system.

Falsification of a k-cycle-starvation property in an N -bit
LFSR arbiter requires checking runs of depth k in a model that
allows 2N−1 possible LFSR sequences. Our method addresses
the inherent hardness by alternating checking easier-to-check
properties on the original system, and checking the original
property on abstract systems. We iteratively check starvation
with lesser bounds on the original system, and starvation with

the original bound on fixed-seed arbiters. We use property
strengthening to seek interesting seeds that generate sequences
that are likely to cause long starvation.

We define the following properties that express lower
request-to-grant delays

pj
.
= request -> next_e [1..j] (grant)

for 1 5 j < k. It is obvious that checking any of the properties
pj can be done in a shorter period of time than the original
property. Clearly, every run that starves a request for k cycles
starts with a starvation of j cycles, but a starvation of j cycles
does not necessarily end with a starvation of k cycles. If a
property pj fails in the concrete system and a counter-example
is generated, we underapproximate the arbiter by restricting
it to the very same LFSR sequence that the counter-example
reveals. Since LFSR sequences are determined by their seed it
is enough to confine the arbiter’s non-deterministic seed to the
same seed that is exposed by the counter-example. Checking
the fixed-seed arbiter is easier and likely to uncover a k-cycle
long starvation.

Our method is outlined in Algorithm 1. We denote the orig-
inal nondeterministic-seed LFSR arbiter by M , the maximal
number of cycles allowed between a request and a grant as
determined by the specification by k, and for some constant
number c, we denote by M [seed ← c] the arbiter M whose
seed is the constant number c.

Algorithm 1 Checking bounded starvation on LFSR-based arbiters

1) check M
?

|= p
2) if pass or fail then return result
3) jmin ← 1; jmax ← k
4) while (jmin � jmax) do

a) j ← b jmin+jmax

2 c

b) check M
?

|= pj
c) if pass then return “pass”
d) if timeout then jmax ← j
e) if fail then

i) Mj ←M [seed← seedj] ; jmin ← j ;

ii) check Mj

?

|= p

A) if fail then return “fail”

The algorithm checks bounded starvation with different
bounds and creates underapproximations of the original arbiter
by initializing it with different seeds. We iteratively check
property pj with arriving at the next value of j using a binary
search. If checking of a bounded-starvation property pj times
out, we next check another bounded-starvation property with a
lower bound. If a property pj fails, we extract the LFSR seed
from the counter-example, denoted by seedj . Next we restrict
the arbiter’s seed to seedj , and check if the original property
fails in the fixed-seed arbiter. If the property does not fail we
narrow the seed space by checking a weaker property with a
higher bound.

The algorithm halts after log(k) steps at the most. Let us
examine an extreme case where all runs of the strengthened
properties on the concrete model, M |= pj , time out. This

indicates that the arbiter is extremely complex and beyond
the capabilities of our formal-verification tools. We note that
the method is an effective bug hunting heuristic, but does not
guarantee a bug free design, nor does it cover all LFSR seeds.

V. BUG HUNTING METHOD – A GENERALIZATION

We generalize the presented heuristic to general purpose
model checking. The rationale is straightforward – check
strengthened properties on the original model to aid in finding
an efficient underapproximation for bug hunting on the original
model. If any of the strengthened properties pass on the
original model, it implies that the original property passes as
well. If it fails then, heuristically, it has some information
leading to a fail of the original property. This information
can be extracted, and used to guide the search for a failure
on the original property. This is achieved by defining an
underapproximation of the model and checking for the validity
of the property on it.

Intuitively, a safety property asserts that something bad
never happens, while a strengthened property asserts that
something “not-as-bad” never happens. Formally, for two
properties p and q we say that property p is stronger than
property q if p→ q. Consequently, given system M and two
properties p and q such that p is stronger than q, we have
M |= p→M |= q, i.e., if p holds in M then q holds in M .

Falsification of a strengthened property tends to be easier
than falsification of the original property because it defines
more bad states in the system. If falsification of the original
property is infeasible then we check a strengthened version
of the property. If the strengthened property fails, we restrict
the concrete system to the valuations provided by the obtained
counter-example, and see if the original property fails.

It is not easy to determine how to strengthen a property
in a useful manner. Hence, we restrict the discussion to a
subset of properties whose strengthened versions enable an
efficient and exhaustive search. A straightforward example
for such properties is PSL parameterized properties that have
a single parameter that serves as a sequence consecutive-
repetition operator or as a bound of the next_e or next_a
families of operators (formal definitions can be found in [1]).
These widely-used operators are similar to the next_e operator
used in our test case, and the practice of binary search over a
bounded range of integers readily applies to them.

VI. EXPERIMENTAL RESULTS

The bug hunting method described in section IV has been
used to verify several random priority-based arbiters used in
an interconnect unit, and a router of a complex commercial
processor. Table I shows the experimental results on 3 such
industrial designs that use different types of random priority-
based arbiters, and different LFSR sizes to generate pseudo-
random numbers. The first arbiter, referred to as C_arbiter,
is a command arbiter using a 32-bit LFSR. It arbitrates 27
requestors going to a single target. Its specification states
the starvation bound to be 600 cycles. It uses a compound
priority scheme combining LFSR-based arbitration and round
robin to combinatorially compute the next granted requestor.

Design Random seed run time (h:m) Fixed seed run time (h:m) Vars before Redn Gates before Redn Vars after Redn Gates after Redn
C_arbiter 48:00 (Timeout) 8:56 2361 90397 812 7883
I_router 48:00 (Timeout) 21:09 104575 4223285 34070 1413519
I_arbiter 21:34 19:50 104575 4223285 30766 876328

Table I
RUN TIMES AND MEMORY USAGE FOR DIFFERENT ARBITERS

The second design, referred to as I_router, is a router of 56
requestors to 56 targets. The router is a more complex case of
arbitration. It cannot starve an input from getting a request, and
it cannot block an output from receiving a request. This router
has a 16-bit LFSR, and it uses three of its bits for arbitration. It
is a very large design with hundreds of thousands of variables
(inputs and Flip-Flops) with multiple arbitration stages. The
third arbiter, I_arbiter, is a simpler case of this router, with
only one target available, thus checking arbitration only. The
specification of I_router and I_arbiter requires a starvation
bound of 1000 cycles.

All experiments were run on a 2x2.4GHz AMD dual core
processor with 8 GB RAM memory, using IBM’s RuleBase PE
[2] and SixthSense [9] state-of-the-art industrial formal verifi-
cation tools. The problem size is in term of gates and variables
as reported by the RuleBase PE tool, shown before and after
running RuleBase PE automatic model-size reductions. Vars
denotes the numbers of registers and inputs.

For each of the designs we first applied the CRS technique
[8]. The results yielded request-to-grant bounds higher than
the starvation bounds in the specification. E.g., for the router
arbiter it showed that the max length of CRS is 95 cycles; and
we found that the request-to-grant delay is at least 50 CRSes
– while trying to find a higher bound of 100, the tool timed
out, implying a best case request-to-grant upper bound to be
at least 4750 cycles.

Table I shows the run time of runs of the original property
on fixed-seed arbiters that yielded traces (the last step in
Algorithm 1). The various runs to compute an initial LFSR
seed took anywhere from few minutes to 4 hours. We used
parallel capabilities of our toolset to run a large number of
rules with different starvation bounds, with a total run-time
of 8 hours. The highest bounds on which the properties pj
failed were 375 for the C_arbiter and 687 for the I_arbiter. We
gathered all LFSR seed values from the failing traces, seeded
the LFSR of the original design with those, and ran the original
formula. For benchmark purposes, the results above show the
run time of RuleBase PE without using the parallel feature.

The verification timed out on the nondeterministic-seed
runs of the C_arbiter, while a specification violation with a
fixed seed was found in 9 hours. For the I_router design, the
nondeterministic-seed runs timed out as well, while a trace for
a fixed seed was obtained after 21 hours. As for the I_arbiter,
the nondeterministic-seed finished in 21-1/2 hours while the
fixed seed finished in 20 hours. In the I_router and I_arbiter
designs the trace was found after the first run of algorithm
1, while on the C_arbiter the algorithm ran more than once
and timeout increased for the run of stronger properties on the
original model.

Clearly the fixed seed method shows a significant advantage

on the more complex designs. It was able get past the huge
complexity barrier of these designs. Note that even if the
nondeterministic-seed runs were to finish easily, the initial
state of the LFSR from these runs can be used as a seed
for future runs that try to falsify proposed fixes. Another
interesting fact was that the initial LFSR seed for the I_router
and I_arbiter traces was different. In addition to finding the
bounded starvation traces, our method was able to give us a
large number of interesting traces which provided insights into
the relationship between the LFSR and the arbiter.

VII. CONCLUSION AND FUTURE WORK

We presented an effective method for computing smart
property-based underapproximations. The technique dynam-
ically converges on underapproximations which yield useful
results in the form of bugs or interesting insights into the
workings of the logic. This method has been successfully
applied to LFSR-based arbiters and provided results which
otherwise would not have been obtained with other techniques.

The described approach can be further generalized to
other types of properties. Other directions include developing
more general ways to construct underapproximations from
counter-examples. The search for underapproximations can
be improved by considering additinal seeds provided by the
underlying decision procedure. The method can be enhanced
further to be a proof-oriented approach by extracting reasons
for pass results of the strengthened properties from the solving
engines.

ACKNOWLEDGMENTS

The authors would like to thank Alexander Ivrii and Hana
Chockler for their helpful comments.

REFERENCES

[1] IEEE Standard for Property Specification Language (PSL). IEEE Std
1850. 2010.

[2] S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal. Model checking at
ibm. Formal Methods in System Design, 22(2):101–108, 2003.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[4] W. Dally and B. Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers, San Francisco, 2003.

[5] N. Dershowitz, D.N. Jayasimha, and S. Park. Bounded Fairness. Lecture
Notes in Computer Science, 2772:304–317, 2004.

[6] C. Eisner and D. Fisman. A Practical Introduction to PSL. Integrated
Circuits and Systems. Springer-Verlag, 2006.

[7] P. Horowitz and W. Hill. The art of electronics. Cambridge University
Press, 2nd edition, 1989.

[8] K. Kailas, V. Paruthi, and B. Monwai. Formal verification of correctness
and performance of random priority-based arbiters. In FMCAD, 2009.

[9] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann.
Scalable automated verification via expert-system guided transformations.
In FMCAD, pages 159–173, 2004.

