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Abstract—Synthesis from declarative specifications is an am-

bitious automated method for obtaining systems that are caect
by construction. Previous work includes synthesis of readte
finite-state systems from linear temporal logic and its fragnents.
Further recent work focuses on a different application areaby
doing functional synthesis over unbounded domains, usingmod-
ified Presburger arithmetic quantifier elimination algorit hm. We
present new algorithms for functional synthesis over unbonded
domains based on automata-theoretic methods, with advangges
in the expressive power and in the efficiency of synthesizedde.

Our approach synthesizes functions that meet given regular

ities, possibly performing search over a very large space of
integer tuples. Furthermore, this approach handles dispms

by a transformation into disjunctive normal form. Finally,
the specification language accepts integer arithmetic btt n
bitwise constructs on integers.

In this paper we present a synthesis procedure that is
guaranteed to produce an efficient function that computes
a solution of a given constraint on unbounded integers in
time linear in the combined length of input and the shortest

specifications defined over unbounded sequences of input andOUtput, represented in binary. Moreover, our specification

output bits. Thanks to the translation from weak monadic seond-
order logic to automata, this approach supports full Presbuger
arithmetic as well as bitwise operations on arbitrary lengh
integers. The presence of quantifiers enables finding solaths
that optimize a given criterion. Unlike synthesis of reactve
systems, our notion of realizability allows functions thatrequire
examining the entire input to compute the output. Regardles
of the complexity of the specification, our algorithm synthsizes
linear-time functions that read the input and directly produce
the output. We also describe a technique to synthesize furiohs
with bounded lookahead when possible, which is appropriate
for streaming implementations. We implemented our syntheis
algorithm and show that it synthesizes efficient functions o a
number of examples.

|. INTRODUCTION

language supports not only Presburger arithmetic op&stio
but also bitwise operations and quantifiers. We achieve this
expressive power by representing integers as sets in weak
monadic second-order logic of one successor (WS1S) which is
known to be more expressive than pure Presburger arithmetic
[6], [7]. We use an off-the-shelf procedure, MONA [8], to
obtain a deterministic automaton that represents a givehSVS
specification.

As our central result, we show how to convert an arbitrary
automaton recognizing the input/output relation into acfion
that reads the input sequence and produces an output sequenc
that satisfies the input/output relation. Consequentlyphbtain
functions that are guaranteed to run in linear-time on arbi-
trarily large integers represented as bit sequences. Asgum

Automated synthesis of systems from specifications ¢®nstant-time lookup of automaton transition, the runrime
a promising method to increase development productivityf the synthesized functions is independent of the automato
Automata-based methods have been the core technique diae. These properties are a consequence of our algorithm,

reactive synthesis of finite-state systems [1], [2], [3].this

and we have also experimentally verified them on a number of

paper, we show that automata-based techniques can alsexamples. Our result solves the problem of synthesis ofrgéne
used to perform functional synthesis over unbounded daMéS1S specifications that are not necessarily causal. Oig bas
domains. In functional synthesis, we are interested int®mt algorithm generates implementations that hayéV) time and
sizing functions that accept a tuple of input values (raggirspace complexity, wherév is the number of bits of input
over possibly unbounded domains), and generate a tupleaof output. We show how to reduce space consumption to
output values that satisfy a given specification. Our efforO(log N) if the time is increased t®(N log N).

are inspired in part by advances in software synthesis forWe also examine synthesis for sub-classes of WS1S speci-
bit-manipulating programs [4]. Our goal is to develop anfications that can be implemented using bounded memory. We
analyze complete algorithms that require only a declagatiintroduce a class of implementations based on a finite union
specification as input. Recently, researchers have prdposé asynchronous transducers, and show that they can be used
[5] a technique for functional synthesis based on quantifigy implementk-causal specifications as well as specifications

elimination of Presburger arithmetic.

In the previous approach, the functions generated by quanti

fier elimination can be inefficient if the input contains ined

This research was facilitated by the COST Action ICO9Rith Model
Toolkit—An Infrastructure for Reliable Computer Systeamsl the Dagstuhl
Seminar on Software Synthesis, December 2009. The autktohdis been
sorted according to the alphabetical order.

in Presburger arithmetic without bitwise operations.

Il. EXAMPLES

A. Parity Bit Computation

The goal of our first example is to illustrate the form of
the functions produced by our synthesizer. For a non-negati
integerz, let 2[k] denote thek-th least significant bit in the
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Fig. 1. AutomatonA for parity ~Fig. 2. Inputz and outputy

specification between andy satisfying parity specification

Transition State| T

{g0} > {a1, 2} @ 10, 0)
{g0} > {a1, q2} q2 90, 1)
{g0} > {a1, 02} @ 2. 1)
{g0} > {a1, g2} q2 90,0)

{a1, a2} > {aq1, a2} q1 q1,0)
{a1, 22} > {a1, 02} q2 q2,0)
{a1, a2} > {a1, 92} T q2,0)
{a1, a2} > {aq1, a2} q2 q1,0)

Fig. 4. Running synthesized function on input shown in Fig. 2

Fig. 5. Beam balance with three weights

such that(q, (0;Uo,),¢’) is a transition in the automatos.
We indicate functiong in A’ by additional circles around
individual states, e.g.¢({¢1,92}) = ¢. Figure 4 shows
the run of A’ on the input01101. The synthesized function
first runs the deterministic automatotl (the upper part of
Figure 4, ending in stat¢qi, ¢2}). The synthesized function
then picks a state according top (the statey; in case of our
example), and runs backwards according twhile computing
the output bits. The lower part of Figure 4 shows the backward
computation followingr defined in Figure 3; the backward run
generates the bits0000 of the output.

B. Synthesizing Specialized Constraint Solvers

Our next examples illustrate a range of problems to which
our synthesis technique applies. Consider first the beam bal
ance (scale) depicted in Figure 5. We are interested in a
function that tells us, for any object on the left-side of the

binary representation af. (We write the binary digits starting beam, how to arrange the weights to balance the beam. We are

with the least significant one on the left, $8001; is a binary
representation of 19.) Our first specification states thafitst

given three weights, with, 3, and9kg, respectively. We use
the variablew for the weight of the unknown object. For each

output bit,y[0] indicates the parity of the number of one-bitgvailable weight, we use two variable to indicate whether

in the input (Figure 2)y[0] = |{k | z[k] = 1}|%2.

the weight is placed on the left side andto indicate it is

Consequently, the synthesized function must examine thtgced on the right side of the beam. We obtain the constraint

entire input before emitting the first bit of the output.

One way to specify this computation is as follows. Let

Nmaz have the propertyk > npq..xz[k] = 0. To specify
y, introduce first an auxiliary sequence of bitsuch that

zln] = {k <n|z[k] = 1}%2

for all n < nyq., by definingz[k + 1] as xor of z[k] and
x[k + 1]. Then definey[0] to be z[n,q].

Figure 1 shows the generated automatbfor this specifi-
cation, accepting the WOI’C(%%) (iH]) .. (mm) which satisfy
the given relation between: and] 1. A%/ter applying our
construction to compute a function fromto y, we obtain
the input-determinstic automatoA’ shown on the left of

Figure 3, augmented with two labeling functiomsand ¢.

w + Iy + 3l3 + 9l = r1 + 3r3 + 9rg. (1)

Because each weight can only be use at most once, we require
that the solution also respects the following three comgsa

)

When we give these four constraints to our tool, it compiles
them into a function. The function accepts arbitrary input
values and returns corresponding output values, perf@grmin
computation in time linear in the number of bits in the input.
E.g., if the object weights$1kg, then the program tells us that
we should use Weight on the left and Weigh8 and 9 on
the right side to balance the beam. It is easy to verify that
this response is correct by insertion into Equation 1 legttin

ll+T1§1, lg+7’3§1, lg+7’9§1.

The automaton is the result of first projecting out the parti +1.1=3-1+9-1. When asked fot = 15, the program
of A’ labels corresponding to the output, then applying thsbrrectly responds with “There is no output for your input.”

subset construction. Therefore, the labelsiincorrespond to

input bits, and the states are sets of states of the autordator-- Modifying Example to Minimize Output

Functionr tells us how to move backwards within a run_4f

Next, we consider a modified version of the balance exam-

to construct an accepting run of the underlying automatpn ple to show that neither inputs nor outputs need to be bounded
it thus recovers information lost in applying the projentiolt also shows how to specify a function that minimizes
to A. Finally, function¢ tells us for every accepting state inthe output. In the previous example, we could only balance
A’ at which state ofA to start the backward reconstructionobjects up tol3kg because only one copy of each weight
The table on the right of Figure 3 showsfor A’: it maps was available. Assume we want to balance arbitrary heavy
every transitions 75 S’ of A’ and every statg’ € S’ into  objects with the minimal number of balance weightslp8,

a predecessor statee S, and a matching output valuge,, and9okg. We keep the constraint from Eqn. (1) and replace the



constraints in Eqn. (2) by a constraint that asks for a mihima X e
solution:

VI UG, 16, s . balancéw, 17,15, 1y, v, rh, rg) —
! ! ! ! ! !
SUTT'(ll,l3,lg,T‘1,T‘3,T‘9) S SUﬁ'(ll,l3,lg,Tl,T‘3,T‘9)
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where balandev, I}, 1, 1§, 77, 74, ) is the constraint obtained

from Eqn. 1 by replacing; andr; by I, andr}, respectively,
and sum refers to the sum of the listed variables. This
constraint requires that every other solution that woukbal
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Fig. 6. Averaging signal values
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balance the scale for the given object has to use more weights 0}
than the solution returned.

The newly synthesized program gives correct answers for
arbitrary large natural numbers. E.g., let us assume thecbbj
weighs 12345123451234512345123456789kg, then the pro-
gram tells us to také371680383470501371680384088 times
Weight9 on the right side and once Weighton the left side.

Fig. 7. The result of applying the synthesized function tbamputes a
smoothed version of a signal. The function on an arbitrdalyg signal was
specified in WS1S.

Consider the constraibt:+9y = z, wherez is the input and

x,y are inputs. The solution exists only wheis a multiple of

3, so we may wish to find, y that minimizes|6x + 9y — z|,  denote the number represented by the subrange of digits of
using a similar encoding with quantifiers as in the previousetweenk + a andk -+ b:

example. The support for disjunctions allows us to encode th ba

absolute value operator that is useful for finding approxema® [k + @,k +0] = z[k+al + 2z[k +a+1]+...+ 2" 2k + b]

solutions. The tool synthesizes a function that given aeralu \ye define the smoothing relation between numbeaady by:
z, computese, y to be as close te as possible. For example,
Vi. (4]i) — yli+4..i+7) =

given the input 104, the tool outpuis= 13 andy = 3.
(x[i..i43]) + 2z[i4+4..i47] + z[i+8..i+11]) div4

Our synthesizer generates a function that, given the seguen
Consider the Syracuse algorithm function, whose one stepbits =, produces a sequence of bijs Figure 7 shows an
is given by f(z) = if (2| z) thenz/2 else3x+ 1. Consider input signal (dotted line) and the resulting smoothed digna
a relation on integers corresponding to iteratihgix times: (full line) that results after we applied the linear-timenétion

r(x,y) < f9(x)=y.(We could use such function to speedsynthesized by our tool to the input.
up experimental verification of the famog@sa + 1 conjecture
that statesvz > 0.3n.f™(z) = 1.) When we use-(z,y) as Ill. PRELIMINARIES
the specification and indicate as input andy as output, our A. Words and Automata
synthesizer generates a function that accepts a sequebite of Gjyen a finite set of variable¥, we useXy to denote the
of = and outputs in linear time a sequence of bitsyothat  giphapets; = 2V. We omitV in Xy if it is clear from the
is given by 6-fold iteration of /. Note that, if the synthesis context. When used as a letter, we derfbte Xy by 0. Given
from a specification (e.gy = f"(z)) succeeds, the runtime 5 finite wordw € * , we use|w| to denote the length af),
of the comp_utation is independent afand is linear in the andw, to denote the letter on thieth position ofw. By & we
number of bits ofz. Therefore, our approach can effectivelyjenote the empty word, of length zero. Given a partitioning
fold n iterations of f into one linear-time function on the of 1/ into the setd andO and a letterr < Sy, we uses|; to
binary representations of inputs and outputs. denote the projection of to I, i.e.,o|; = o N 1. We extend
projection in usual sense to words and languages.
A finite automatonA over a finite set of variable$” is
We next illustrate the use of specification of unboundea tuple (3, @, init, F,T), whereX = 2" is the alphabet Q
numbers in simple signal processing task. Suppose vwgea finite set ofstates init € @ is theinitial state 7' C
have an input signalX with discrete values in the range@ x X x @ is thetransition relation and F' C @ is a set of
{0,1,2,...,15} and we wish to compute a smoothed outpuinal states AutomatonA is deterministic if for all transitions
signalY” by averaging signal values with its neighbors, usingi, o1,4}), (g2, 02,¢5) € T, ¢1 = ¢2 and oy = o5 implies
the formulaY; = (X;_1 +2X,; + X,11) div4. We specify this ¢} = ¢ holds. A is completeif for all statesg € @ and letters
function in WS1S as a relation between unbounded integerg € X, there exists a stat¢ € @ such that(q,o0,q¢') € T.
andy, where we reserve 4 bits for value of the signal at eadfote that if A is deterministic and complet& describes a
time point (see Figure 6). For constant®, let z[k+a,k+b] total function from@ and¥ to Q.
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D. Finding Approximate Solutions

E. Folding and Inverting Computations

F. Processing Sequences of Bits



F = FAF|FVF|-F|ity<ty]|ty=tn
| inltel | tp <tp | tp=tp |(Cltn) | ix by
| Vposk.F' | Fposk.F | Vo .F | Jz.F
tn = z|Clitn+in]|C- -ty |tndivC |ty %C
| (tn Vin) |EnAty) [ tn < C |ty > C
| 2" | tn[tp..TC) | tn[0..tp]
tp = k|C|k+C|k-C| maxBit(ty)
C non-negative integer constant
Fig. 8. Syntax of WS1S where sets denote natural numbExs) @nd

elements denote positiong'4) in binary representations of numbers

Given an automatord = (X%, Q,init, F,T) and a state
g € Q, we useA, to refer to the automato(X, @, q, F, T)
that has the same structure Ashut starts ay.

>>), a sub-word of lengtle at positionk of a given integer:
(denotedz[k.."¢]), congruence modul@? (denotedz ~, y),
the initial prefix of an integer:[0..%], the integer2? for a
position p, and the smallesp such thatz < 2P, denoted
maxBit(x).

C. Amortized Cost of Synthesis

We describe the cost of synthesis and synthesized program
in a unified framework, by considering the entire amortized
cost of applying a given specificatianon a series of inputs
bi,...,b,. Let f be a function with two arguments, so
that f(a,b) = c if the input-output pair(b, ¢) satisfies the
specificationa. We implement functiory using a function of
the formg(a, b, s) = (f(a,b), s") that computeg and updates
its local state frons to s’. We assume a fixed initial statg.

The presence of local state can make the computation more
efficient on a series of inputs. This framework accounts for

A run p of A on a wordw € ¥* is a sequence of statesSimple cases such as memoization and caching, as well as the

q1---quj+1 such that (i)g; = init and (i) for all 1 < i <
lw| : (i, wi,qi+1) € T. A run is acceptingif g1 € F.
We sayw is accepted byA if there exists a run oA on w
that is accepting. We denote i3(A) C X* the set of words

accepted byA.

The exhaustive rump of A on a wordw € ¥* is a sequence

of sets of states); ... 5,41 such that (i)S; = {init} and (ii)
forall 1 <i< |w|, Siv1 ={¢d € Q|3qe Si(qwi,q) e
T'}. An exhaustive run iscceptingif S,,41 N F # (). Note
that if A is deterministic, then the run of on a wordw is
unigue and the elements in the exhaustive rumain w are
singletons.

Lemma 1:For an automatomrd with a set of states),
computing an exhaustive run of for a wordw € X* can
be done in timeO(|Q| - |w|) for a non-deterministic4, and
can be done in timé&(|w|) for a deterministicA.

Given an automatord = (Xy,Q,init, F,T) over vari-
ablesV and a set/ < V, the projection of A to I,
denoted byA|;, is the automatonX;, Q,init, F,T;) with
Tr = {(¢.o1.¢) € @ x X xQ | o € By, (¢q,0,¢) €
T A olr = or}. In the remainder, we fiX to be the set of
input andO to be the set of output variables.

B. WS1S as extension of Presburger Arithmetic

Figure 8 shows the syntax of weak monadic second-ord®r |[z1,. .

more general case of on-the-fly specialization.

Given the specificatioru and the inputsby,...,b, we
defines; = g(a,b;,s;—1) for i € {1,...,n}. Let ¢’(a,b, s)
denote the time to computga, b, s). Let || denote the length
of value x. We define the amortized cost @f on inputs
a;by,...,b, by %Z?:l g'(a,b;,s;—1). Our main complexity
measure is then(s,, sy, n), which we define as the maximum
amortized cost over al; by, ..., b, for which |a| < s, and
|b;i] < sp for all i.

Observe that(s,, ss, 1) is simply the complexity of running
function f once on inputs of sizes, and s;, respectively.
Another useful measure, of particular interest in syntyesi
IS Coo(Sa,8p) = limy, o0 (84, $p,n), Which amortizes any
pre-computation that happens in finitely many steps. We
next present several examples to illustrate the cost fomcti
¢oo(8a, sp) for implementations of several problems.

Example 1 (Finding an enclosing interval):  Consider
the problem of computing the smallest interval enclosing
a given number. More precisely, the goal is to compute
f(z1,. .. zm],y) = (L,U) where L = max{z; | z; < y}
and U = min{z; | y < z,;} given an unordered list of
numberszy, ..., x,, (with the result arbitrary if thenax or
min expressions above are not defined). In this example, we
assume that each number takes constant space to represent,
., Zm]| = m and|y| = 1. An algorithm for one

logic of one successor, which we use as our specification lanvocation can simply make a single pass through the list,
guage for unbounded non-negative integers. The logic omtacomputing the currentnax of lower bounds ofy and the

all integer linear arithmetic operations and quantifiehsjst
subsuming Presburger arithmetic. Furthermore, it costdin

currentmin of the upper bounds up to a given position in the
list. This gives the worst-case complexity of the algorithm.

expressionc[k] to extract thek-th least significant bit of the If we use this algorithm as the implementatign(without
numberz. It is also possible to find a-successor of position making use of state), we obtain,(m, 1) of O(m).

k, with notationk + ¢, as well as thec-predecessor, with

notationk - ¢, denoting the positiomax(k — ¢, 0). Together
with quantification over positions, this allows the speaifiocn

Consider next an alternative implementation, given by
' ([z1,...,2m],y, s), which behaves as follows: on the first
invocation, g([x1,...,Zm],y, S0), builds a balanced binary

of arbitrary uniform bitwise relations on integer variahle search tree storing the set of numbers...,z,, in time
To illustrate the expressive power of WS1S, we introdud@(m logm), and returns this tree in the resulting stateOn
shorthands for some of the constraints that can be definedsibsequent invocationg, uses this tree to find the enclosing

this way: bitwise operations\( V), left and right shifting &,

interval (L, U), which can be done in tim@(log m) by doing



a lookup in the tree. Therefore, we obtain thainvocations S, 1 N F and constructs an accepting rg. . . g1 0f A
require O(mlogm + nlogm), which givesc(m,1,n) € and the output word by proceeding backwards ovérfrom
O(X(mlogm)+logm) andce (m, 1) = O(logm). Thus, we i = |w|toi = 1, as follows: it picksy; € £ andg; € S; such
have seen that precomputation improves the amortized tithat (¢;, w; Uv;, ¢;i+1) € T. When it reaches one of the initial
Coo(m, 1) from O(m) to O(logm). O states inS;, the result is an accepting run of the automaton
A; the desired output is the sequenge . . v, of the output
components of the labels in the reconstructed run.

A. Constructing Specification Automaton The Punspec implementation repeats the above construction

The input to our algorithm is a WS1S formufawhose free for each input wordw. From Lemma 1 we obtain the amor-
variablesz, ...,z denote unbounded integers. We assuniized cost of Punspec-
a partitioning of the index sefl,...,r} into inputs and Lemma 2:If s, denotes the size of the input automaton
the outputsO. In the first step, our algorithm constructs ad and s,, denotes the size of the input word, then the
deterministic specification automatoh accepting words in unspecialized implementatiaRinspec Solves the synthesis for
the alphabeE ;. We use a standard automaton constructidRPut-bounded specifications in amortized tinte, s.,, n) of
[9] and obtain an automatod characterizing the satisfying O(sa - sw) (consequentlygoo(sa, sw) is als0O(s4 - sw)).
assignments of7, i.e. whose languag€(A) contains pre- D

cisely the wordsogo, ...0, € X7 for which G holds in . . . i
the variable assignmert,, ...,z in which the k-th least We next present our main construction (illustrated in the

significant bit ofz, is one iff0 < k < n andi € oy. We use Example [1-A), which avoids the depepdence of the running
£(G) to denote the language oval; o characterizing the time of computation of on the (p_otenually large) npmbgr of
satisfying assignments @f. From this correctness property iiStates of the automatad. To obtain an implementation with

follows thatw € £(A) impliesw0? € £(A) for everyp > 0. optimal runtime, we transform the given automatérinto an
- input-deterministic automataosA’ using the subset construction

B. Overview on the projectionA|;. The challenge is to extend the subset

All subsequent steps of our algorithm work with the Specifponstruction with the additional labeling functions thdowa
cation automatom and do not depend on how this automatoHS to efficiently reconstruct an accepting run 4ffrom an
was obtained. Giverl, our goal is to construct a function that2ccepting run ofA’. Given such additional information, our
computes, for a given sequence of inputs bits a correspgndfiPecialized implementatioRspec runs A’ on the inputw and
sequence of output bits such that the combined word 4§€s the labeling to construct the output
accepted by the deterministic automaton. Our construction introduces two labeling functiogsand

Note that we seek an implementation that works uniformfs The functiong maps each accepting stafeof A" into one
for arbitrarily long sequences of bitsvhich means that it is Stateg € S that is accepting il. The 7 function indicates
not possible to pre-compute all possible input/outputgpair Now to move backwards through the accepting run; it maps

We show our construction in several steps. First, we assuffeh transitions, o, ") of A" and a statg’ € S” into a pair
that we are only interested in outputs whose length does n6t%0) € 5 X ¥, of new a state and an output letter, such that
exceed the length of inputs. For this case we start by dé- i Udo,¢’) is a transition of the original automatoh
scribing a less time-efficient implementation (Subsedii6@) Definition of synthesized data structure A’, ¢, 7. Given
that depends on the size of, then describe an efficientan automatom = (X0, Q, init, F,T), we construct an au-
version, showing that we can avoid the dependence on taénatond’ = (X, Q’,init’, F/,T") and two labeling functions
size of A (Subsection IV-D). Finally, we show how to lift ¢ : F* — Q and7: (T’ x Q) — (Q x ¥) such that (i)A’
the assumption that the outputs are no longer than the inpigtgleterministic, (i)Z(A)|; = £(A’), and (iii) for every word
(Subsection IV-E). u € L(A’) with an accepting run; ... S, of A, there

s . . .exists a wordw € L(A) with w|; = w and an accepting
C. Input-Bounded Synthesis of Unspecialized Implememisti [N 1 .. gns1 Of A such thatg(S,i1) = gnes and for all

In the first version of our solution we assume that, given an< ; < n, (¢;, w;|o) € 7((Si, us, Sis1), gir1). We defined’
input bit sequence, we seek an output sequence ofdn® 55 follows:
lengthsuch that the input and output pair are accepted by th&, NG
specification automatod. B

IV. SYNTHESISALGORITHM

Input-Bounded Synthesis of Specialized Implementation

o,
Our unspecialized implementatiofynspec Simulates the |n|/t B ?glte}Q/ | SNF 0}
given automatond = (X;,0,Q,init, F,T) on the input T = {(5i,8)e€Q xS xQ |

word w € 37 and tries to find an accepting ruynspec
first constructs the exhaustive ryn= S ...S, 4, of the
projected automatord|; on w (see preliminaries for the We defines : F' — @ such thatifS € F’ theng¢(S) € SNF;
definition of automaton projection and exhaustive run)p If such value exists by definition dgf”.

is not accepting, then there is no matching output word andWe definer : (T’ x Q) — (Q x X¢) for (S,i,5’) € T’ and
Punspec terminates. Otherwisenspec Picks a statey,, 1 in ¢’ € S’ as follows. By definition off’, there exists a transition

S"'={q¢ |3q,0.(q,0,¢) €T Nge SNo|r=i}}



(g,0,q') € T of the original automaton such that; = i. We amortized timec(s4, ., n) of O(22%4 + s,,). Consequently,
pick an arbitrary such transition and defin€S,,.5"),¢') = the amortized timeco(sa,s.,) as the number of queries
(g,0]0). approaches infinity i€(s,,).

Computing A" and 7 through automata transformations. E. Extending Synthesis to Arbitrary Regular Specifications
In our implementation, we represent battf and 7 in one

automaton, which we compute using the following sequenge

?f agtt-omata tr?nstf?rmatmns 't Bec_?useé?fetrs tots;ets. of even if the output has a larger number of bits than the input.
rs/‘;ﬂfr‘f’ vzve rs lf:.l e;cT r\?vr:lclc?r?strulgtoar? zli;h;ﬁ;nConsider the simple specificatian< y, wherex is the input
9 = (Z1v0, @.init, F, T), and y is the output. Given the inputll, of length three

B = (X100, @p.initp, F5, Ts) such that (representing the number 7), every value of output satigfyi

In this section we extend the result of the previous section
allow computing an output that satisfies the specification

initg = (g, 0,inity) for arbitrarily choseny, o the specification has the length at least four.

Qs = {initg}uT To adapt the solution in the previous section to the full

Fs = {(¢o,d)€Qp|q €F} synthesis problem we generalize the notion of acceptance to

Tz = {(t,o,t)eQpxZruo X Qs | take into account any number of zeros that could be appended
3¢,¢,¢" € Q. o' € T100. to the input without changing the meaning of the input.
t=(q,0',¢) andt’ = (¢q,0,q")}. Therefore, if the automatod’ finishes reading the input word

) ) .. and none of the states reached in the last step are accepting,
Next, we projects to I; ..e., we replace every transitioncpecis whether one of the states can reach an accepting state
(¢,0,4") in B by (¢,01,¢"). Finally, we obtain automatol’ \hjle reading only the input letted. The closure with the
by determinizingB|; using the classical subset construcuoqnput 0 can be computed in polynomial time by computing

Now, every reachable state @i (other than ini;) corresponds e states that are backward-reachable from an acceptitey st
to a transition inA’. Assume we are given a staig in using only edges with input label.

C, theng, has the form{(q1,01,41),- .., (k0% 4;)} With 15716 aple to emit the appropriate segment of the output,

W’J’C’iJI = UJ/'|1 = o7 and corresponds to the transitionpe packward-reachability computation keeps, for eveagest

(f’af’t2 in A, wheret = {g; | 1 < @ < k} and a5 gytput word that leads to an accepting state. We use the

' ={g | 1 < i<k} So, every state, in C' defines a gnctiony : @ — 92 U{L} to store these words, where

labeling function for the corresponding transiti¢h oy, t) Q are the states of the specification automatbrwe write

that maps every state, € t' to a set of available pairs ¥(q) = L to denote that there is no input word € 0* that

(i, 0ilo). Our final labeling functionr picks for each state js accepted starting from. Formally, given the automaton

¢; one of the available pairs. A = (S100,Q,init, F,T), we sety) = 9 and definey’

Specialized implementation and its complexityThe special- inductively: for allg € Q :

ized implementationPspec runs A’ on the input wordw and .~ = Je ifgeF

constructs a rum = Sy ..., 41 If p is not accepting, then M) v7(a) = | otherwise

there is no matching output word and the function terminatetﬁ) let R’ be the set of stateg for which vi(q) # L,

Otherwise, it computes an accepting in . . g, of A and ¥ (q) if gc R

P QB o S R A i) i) o 20Ty O
The following theorem states the correctnessgfec and L otherwise. _

follows by construction. Observe that ifi)(q) # L then(q) is a word of length

Theorem 1:Consider an automatond and an input bounded by the number of states of the specification
wr ... w,. Then if there exists an outpuf . .. v, such that automatonA. Therefore, the maximal amount by which the
(wy Uy ) . .. (wy Uvy) is accepted byd, then Papee computes output is longer than the input is bounded by the size of the

one such output; . .. v,. If there is no corresponding outputSPecification automaton. _

then Pypec indicates that there is no output. To recognize leading zeros, we a_\dapt the_flnal statesf
The following theorem states that our construction actevé. (COmputed as foPspec in the previous section) and extend

the desired linear-time behavior and independence from labeling function¢ as follows. Letfin(5) = {g € S|

size of the initial automaton. The constructiondt ¢, 7 takes ¢'(4) 7 L} be the states it that can reach input on zeros.

time singly exponential in the size of the automaton, but isp’ = {§ e Q' | fin(S) # 0}

done only once, so it is amortized for each invocation of the(S) = ¢ e fin(S) s.t. [¢(¢)| = min{|w(¢") | ¢ € fin(S)[}

automaton. Extracting the output for a given input takesetim .
independent of the number of statesAh becaused’ and Note that the functio(S) chooses one of the states that lead
have deterministic transitions. to an accepting state with an output word of minimal length.

Theorem 2:If s, denotes the size of the specificatiorThe implementation and its time complexity. Given an
automatond ands,, denotes the size of the input word, thefmnput wordw; ... w,, the implementatiotPyspec generates, as
Pspec solves the synthesis for input-bounded specifications fy,ec in the previous Subsection (IV-D), a r#, ..., Sp41.



TABLE |
SYNTHESIS TIMES, SIZE OF THE GENERATED AUTOMATA AND AVERAGE RUNNING TIMES OF SYNTHESIZE FUNCTIONS

No Example MONA (ms)  Synthesis (ms) |A| |A’| 512b  1024b  2048b  4096b

1 addition 318 132 4 9 509 995 1967 3978

2 approx 719 670 27 35 470 932 1821 3641
3 company 8'291 1'306 58 177 608 1312 2391 4930
4 parity 346 108 4 5 336 670 1310 2572

5 mod-6-test 341 242 23 27 460 917 1765 3567
6 3-weights-min 26’963 640 22 13 438 875 1688 3391
7 4-weights 2'707 1'537 55 19 458 903 1781 3605

8 smooth-4bits 51'578 1'950 1781 955 637 1271 2505 4942
9 smooth-f-2bits 569 331 73 67 531 989 1990 3905
10  smooth-b-2bits 569 1241 73 342 169 347 628 1304
11  forward-6-3n+1 834 1'007 233 79 556 953 1882 4022

If S,+1 ¢ F’, then there is no corresponding output; theve give a short description that relates the results to the
implementation indicates this and stops. Otherwise, ssgpalescription of the example in Section Il. In the column |allel
Spn+1 € F' and goy1 = ¢(Sp41). The implementation MONAwe show the time (in ms) that MONA needs to create
generates the backward run frgm, ; as in Subsection (IV-D), the specification automatad. The number of states of is
producing the output bits; ... v,,. The final output is then the shown in Column labeled4|. The columnSynthesishows
word vy ... v, (gnt1)- the time (in milliseconds) necessary to create the syrzhdsi

Theorem 3:Let s, denote the size of the specificatiorfunction. The column|A’| shows the number of states of
automaton 4, s, the size of the input word, and, the the projected and augmented automatéh The last four
size of the shortest output word that satisfies the input worblumns show the time (in milliseconds) to run the synthesiz
Thens, < s, + s4. The Pyspec implementation solves the functions on1000 random inputs of different bit lengttb(2,
synthesis for arbitrary regular specifications in amoditime 1024, 2048, and 4096 bits). All tests were performed on an
c(8a, Sy, Sw,n) Of O(%2SA + Sw + s,). Consequently, the Intel Core 2 Duo P7450 (2,13 GHz) CPU with 4096 MB
amortized timeco. (54, Sw) 1S O(sy + Sp)- DDR2 (667 MHz) RAM.

Together with the correctness of the construction of specifi In most cases (9 out of 11) creating the augmented au-
cation automata from WS1S, we obtain the following soundematon (columrSynthesigis faster than creating the initial
ness and completeness theorem. automaton (columiViIONA). In some cases (e.g., Line 6 and 8)

Theorem 4:Consider a WS1S formul&’ with input vari- the synthesis time is only a fraction of the overall time. The
ables(z)rer and output variable&:,) .eo. Consider a binary running time of the synthesized function is (as expectedgi
representation of input variablés;, ),c;. If there exist values in the number of bits of the input.
of output variablegzx)xeo such thatF” holds for (zx)keruo, We are not aware of any other tool that can handle the
then Pyspec OUtputs a sequence of bits for one sueh)rco. examples that we present in Table I. The closest tool that we
If there is no corresponding output thé}spec indicates that are aware of is Comfusy [5], which does not support quanti-
there is no output. fiers and large integers for implementation reasons, and doe

V. EXPERIMENTAL RESULTS not support biFWise ope_rgtion_s d_ue f[o a fund_amental reéisinic
) ] ) of the underlying quantifier elimination algorithm. Consely,

We implemented our algor_lt_hm_ in Scala [10] USINGhere are examples supported by Comfusy (multiplicatich wi

MONA [8] to construct the specification automaton. Our to ymbolic constants and set constraints) that our approaes d

accepts (1) a specification written in WS1S and (i) the lisfs synnort, so a future combination of approaches based on
of input variables. Our tool first invokes MONA to construct, \tomata and quantifier elimination would be fruitful.

the specification automaton, then applies the construction
described in Section IV. The construction covers the géneray|. Space COMPLEXITY FOR SYNTHESIZED SYSTEMS
case of WS1S specifications. The synthesized function can .
be invoked at a later point in the program any number So far we have mostly focused on the time that the synth_e-
of times. The synthesized function computes the output i%ed systems. This section examines the space complexity.
running a deterministic automaton (Section 1V-D) on thauinp et N = |w| denote length of the input.
first forward, then backward. It also computes the addifionaogspace upper bound for general WS1SThe algorithm we
information necessary to produce outputs that are longer thdescribed so far (and implemented, as discussed in Secjion V
the inputs (Section IV-E). produces systems that run@(N) time and use)(N) space

We have tested our tool on several specifications includibg store the results of the forward automaton run. We next
simple addition and the examples described in Section Il asketch how to obtain an implementation that BHSV log(V))
the appendix. The specifications were written in WS1S. lime and onlyO(log*(N)) space. We assume the ability to
Table I, we summarize the results. In the second colummandomly access any arbitrary letter of the input stringe Th



idea then is to avoid storing all statgs . . . , ¢ of the forward arithmetic specifications [5]. They key observation is that
run, and instead compute them on demand, storing onlyfumctions implementing Presburger specifications have the
sparse subsequengg, g, ;- - ., ¢, wherem = [log N|. Let form \/,(P;(z) Ay = t;(x)) for input 2 and outputy.

p denote the current position in the backward run of the Lemma 3:For every WS1S specificatiofi that encodes a
synthesized function. The synthesized function maint#ies formula in Presburger arithmetic, there exists a finite det o
invariant0 = ig < 43 < ... < 4,,, < p. Initially it sets transducerd\f, ..., M}, such thatMy, ..., My = G.

ir, ~ N(1 —27%). To move back fronp to p — 1, it re-runs The key observation is that witness ternis) are computable
the forward automaton from the largest for which i, < p, using asynchronous transducers.

and redistributesiyi1,...,4n, Similarly as for the initial ~ Note that Presburger specifications are not computable
run, maintaining the ordering and the decreasing geometusing only one asynchronous transducer due to presence of
progression of distances, ;11 —ix-;. Because each positiondisjunctions in specifications. They are also not competabl
pointer i; requiresO(log N) space and there adeg N of using a finite union osynchronousransducers because of the
them, this implementation needilog® N) space. A run that division by constants.

updates pointers;,,; for i > 0 re-reads2—* fraction of the Limitations of asynchronous transducers.

input and is called” times, so the total time i©(Nlog N). | emma 4: There exists WS1S specifications cannot be im-
Unions of asynchronous transducers. An (asynchronous) plemented using a finite union of asynchronous transducers.
transducerM = (A, \, ) over input variabled and output ~ The proof is based on consider the following WS1S speci-
variablesO consists of (1) a deterministic automaten = fication G over input/ and outputO. We give G as regular
(X7,Q,init, F,T) and (2) two labeling functions\ : 7" — expression over the binary presentation olemd O:
¥y andy : F — X5. A (more conventionalsynchronous AT ASIAYAS
transduceris a special case of an asynchronous transducer G= O'Z((O) (0)) (1) (1) (0) .
where|\(¢)| =1 for all t € T and|¢(q)| = ¢ for all ¢ € F.

The outcomeof M = (A, \,¢) on a valid input word ~ Observation 1:Every transducerM = (A, A\, ) with
w € L(A), denoted by out(w), is the concatenation of £(M) C L(G) and less tham states that accepts an input
output wordsu, ..., u, produced byM while readingw Word (1"0)* must output a non-empty word within every
concatenated with the final word produced by i.e., if steps while reading this input.
P = qiq2 ... qn1 iS the accepting run ol onw € £(A), then Observation 2:Every transducerM = (A, )\, ) with
outys (w) = U . .. Uptiny1, Whereu; = X(gi, w;, giy 1) for all L(M) C L(G) and less tham states that accepts the input
1 <i<nanduns, = @(gns1). Note that the outcome of word (1"0)* for somek > 0, rejects all input wordg1"0)"
M is only defined for valid input words. The languageiaf ~ for I > k.
denotedZ (M) is the is the union of valid input/output pairs Using the above observations and giverasynchronous
padded with trailing zeros to have equal length/) = {w ¢  transducersMy, ..., My with M; = (A, i, ¢;) such that
30 | 35,k ulr € L(A)0T Auf o = outyy (uf 1)0F}. L(M;) C L(G) it suffices to consider word$1"0)* for

An asynchronous transducer can express even certain speci 1. - -k + 1 to conclude that it cannot be the case that
fications that are not WS1S expressible. For example, censid (G)Ir = U,_1, s £(4:).
a transducer that emits when reading) and emitsl when ~ Note thatG can be implemented by a finite set of trans-

readingl. Such transducer outputs a contiguous sequencedcers if the input is read from right to left. However, we
output bits whose length is the number of bits in the input.can concatenate specifications suchGasvith their reversed

Given a finite set of transducerd, ..., M, with M, — Versions to obtain specifications that cannot be realized by
(A;, \;) and a languagé over the variablegUO, we say that transducers making both forward and backward passes.
My, ..., My jointly implementL, written M,,..., My |= L VII. L OOKAHEAD-CAUSAL SPECIFICATIONS

iff (1) each transducerd/; produces outputs satisfying the
specification, i.e.,L(M;) C L(G) and (2) the union of
M;’s covers the valid inputs, i.e£(G)|; C (U, £L(4;). We
say My, ..., M implements a WS1S formulé/, denoted
My, ..., M, =G, iff My,...,M; E L(G).

Note that if My, ..., M}, | G, then there exists a finite-
memory implementation for that performs only two passes

overttrtl_e Input (retgardlesstdj‘).t IQ E[he. f|r|st gatss, t.he 'm.e'htions such as the signal processing example require reading
mentation generates no outpul, but SIMply determines Wilichy, 4 number of bits ahead (three, in this case) to compute
the transducers accept. In the second pass, the mplementa,ctm output bit

generates the output for one of the transducers that accept. For notational simplicity we consider specifications

Transducers for Presburger specifications. The follow- spec(x,y) containing a single input-output pair and y.
ing lemma can be shown by analyzing the output of thHeurthermore, we assume that the specifications are totl, th
quantifier-elimination based synthesis algorithm for Bueger is, Va.3y.spec(z,y). If a specification is not total, we can

An interesting class of specifications that can be imple-
mented using a single asynchronous transducer are loatkahea
causal specifications discussed in this section.

The algorithms presented so far first read the entire input
and then generate a corresponding output. In some cases (e.g
in streaming applications), one might prefer an implemtaora
that starts outputting before reading the entire inputcBica-



transform it into a total specificatiospec’(z,y,¢e) given by the problem of deciding when an S1S specification can be
(spec(z,y) Ae=0)V ((—Ty.spec(z,y)) AN\y=0Ae=1). implemented using a system with lookahead. Théd¢unded)

Definition of k-causality. We next define Iookahead-causa"ty phecks in our problem cqul-d.be performed using
k-causality, ork-causality for short. We say that an inpulthls ‘?'?C'S_'O” procedure baseq on _|nf|n|te game_theory. Our
output pairz, y is k-causal forspec, written causaly (z, y) iff spe_mﬂcatlon Ianguagg uses finite instead of |nf|n|te_ words,
Vp. Va! oy . Jy ~py. spec(a’,y'). wherez' ~, = means which allows us to eliminate the non-causal behaviors and

that 2/ and z have identical the initiap bits. spec is k-causal Fhus S|mpllfy the synthesis Process. Moreover, our teakmig
iff it implies causaly (z, y) for all z, . is not restricted tdc-bounded specifications.

Observe that &-causal specification can be implemented b _The work on graph types [16] proposes to synthesize fields

an asynchronous transducer, but there are specificationl ( iven by definitions in monadic second-order logic and also

as the sign function) implementable by asynchronous trarf2®S the MONA tool [8]. However, '.t focuses on computing
ducers that are ndt-causal. Ifspec is not k-causal but some assignments to update fields of linked data structures as

inputs have multiple possible outputs, a general strategyrh opposed to numerical and bit constraints.
spec it into a causal specification is to simply conjoin it with IX. CONCLUSION
causalg(x,y) and check whether the resulting specification is

. ) We presented an algorithm to synthesize linear-time func-
still total, that is, whethe¥x.3y.spec(z, y) A causali(x, ). : 9 y

tions from general WS1S specifications. Our software im-
Synthesized system for ak-causal specifications. Let plementation works on a number of interesting examples.
spec(x,y) be ak-causal and total specification. We showVe have also identified interesting classes of specification
how to construct an implementations that emits the inp@trafthat can be implemented using finite unions of asynchronous
reading k steps of the output. Construct first the specificaransducers, and provided examples of specifications fatwh
tion automatonA and apply the construction described irsuch finite-memory implementations do not suffice. Our ttssul
Section IV-E. We obtain the automatofi and the labeling therefore contribute to the understanding and to the dlguari
functions 7, ¢, and . We extend4’, 7, ¢, andv so that toolbox of automated synthesis approaches for software and
they include, for all stateg of A, the determinized version hardware.

Ag OT Ag, W_here_‘é_lq is the_ automaton that differs fro_nZl Acknowledgements. We thank Nir Piterman for discussion
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