SLAMZ2: Static Driver Verification with
Under 4% False Alarms

Thomas Ball Ella Bounimova Rahul Kumar Vladimir Levin
Microsoft Research Microsoft Research Microsoft Microsoft
Redmond, USA Redmond, USA Redmond, USA Redmond, USA

No Errors Validated Error

Abstract—In theory, counterexample-guided abstraction re-
finement (CEGAR) uses spurious counterexamples to refine T T

overapproximations so as to eliminate provably false alarms. | mstrumented Abstraction |__Boolean Model Error Trace ’
CProgram Program Checker Trace Validation

In practice, CEGAR can report false alarms because: (1) the
Invalid error trace

underlying problem CEGAR s trying to solve is undecidable; (2)
approximations introduced for optimization purposes may cause

CEGARUto be unable to eliminate a false alarm; (3)CEGAR has New Predicates for refinement
no termination guarantee - if it runs out of time or memory then
the last counterexample generated is provably a false alarm. Fig. 1. The SLAM realization of the CEGAR loop.

We report on advances in theSLAM analysis engine, which
implements CEGAR for C programs using predicate abstraction,
that greatly reduce the false alarm rate. SLAM is used by the))
Static Driver Verifier (SDV) tool. Compared to the first version at least this trace from the abstraction (the so-caiedjress
of SLAM (SLAM1, shipped in SDV 1.6), the improved version property); third, even if CEGAR always makes progress it
(SLAM2, shipped in SDV 2.0) reduces the percentage of false sfill has no guarantee of terminating [BPRO2].
gm‘g: frl(:)g; t2h5é7é)h;%gnggsg /gffoéet\nge\/\fj[r)i\'\//lergééﬁ :{Age\(]';: Theoretically, the lack of a termination guarantee appears
under 0.05% false alarms. The variety and the volume of our [0 Pe the death knell for CEGAR: most program analyses
experiments of SDV with SLAM2, significantly exceed those typically have termination guarantees despite having the prob-
performed for other CEGAR-based model checkers. lem of false alarms. However, we can set a time limit on a
These results made it possible forSDV 2.0 to be applied as CEGAR run. If the run is aborted, we have the result that
gﬂvg:ﬁ?maﬂc and required quality gate for Windows 7 device 0 |5 counterexample trace considered by CEGAR was
invalid (provably a false alarm). So, CEGAR with a time limit
|. INTRODUCTION has a three-valued outcome: (1) verified; (2) validated error
A decade ago, the SLAM project [BRO2b] introducedrace; (3) not-useful result (NUR) due to lack of progress or
the concept of counterexample-guided abstraction refineméRteout/spaceout. In the second case, the result still could be
(CEGAR) for the analysis of temporal safety properties ¢ false alarm due to bugs in the environment model, temporal
C programs. This work resulted in the Static Driver Verifiegafety property, or the SLAM engine itself. In the results
(SDV) tool that Microsoft applies internally to its devicereported in the abstract and here in the introduction, we count
drivers and ships with the Windows Driver Development Kiguch cases as well as NURs as “false alarms”.
(WDK) for use by third-party device driver writers [BB©6]. In order to improve the chances for CEGAR to terminate
As shown in Figure 1, the essential points of the CEGARith useful results and fewer false alarms, we explored four
process, as implemented by SLAM, are: (1) the automatgwhin ideas in SLAM2, which was derived from SLAM1.
creation of a Boolean programbstractionof an instrumented First, we increase the precision of the predicate transformer
C program that contains information relevant to the propertver statement sequences. SLAM1 abstracts each C program
under consideration; (2nodel checkingf the Boolean pro- statement (such as an assignmentassumestatement rep-
gram to determine the absence or presence of errors; (3) theenting a conditional branch) to a corresponding Boolean
validation of a counterexampliérace to determine whether or program statement. Thus, if the C program contains the state-
not it is a feasible trace of the C program. The last step carent sequencéS;; S2) then the Boolean program abstrac-
either produce a validated counterexample trace or a prdisfn computed by SLAM1 contains the statement sequence
that the trace is invalid (a provably false alarm), in whichS;#;S>™), whereS# is the abstraction of statemefit We
case information is added to the abstraction to rule out tkall this approacHine-grainedabstraction. Our contribution
false alarm. here is to show how to construct the Cartesian/Boolean pro-
The CEGAR process has three distinct attributes: first, gram abstraction [BPRO1] for sequences of assignments and
may terminate with either a proof of correctness (“verified”) oassume statements, so that the statement sequéhcss)
a validated counterexample trace; second, if CEGAR proveslastracts tqSy; Sg)#. We call this approacleoarse-grained
counterexample trace is invalid then, in theory, it can rule oabstraction, which SLAM2 implements.

Second, we use diverse strategies for exploring counterekecks using both SLAM1 and SLAM2 on 69 device drivers
ample traces. SLAM1 uses a “depth-first” strategy: it synfrom the WDK against 83 temporal safety properties.
bolically executes a counterexample trace in the C programA common question about verification tools is “who verifies
forward from the initial state. As soon as it finds a tracthe verifier?”. The typical answer is that one uses lots of
prefix that is inconsistent, it generates a set of refinemdmgnchmarks and testing, as well as cross comparison to other
predicates and a refined Boolean program abstraction. Tbels. In the development of SLAM2, we found numerous
SLAM1 symbolic execution step is complicated because dgficiencies in SLAM1, including its overconstraining of the
its use of symbolic (Skolem) constants, which must be trackabistract transition relation, which leads to “false verification”,
and eliminated in order to later generate properly scopedeal but little acknowledged problem with verification tools.
predicates [BR02a]. So, we also compared SLAM2 to theo¥! analysis en-

In contrast, SLAM2 uses both forward and backwardine [NRTT09] on the same benchmarks. For WDM, SLAM2
symbolic execution. Forward symbolic execution is a simplgrovides 7% fewer NURs, fewer false defects (2 versus 18),
interpreter that maintains a symbolic store. Backward symbolicdiile finding 18 true defects that &G misses (YoGI finds
execution is based on preconditions, decomposed and cacRddue defects that SLAM2 misses), and is two times faster
per program point in order to make predicate generation vehan YoGl. For KMDF, SLAM2 produces 58 times fewer
simple. The combination of forward and backwards symboldURSs (2 versus 117), and is 8 times faster thancy.
execution allows SLAM2 to detect inconsistencies near the SLAM2 moves closer to the CEGAR promise to “abstract-
beginning of a counterexample trace as well as near the erdl-refine” until it produces a proof of correctness or a
or in the middle, giving it more flexibility over SLAM1. validated trace. The false alarm rate of SLAM2 is so low

The third major difference is in how the two engines reathat SLAM2 empowers a truly push-button software model
to the lack of progress, which can occur because SLAM comhecking experience for users of the SDV tool, which resulted
putes approximations to the best Boolean abstraction in orderthe technology being required as quality gate for shipping
to speed the search for both proofs and counterexamples. UpbiMicrosoft-produced Windows 7 device drivers.
finding lack of progress (identified when none of the predicatesThe rest of this paper is organized as follows: Section Il
generated in the current iteration of CEGAR is new), SLAMpresents the coarse-grained abstraction; Section Ill describes
refines the Boolean program transition relation [BCDR04]. Wise forward and backwards symbolic interpreters; Section IV
call this the @NSTRAIN module of SLAM, which is common describes how SLAM?2 uses these interpreters to optimize the
to both SLAM1 and SLAM2. In contrast, SLAM2 detectsCEGAR loop; Section V presents the treatment of precondi-
multiple inconsistencies in the same counterexample traigens for assignments and procedure calls in the presence of
when a lack of progress stops it; it interleaves the discoveppinters; Section VI presents experiments results; Section VI
of new predicates with application of theod®sTRAIN module reviews related work, and Section VIII concludes the paper.
so that it is less likely to get stuck.

Fourth, SLAM?2 uses information computed during forward
symbolic execution to optimize backward symbolic execution Given a C programP, a set of Boolean expressioris,
in several ways. In particular, the value of pointers computétl-AM’s predicate abstraction step produces the Boolean
by the forward execution is critical to the optimization offogram abstractionBP(P, E) containing variablesV” =
the precondition calculation for assignment statements affdl: b2 ---,b.}. Each variableb; in V' corresponds to the
procedure calls. Boolean expression (predicate) in E. Boolean programs

In addition to these four main ideas, SLAM2 has a confontain all the control-flow constructs of C, including pro-
pletely re-implemented and more efficient pointer analysis. f§dures and procedure calls. We will focus here on the
optimize predicate evaluation, SLAM2 uses the Z3 state-giPstraction of a procedure with no procedure calls, as the
the-art SMT solver [MB08] with two major improvements inhandling of procedure calls and returns remain unchanged
the interface between SLAM and Z3: an efficient encoding §pmpared to SLAM1 [BMRO5].
the predicates given to Z3 and a new set of axioms that expres&§ach procedure of a C program is represented by a control-
the SLAM memory model, in particular, relations betweefOW graph with basic blocks, where each basic block is a
pointers and locations [BBAML10]. sequence of assignments, skips, atsdumestatement;. The

As the saying goes, “the proof is in the pudding”: comparedfSumestatements are used to model the semanticsf-of
to SLAM1, SLAM2 reduces the percentage of false amm{Qen-elsestate_ments as well as assumptions about data (non-
from 25.7% to under 4% for the WDM class of device driverd!Uliness of pointers). _

For the KMDF class of device drivers, SLAM2 has under SLAM2 generalizes the abstraction step compared

0.05% false alarms.These figures come from 5727 uniqud® SLAM1 by abstracting sequences of statements as
opposed to single statements:

Il. COARSE-GRAINED BOOLEAN ABSTRACTION

1The Windows Driver Model (WDM) is a widely-used kernel-level API
that provides access to low-level kernel routines as well as routines specifi
to driver's operation and life-cycle. The Kernel-mode Driver Frameworﬁ, . . .
(KMDF) is a new kernel-level APl which provides higher-level abstraction he main advantage of coarse-grained abstraction compared

of common driver actions. to fine-grained is increased precision [CC77].

S —51;8; | skip | z:=e | xx:=e | assumge)

S pre(S, Q) wp(S, Q)
skip Q Q
ri=e Qle/x] Qle/x]
sr:=e | (x=8&y AQle/y1]) V...V (x = &y A Qle/yr]) | Same aspre(S, Q)
assumeée) enQ@ e = Q
Sl;SQ pTG(Sl,pT’6(SQ,Q)) wp(slva(s27Q))

Fig. 2. Predicate transformegse and wp.

A. Transformation assumegy (pre(S, true)));

We use the standard preconditiopr€) and weakest pre-
condition @p) predicate transformers to assign meaning 1o
C programs as well as to perform the abstraction to Boole@n
programs. Figure 2 shows the predicate transformers for the
statementsS under consideration. Recall thaip(S,Q) =
ﬁpr‘e(‘S’vﬁQ)' —

We use a source-to-source transformation on the C programb” o '; (i‘/ (wp(suZ(g), on)) thetzrr: true Eelse lsex:
to simplify the abstraction process. Any statement sequence It (Fv (wp(sub($), ~pn))) then false elsex;
S is equivalent toassumépre(S, true)); sub(S), where the Fig. 3. Cartesian/Boolean abstraction of statement sequgnce
functionsub(S) is defined to be the maximal subsequencs of
containing only assignment statementsSofand is defined to
be theskip statement in the case th&tcontains no assignment

by := if (Fv(wp(sub(S),¢1)) then true else
if (Fv(wp(sub(S),—p1))) then false elsex,

IIl. COUNTEREXAMPLE TRACE VALIDATION

statements). In this section, we explain the two symbolic interpreters
Lemma 1 (Correctness of transformatignFor all statement that SLAMZ uses to perform counterexample trace validation
sequences and predicate): on C programs and predicate discovery. The first is a forward
interpreter and the second a backwards interpreter (SLAM1

wp(S, Q) <= wp(assumepre(S, true)); sub(S), Q) only performs forward symbolic execution). The next section
Proof. By induction on length of statement sequersteshow will discuss more about how the two interpreters are used

that together.

The language of compound statements introduced in the
wp(S,Q) <= (pre(S,true) = wp(sub(S),Q)) previous section for the abstraction of basic blocks also serves

[The proof is straightforward but omitted due to lack of spaceES the_ba5|s for our d|scu_55|on of symbc_mc execution of an
xecution trace An execution trace is simply a sequence

B. Abstraction of basic blocks through the control-flow graph, whose code
A cubeover V is a conjunctiore;, Ac;, A...Ac;,, where can be modeled by a sequence of assignment assdime
eache;, € {b;,,b;,} for someb;, € V. For a variable; € V/, statements (one very long basic block). For the rest of this
let £(b;) denote the corresponding predicate and let€ (—b;) section, letS;S,, represent the sequence of statements in
denote the predicate,;. Extend€ to cubes and disjunctions the execution trace under consideration.
of cubes in the natural way.
For any predicatep and set of Boolean variableg, let) .)
Fv () denote the largest disjunction of cubesver V such Forward Symbolic Execution (FSE) processes émire
that £(c) implies . The predicatef (Fy (¢)) represents the tracesS; .. : Sy, with two goals: (1) to find an invalid execution
weakest predicate ovel(V') that impliesy. The correspond- trace prefix of the forms, ...S;; (2) to populate a “trace
ing weakening of a predicate is also defined similarly. L&latabase” that maps each statemgnto the store computed
Gy (¢) be ~Fy (). The predicate (Gy () represents the by FSE just before execution of;. Thg main use of the trace
strongest predicate ovel(V) that is implied byc. datat_)gse is to resolve p(_)lnte_r-allasmg questions in a trace-
Following Lemma 1 and the definition of Cartesian/Boolea?€nSitive manner, as detailed in Section V. _
abstraction [BPRO1], Figure 3 shows the translation of a state-OPerationally, forward symbolic execution is an interpreter
ment S to aguarded parallel assignmeiin the Boolean pro- that computes the strongest post-conditiop(f, 5)) of a
gram. Here the value represents a value non-deterministicalif@{ément sequencé with respect to the initial predicate
chosen from{true, false}. The computation of the predicate!” = true. Recall that
abstraction of a formula, as represented b¥y (¢), typically sp(P, skip) = P
relies on an automated theorem prover [GS97]. SLAM1 and sp(P,assumée)) PAe
SLAM2 both rely on a specialized algorithms for predicate sp(P,z := ¢) 30,.Plx/0]) A (x = e[z/6,])
abstraction [LBCO5]. sp(P, S1; S2) sp(sp(P, S1), S2)

A. Forward Symbolic Execution

C-like Program Precondition Vectors
I void main(){
2: int x, y, a;
3: X =,
4: X = X+1; 0 1 2
5: if(a>0) 34| true |[y+1=y+2 | =(a>0)
6: a = a+l; 5 true | x =y +2 —(a > 0)
7 if(x = y+2){ 7 true | x =y + 2
8 SLIC_ERROR:0; 8 true
9: }
10: }
(€)) (b)
Fig. 4. Backwards Symbolic Execution
(for brevity, we omit the rule fokx := e). <qo, ---, gr, € >, Which preserves the positions of the
FSE maintains a store mapping locations to values amdthe vector.
processes the statemerfis...S, in order fromS; to S,. BSE starts with the one element veclQr= < true >.

Symbolic evaluation of an assignment (= e or xx := ¢) Processing of anssumestatement lengthens the vector by one

involves: (1) evaluation of the RHS expressiom the context element, as described above. For an assignment statement, the

of the current store to get a value (2) evaluation of the pre computation for the assignment is applied point-wise to

LHS expression in the context of the current store to gettle input vector, resulting in a new vector of the same length.

location I; (3) mapping location/ to value v in the store =~ We can visualize the computation pf-e as creating an

(possibly overwriting the previous mapping for locatiGn upper-left-triangular matrix of row vectors, where the first

During symbolic execution, if a locatian(such as the addresscolumn containgrue everywhere and each subsequent column

of variablex) doesn't have a mapping in the store then a freskpresents the history of a subformula introduced by an

symbolic valued; for the value ofl is created and is mapped assumestatement. The last rovk 1) of the matrix represents

to 6, in the store. the starting point wher€), =< true >. Thei*" row of the
Execution of a statemerf; = assumée;) first evaluates matrix (1 <1i < k) represents); = pre(S; ... Sk, true).

the Boolean expressios in the current store, which results For each new precondition vectdp; computed, Z3 is

in an expressio; solely over constants of the programmingalled to query if the conjunction of formulas in the vector

language (such a$, 42, ...) and symbolic constants (suchis satisfiable. If it is unsatisfiable then the tradg...Sy

as 6;). FSE maintains a trace conditiop (initially ¢rue), is invalid and the predicate discovery algorithm starts, as

which is the conjunction of the);. A call to the theorem described in the next subsection. Otherwise, BSE proceeds

prover Z3 [MBO08] determinines the satisfiability of the forto consider statemernt;_; in the trace. If BSE determines

mula 36.¢ A e;. If the formula is satisfiable, then there ighat @, is satisfiable then the execution trace is valid.

an assignment of values to the symbolic constahtéhe Figure 4 illustrates BSE on a simple C program (a).

primary inputs to the execution trace) that witness the validigonsider the false counterexample tr2e8-4-5-7-8 . Fig-

of the execution trace. If it is unsatisfiable then the trace prefixe 4(b) shows the vector-based computatiorpaf on this

S5; is inconsistent/invalid. trace, with the corresponding trace step numbers in the left-
_ . most column (only the steps where the preconditions change
B. Backwards Symbolic Execution are shown).

Operationally, backwards symbolic execution (BSE) com- Columns 0-2 in the table show the precondition computation
putespre(S; ... Sy, true), k < n, but decomposes and cachefor each step of the trace, going backwards from the error step
the representation of each applicatiorpet in order to enable 7. For example, at step 6 a new vector elemenrt y + 2 is
predicate generation if the counterexample is determinedadded, which corresponds to tigen branch of the condi-
be invalid. The benefits of symbolic execution withe are: tional. At steps 3 and 4, which correspond to the sequence of
(1) there is no need to introduce symbolic constants; (8psignmentg := z;z := x + 1, the precondition in column 1
assignments to variables that don't appear in the postconditiSrcomputed agre(y := x5z :=r+1,x =y+2) = (y+1 =
Q have no effect. An issue with the use jfe is a blow-up ¥ +2), whereas the precondition in column 2 is not affected.
in the size of the precondition formula due to pointer aliasing Predicate Discovery
(see the rule fokz := e in Figure 2), which we will return "
to later. Given an invalid execution tracé);...Sy, the goal of

The decomposition ofpre is based on the simple ob-Predicate discovery is very simple: find a set of predicates

servation thatpre(assumée = (e N Q). If is a
P (Gé)’ Q) (Q) Q 2Note that the two assignment statements occupy the same basic block, so

conjunction (qo A A qT‘)v represented implicitly by the are treated together, just as they are during the abstraction step. This reduces
vector < ¢, ..., g >, then we represenfe A @) by the number of predicates generated.

E such that the abstract version jfe induced byE (preg) traceS;...S, to try to find an invalid trace suffiXsyS,.
can proves; ... Sy is an invalid execution trace. Second, if there is lack of progress on invalid trace suffix
More formally, letag(¢) be the weakest formulad’ (in Sy ...S,, SLAM2 will perform a partial resetof the pre
the implication ordering) such that’ is a Boolean combi- computation and continue BSE, as follows. Suppose that
nation of the predicates iy and ¢’ implies ¢. Then for the set of inconsistent columns of the precondition matrix
a basic blockS, preg(S,Q) = ag(pre(S,Q)) and for a after processingy ... S, arek;, ks,. .., k. The partial reset
sequence of two basic blocks and S,, preg(S1;52,Q) = removes these columns from the precondition matrix and
preg(S1, preg(Sa, @)). Suppose thapre(S; ... Sk, true) = resumes BSE at statemef)t_;. The partial reset can be done
false, where theS, are basic blocks, then we wish to find anultiple times to find multiple invalid traces.
sufficientset of predicate& such thapreg(S; ... Sk, true) = The above approach is interleaved with the application of
false. the CoNSTRAIN module, which is applied just once when a
Once BSE has discovered that a precondition ve@prs lack of progress is first identified. SLAM1 does not attempt
unsatisfiable, it is clear that the set of predicates in the ptte- find multiple invalid subtraces. Upon lack of progress,
condition matrixM; 1 =< Q11 ... Qi > are sufficient. Of it attempts to resolve the issue using@IGSTRAIN. If lack
course, we can do much better: the underlying theorem prowdrprogress continues, SLAM1 terminates with a “GiveUp”
can provide us an unsatisfiable core)f a small subset of the result, whereas SLAM2 will continue to analyze the trace to
elements of); whose conjunction is unsatisfiable. This subsdind new predicates. If SLAM2 finishes explorirgS,
identifies a set of “inconsistent” columns M, ;. Again, it with no new predicates, it too will terminate with a “GiveUp”
is clear that the set of predicates from this set of columns aesult.

sufficient. In our example at line 3, the formula
V. PROCEDURECALLS AND POINTERS

Jy.Jatrue A (y+1=y+2)A=(a>0) A key aspect of the SLAM approach to CEGAR is that
the Boolean program abstraction contains procedures and pro-
a sufficient sef includes predicates from the second columEedure calls. Thus, Boolean variables introduced by predicate
{z=y+2). discovery can be locally _scoped to a procedure, which reduces
the cost of model checking.
IV. OPTIMIZING THE CEGAR LooP: MULTIPLE SLAM?2 remains unchanged with respect to SLAM1 re-
INCONSISTENCIES garding Boolean program abstractions with procedures. BSE

Optimizations of the CEGAR loop are based on ana|ysigarforms precondition evaluation at procedure return and pro-
of the cases when SDV fails on Windows device drivers witgedure call steps by converting the precondition from the scope
“not-useful results” (NURs, in SDV terminology). In theory,0f the caller into the scope of the callee (for returns) and back
for a CEGAR run, the set of predicates strictly increasdfor calls). This is done by using relations between actual and
as the iterations of CEGAR increase. LEBf be the set of formal parameters of the call/return, and between the return
predicates discovered by iteratiorof CEGAR. In practice, Value of the procedure call (if any) and the return variable of
both SLAM1 and SLAM2 may discover predicat&s such the callee. - _ .
that E; C Jy,.,; Fi. This lack of progress condition can As discussed before, the'precondltlon computation applied
arise due to approximations introduced in the abstraction st&fing BSE has the potential to blow up in size because of

which can result in the same counterexample trace beiRginters. But, in fact, SLAM2 eliminates this possibility by
produced in consecutive iterations. making thepre computation trace-sensitive for BSE, using

Upon finding lack of progress, SLAM1 employs a toofhe pointer aliasing information computed by FSE. Consider
called GONSTRAIN to refine the Boolean program abstractiod Statemens; : «z := e in the trace. Recall thaire(xz :=
computed for the current set of predicates [BCDRO04]. O @) iS

is unsatisfiable. An unsatisfiable core{ig/+1 = y+2)}. So,

experiments indicated thatd®STRAIN was a bottleneck in 2 = &ui A Ole V.V (z = & AOle
SLAM1, so we experimented with techniques in SLAM2 to (v A Qle/nl) (i A Qle/yi])
reduce the need to USEORSTRAIN. To reduce the size of this formula, BSE looks up the location

The optimized CEGAR loop makes use of both FSE aritpinted to byz in the store computed by FSE on entry to
BSE, as well as the G@ISTRAIN module. Given a counterex- Statements;. Suppose that in this store maps to&y;. Then
ample traces; . .. S,,, SLAM2 first applies FSE. If FSE finds the above equation reduces@e/y;].
an invalid trace prefixS; ... S; then BSE is applied to the Vi
traceS;S; to discover new predicates.

The approach outlined above is similar to SLAML1: pred- We now presgnt a comparison of SLAMZ’ SLAMIL
icates are discovered based on invalid tracefixes How- and YOG! by running SDV on two large test suites developed

ever, an invalid trace can have several invalid subtraces. §8,d, maintained bY Mlcrosqft quality assurance teams for
SLAM2 also uses BSE in two new ways to discover mor&sting SDV. We first describe our evaluation platform and

invalid Suptraces' First, if there.is lack of progress on inva"d 30ne could also perform a full reset of the precondition matrix to the initial
trace prefixS;...S;, SLAM2 will apply BSE to the entire vector < true > - we did not experiment with this approach.

. EXPERIMENTAL RESULTS

Metric SDV 1.6 (SLAM1I) | SDV 2.0 (SLAML) | SDV 2.0 (SLAM2)

Drivers 69 69 69
Rules 68 83 83
Total checks 4692 5727 5727
LightweightPass results | - 2477 2477
Pass results - 2563 2551
NUR results 6% (285/4692) 2.1% (123/5727) 3.3% (187/5727)
Defects reported 157 564 512
GiveUp results only - 0.52% (30/5727) 0.3% (16/5727)
False defects 19.7% (31/157) 9.04% (51/564) 0.4% (2/512)
Time for identical pass | - 39922 65800
Time for identical defect| - 4440 2669

TABLE |

COMPARISON OFSLAM1 AND SLAM2 FORWDM DRIVER CHECKS

criteria. At Microsoft, SDV is used for verification of device g%\éz.o (SLAMI) ﬁgs\g 2.0 (SLAM2) ngNT (\:/HANGE
drivers built in multiple driver development models. For our[Defect (false) Pass 5 V
analysis, we have chosen test suites developed for WDM Defect (true) Pass 2 X
and KMDF drivers. These comprehensive test suites inclu Pg'(‘g‘?_fp EZ?:U 9 ;5 \\?
dr?vers of _different sizes (1-30K LOC)_, w!tlj a mix of test ggrect (false) OOR 36 \/
drivers written to test SDV rules (with injected defects),[GiveUp OOR 13 v
sample drivers that are shipped in WDK to provide guidance Pass OOR 64 ~
to driver developers, and drivers that are shipped as part of thegOR GiveUp 2 ~
. . efect (false) GiveUp 11 N
Windows operating system. Note that all the data presented Npefect (true) GiveUp 1 %
this section has been extracted from test runs performed by TABLE Il
the test team. BREAKDOWN OF CHANGES OBSERVED BETWEENSLAM1 AND SLAM2
Most of the metrics used in this section were explained USING SDV 2.0FORWDM DRIVERS.

in previous sections. New to this section are the following

metrics. A “check” is a run on one driver for one rule. A

“L IGHTWEIGHTPASS’ result refers to the fact that before

starting the CEGAR loop, SDV first applies property instruPart of SDV 2.0. Dashes in the table indicate that the data is
mentation, pointer analysis, and function pointer resolution B9t available for that particular metric.

show that the error state of a rule is not reachable in theTable | shows Significant reduction in the number of false

call-graph of the C program. An “out of resource” (OORﬂefECtS and GiveUp results for SLAM2. This is due to the

result refers to checks that exceeded the allocated timekgiter precision of coarse-grained abstraction, as well as to
memory resources. The NUR results include both the OGRe improved trace validation and predicate discovery. All

and GiveUp results. three factors play a role in these improvements. In particular,

SDV can report a false defect for a number of reasons:Pgtter predicate discovery helps make progress (discover new
bug in the verification engine, a bug in the rule, or a bug ipredicates) in the cases where SLAM1 couldn’t; more precise
the environment model (the C code that calls into a driv@bstraction reduces the need for additional predicates in the
and provides stubs of kernel routines used by drivers). Hendiést place. The number of NURs significantly decreased be-
improvements to any of those components can result in thgeen SDV 1.6 and SDV 2.0 for both engines. This is mostly
reduction in the number of false defects. due to the improvements in SDV environment and rules, in

SDV can report a Pass result which is actually a “falgearticular, NULL pointer dereference bugs. Those bugs have
verification”, due to overconstraining of the abstract transitideeen found by running SDV with SLAM2 (but not with
relation. This problem can be revealed by comparing SD¥LAM1). Finally, SLAM2 is faster in finding defects, but
runs with different engines, for example, SLAM1 versutkes more time to prove Pass results. The time difference for
SLAM2. In particular, we observed that some Pass resutfie Pass results is due to the problem of overconstraining of the
with SLAM1 turn into Defect or OOR results with SLAM?2. abstract transition relation in SLAM1, i.e., “false verification”.
The OOR result would mostly occur on the runs for large According to Table I, for WDM drivers, SLAM2 provides
drivers and/or hard rules. Specific data for such cases areiseful result 96.7% of the time, and upon discovery of a
presented in Tables | and II. defect, provides a 99.6% guarantee that this is a true defect.

For the purposes of profiing SDV and comparing the Table Il shows the breakdown of the individual results
analysis engines, we use the two official releases of SDafhd changes observed between SDV 2.0 with SLAM1 and
SDV 1.6 and 2.0, and also runs of SDV 2.0 with SLAM1with SLAM2 for WDM drivers. The leftmost column is the
for a more accurate comparison. result reported by SLAM1, followed by the result reported

Table | compares the data for the WDM drivers for SLAMby SLAM2 and the count for such changes. The rightmost
as part of both SDV 1.6 and SDV 2.0, and for SLAM2 asolumn indicates whether the changes are in faygr against

Metric SDV 2.1 (SLAM2) | SDV 2.1 (YoGI) SDV 2.1 (Yoal) | SDV 2.1 (SLAM2) | COUNT | CHANGE
LightweightPass results | 2457 2457 NUR Pass 114 v/
Pass results 2556 2538 Defect (false) Pass 8 vV
NUR results 3.3% (194/5727) 3.65% (209/5727) NUR Defect (true) 10 V4
Defects reported 520 523 Pass Defect (true) 3 YV
False/reported defects | 0.4% (2/520) 3.4% (18/523)
Missed defects 2 18 Defect (false) OOR L v
Time for identical pass | 76922s 147189s 2x) Pass OOR 94 X
Time for identical defect| 1795s 9984s (-6x) NUR GiveUp 4 ~
TABLE Il Defect (false) GiveUp 10 v
COMPARISON OFSLAM2 WITH YOGI USING SDV 2.1FORWDM g:;im (true) g:xggg g i
DRIVERS.
TABLE IV

BREAKDOWN OF CHANGES OBSERVED BETWEENSDV 2.1WITH SLAM2
AND SDV 2.1wWITH YOGI FORWDM DRIVERS.

(x), or neutral ¢&), for SLAM2 with respect to SLAM1.
There are 28 cases where GiveUp results by SLAM1
changed into Pass (15 cases) or OOR (13 cases) for SLAM. KMDF drivers. Note that KMDF drivers are significantly
The change from GiveUp to OOR indicates that progress h&saller than WDM drivers, due to the higher level of the APIs
been made beyond the GiveUp point (but not until a definifgovided by the KMDF model. This explains the comparable
result, due to insufficient resources). Out of 14 cases wheggults for both SLAM1 and SLAM2. There is a significant
SLAM2 produces a GiveUp, there are 11 cases for whighprovement in the number of NURs (1% to 0.04%) and false
SLAM1 produces a (false) defect. There are 36 cases whelksfects (25% to 0%) between SDV 1.6 and SDV 2.0, regard-
false defects reported by SLAM1 changed into OOR faess of the SLAM version. This improvement is primarily
SLAM2, which is clearly favorable for SLAM2. Finally, we due to the improvements in the KMDF environment model
mark the changes from the Pass result for SLAM1 into theéhd rules between the two releases. Comparing SLAM2 to
OOR result for SLAM2 (64 cases) as neutral, because webci, we observe significantly larger number of NURs for
have a strong evidence that SLAM1 was able to prove the Passci: 117 vesus 2 for SLAM2. Additionally, ¥GI takes
result by overconstraining, but it is unrealistic to investigat® times longer than SLAM2 for checks with the identical
each case to validate this claim. Note that the two defegtssults. Note that the defect analysis (true versus false defects)
found by SLAM1 but not by SLAM2 are being investigatedfor comparing Yoc! to SLAM2 has not been performed
Table Il presents a comparison of SLAM2for KMDF drivers.
with YoaI [NRTTO9] for WDM drivers. SLAM2 provides Table V shows the comparison of SLAM1, SLAM2,
7% fewer NURs, fewer false defects (2 versus 18), whilend Yoci for KMDF drivers. SLAM2 provides a useful result
finding 18 true defects that &GI misses (the respective99.8% of the time, and upon discovery of a defect, provides
number for YoGlI is 2), and is two times faster thanotl. a 100% guarantee that this is a true defect. Comparatively,
Note that YoGI does not report GiveUp results in the sam& oGl provides a useful result 97.8% of the time.
way as SLAM does, so this analysis is not performed - In summary, our comprehensive analysis of the realistic
instead, the GiveUp cases are included into the NUR casefpirical data confirms that SLAM2 provides highly reliable
Notably, Yoc! takes 6 times longer for finding the sameesults by reporting defects with a high degree of confidence
defects as SLAM2, but only 2 times longer for finding thehat those are true defects, or finding proofs when there’s no
same proofs as SLAM2. defect. Our comparison involves two driver models and three
According to Table Ill, for WDM drivers, ¥GI provides verification engines and is based on the data obtained in an
a useful result 96.3% of the time, and upon discovery ofiadustrial setting by independent testers.
defect, provides a 96.6% guarantee that this is a true defect.
SLAM?2 provides a useful result 96.6% of the time and a true VII. RELATED WORK
defect guarantee of 99.8%. Coarse-grained Abstraction After the development of
Table IV provides a breakdown of the changes observgll AM1, it became clear that we were underutilizing the
between SLAM2 and ¥GI using SDV 2.1 on WDM drivers. power of automated theorem provers such as Z3 to cope with
The format is the same as in Table Il. The table show$mplex Boolean formulae, relying instead on the Boolean
that in general, SLAM2 provides a higher rate of usefiirogram model checker to deal with arbitrary Boolean combi-
results: 114 Pass results and 10 defect reports for whm1Y nations of predicates. With coarse-grain abstraction, we give
reports NUR. There are 8 Pass results for SLAM2 for which3 a little bit more work to do and increase the precision
Y oGl reports false defects. There are 11 cases where SLAMP the abstraction. However, one can do much more, as
finishes with an NUR result, andoGI reports a false defect. explored by Beyer and colleagues in their work on “software
On the other hand, there are two cases wheossiYfinds model checking via large-block encoding” [BCG9]. They
a defect which SLAM2 is unable to find (GiveUp) - thosashow that one can abstract over loop-free fragments of code
proved to be useful in identifying limitations of SLAM2. such as sequences ibtthen-else statements. They compared
Table V compares SLAM1, SLAM2, andd6Gi using SDV their large-block approach to the approach where each single

Metric SDV 1.6 (SLAM1) | SDV 2.0 (SLAM1) [SDV 2.0 (SLAM2) | SDV 2.1 (SLAM2) | SDV 2.1 (YoGI)
Driver 51 51 51 51 51

Rules 61 102 102 103 103

Total checks 3111 5202 5202 5253 5253

NUR results 1% (31/3111) 0.04% (2/5202) 0.04% (2/5202) 0.04% (2/5253) 2.2% (117/5253)
Defects reported 300 271 271 271 -

False defects 25% (75/300) 0% (0/271)

0% (07271)

0% (07271)

Total time for identical checkg

8414s 63645s £-8x)

TABLE V

COMPARISON OFSLAM1, SLAM2 AND YOGI USING SDV FORKMDF DRIVERS.

statement is abstracted in isolation. It would be interesting ®CG*09]
compare their approach to the presented approach.

Multiple Inconsistencies Per Trace We are not aware of
other work that explores the idea of finding multiple invaligsMRo5]
subtraces of a single counterexample trace. We found this
technique to be very valuable for making more progresgnrsos
but it does come at an increased cost in model checking,
as more predicates are introduced. The ability to recover
from “irrelevant refinements” (retracting predicats that arIeBPROl]
not useful) would be valuable in order to explore multiple
inconsistencies during CEGAR. McMillan explores how t
give CEGAR such a flexibility, which would be very helpfu
for the case of detecting multiple inconsistencies. [McM10]

Path/Trace-Sensitive Pointer Aliasing SLAM2’s use of
pointer aliasing information, computed by forward symboli
execution, to refine the precondition computation is very
similar to that used by the DASH algorithm [BNRS08], thalBR02b]
forms the basis of the the &I tool we compare against.
However, SLAM2 only uses this technique during symboligcCc77]
execution and not the abstraction process, asivdoes.

l?BPROZ]

[BROZa]

VIIl. CONCLUSION [GS97]

We have described major improvements in the SLAM
verification engine, shipped with SDV 2.0 in September, 20083cos]
as a part of the Windows 7 WDK. SLAM2 significantly
improved the reliability, robustness and precision of SD\{ B0g]
SDV adoption inside Microsoft proved to be very successfurfI
with “SDV clean” being a requirement for Microsoft drivers
to be shipped with Windows 7. (McM10]

Our results show that SDV 2.0 with SLAMZ2 is an industriajnrTT09]
quality static analysis tool, compared to previous versions
of SDV based on SLAM1, which was in many respects a
research prototype. The SDV tool has benefited greatly from a
multi-engine approach, allowing us to easily compare SLAM2
to YOGl.

REFERENCES
[BBCt06] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers.HaoroSys 0ppages
73-85, 2006.
[BBdML10] T. Ball, E. Bounimova, L. de Moura, and V. Levin. Efficient
evaluation of pointer predicates with Z3 SMT Solver in SLAM2.
Technical Report MSR-TR-2010-24, Microsoft Research, 2010.
T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining
approximations in software predicate abstraction. TRCAS
04: Tools and Algorithms for the Construction and Analysis of
Systemspages 388—-403, 2004.

[BCDRO4]

D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Se-
bastiani. Software model checking via large-block encoding. In
FMCAD 09: Formal Methods in Computer Aided Desigages
25-32, 2009.

T. Ball, T. D. Millstein, and S. K. Rajamani. Polymorphic pred-
icate abstractionACM Trans. Program. Lang. Sys7(2):314—
343, 2005.

N. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons.
Proofs from tests. IHSSTA 08: International Symposium on
Software Testing and Analysisages 3-14, 2008.

T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian
abstractions for model checking C programs. TIACAS 01:
Tools and Algorithms for Construction and Analysis of Systems
pages 268-283, 2001.

T. Ball, A. Podelski, and S. K. Rajamani. On the relative
completeness of abstraction refinement. TRCAS 02: Tools
and Algorithms for Construction and Analysis of Systgmages
158-172, April 2002.

T. Ball and S. K. Rajamani. Generating abstract explanations
of spurious counterexamples in C programs. Technical Report
MSR-TR-2002-09, Microsoft Research, January 2002.

T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. ROPL 02: Principles of
Programming Languagepages 1-3, January 2002.

P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for the static analysis of programs by construction
or approximation of fixpoints. InPOPL 77: Principles of
Programming Languagepages 238-252, 1977.

S. Graf and H. Sdi. Construction of abstract state graphs with
PVS. InCAV 97: Computer Aided Verificatippages 72-83.
1997.

S. K. Lahiri, T. Ball, and B. Cook. Predicate abstraction via
symbolic decision procedures. IBAV 05: Computer-Aided
Verification pages 24-38, 2005.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT
solver. INTACAS 08: Tools and Algorithms for the Construction
and Analysis of System2008.

K. L. McMillan. Lazy annotation for program testing and
verification. INCAV 10: Computer-Aided Verificatip2010.

A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur. The
Yogi project: Software property checking via static analysis
and testing. INTACAS '09: Tools and Algorithms for the
Construction and Analysis of Systerpages 178-181, 2009.

