
Synthesis for Regular Specifications over
Unbounded Domains

Jad Hamza∗, Barbara Jobstmann†, Viktor Kuncak‡
∗ENS Cachan, France†CNRS/Verimag, France,‡EPFL, Switzerland

Abstract—Synthesis from declarative specifications is an am-
bitious automated method for obtaining systems that are correct
by construction. Previous work includes synthesis of reactive
finite-state systems from linear temporal logic and its fragments.
Further recent work focuses on a different application areaby
doing functional synthesis over unbounded domains, using amod-
ified Presburger arithmetic quantifier elimination algorit hm. We
present new algorithms for functional synthesis over unbounded
domains based on automata-theoretic methods, with advantages
in the expressive power and in the efficiency of synthesized code.

Our approach synthesizes functions that meet given regular
specifications defined over unbounded sequences of input and
output bits. Thanks to the translation from weak monadic second-
order logic to automata, this approach supports full Presburger
arithmetic as well as bitwise operations on arbitrary length
integers. The presence of quantifiers enables finding solutions
that optimize a given criterion. Unlike synthesis of reactive
systems, our notion of realizability allows functions thatrequire
examining the entire input to compute the output. Regardless
of the complexity of the specification, our algorithm synthesizes
linear-time functions that read the input and directly prod uce
the output. We also describe a technique to synthesize functions
with bounded lookahead when possible, which is appropriate
for streaming implementations. We implemented our synthesis
algorithm and show that it synthesizes efficient functions on a
number of examples.

I. I NTRODUCTION

Automated synthesis of systems from specifications is
a promising method to increase development productivity.
Automata-based methods have been the core technique for
reactive synthesis of finite-state systems [1], [2], [3]. Inthis
paper, we show that automata-based techniques can also be
used to perform functional synthesis over unbounded data
domains. In functional synthesis, we are interested in synthe-
sizing functions that accept a tuple of input values (ranging
over possibly unbounded domains), and generate a tuple of
output values that satisfy a given specification. Our efforts
are inspired in part by advances in software synthesis for
bit-manipulating programs [4]. Our goal is to develop and
analyze complete algorithms that require only a declarative
specification as input. Recently, researchers have proposed
[5] a technique for functional synthesis based on quantifier
elimination of Presburger arithmetic.

In the previous approach, the functions generated by quanti-
fier elimination can be inefficient if the input contains inequal-

This research was facilitated by the COST Action IC0901Rich Model
Toolkit—An Infrastructure for Reliable Computer Systemsand the Dagstuhl
Seminar on Software Synthesis, December 2009. The author list has been
sorted according to the alphabetical order.

ities, possibly performing search over a very large space of
integer tuples. Furthermore, this approach handles disjunctions
by a transformation into disjunctive normal form. Finally,
the specification language accepts integer arithmetic but not
bitwise constructs on integers.

In this paper we present a synthesis procedure that is
guaranteed to produce an efficient function that computes
a solution of a given constraint on unbounded integers in
time linear in the combined length of input and the shortest
output, represented in binary. Moreover, our specification
language supports not only Presburger arithmetic operations,
but also bitwise operations and quantifiers. We achieve this
expressive power by representing integers as sets in weak
monadic second-order logic of one successor (WS1S) which is
known to be more expressive than pure Presburger arithmetic
[6], [7]. We use an off-the-shelf procedure, MONA [8], to
obtain a deterministic automaton that represents a given WS1S
specification.

As our central result, we show how to convert an arbitrary
automaton recognizing the input/output relation into a function
that reads the input sequence and produces an output sequence
that satisfies the input/output relation. Consequently, weobtain
functions that are guaranteed to run in linear-time on arbi-
trarily large integers represented as bit sequences. Assuming
constant-time lookup of automaton transition, the runningtime
of the synthesized functions is independent of the automaton
size. These properties are a consequence of our algorithm,
and we have also experimentally verified them on a number of
examples. Our result solves the problem of synthesis of general
WS1S specifications that are not necessarily causal. Our basic
algorithm generates implementations that haveO(N) time and
space complexity, whereN is the number of bits of input
and output. We show how to reduce space consumption to
O(logN) if the time is increased toO(N logN).

We also examine synthesis for sub-classes of WS1S speci-
fications that can be implemented using bounded memory. We
introduce a class of implementations based on a finite union
of asynchronous transducers, and show that they can be used
to implementk-causal specifications as well as specifications
in Presburger arithmetic without bitwise operations.

II. EXAMPLES

A. Parity Bit Computation

The goal of our first example is to illustrate the form of
the functions produced by our synthesizer. For a non-negative
integerx, let x[k] denote thek-th least significant bit in the

q0

q1

q2

`

0

0

´

,
`

1

1

´

`

0

1

´

,
`

1

0

´

`

1

0

´`

1

0

´

`

0

0

´

`

0

0

´

Fig. 1. AutomatonA for parity
specification betweenx andy

x: 0 1 1 0 1
y: 1 0 0 0 0

Fig. 2. Input x and outputy
satisfying parity specification

q0
q1

q2

0, 1

0

1

Transition State τ

{q0}
0
→{q1, q2} q1 (q0, 0)

{q0}
0
→{q1, q2} q2 (q0, 1)

{q0}
1
→{q1, q2} q1 (q0, 1)

{q0}
1
→{q1, q2} q2 (q0, 0)

{q1, q2}
0
→{q1, q2} q1 (q1, 0)

{q1, q2}
0
→{q1, q2} q2 (q2, 0)

{q1, q2}
1
→{q1, q2} q1 (q2, 0)

{q1, q2}
1
→{q1, q2} q2 (q1, 0)

Fig. 3. AutomatonA′ for computing parityy of input x

q0
q1

q2

0 q1

q2

1 q1

q2

1 q1

q2

0 q1

q2

1

q0 q2
1 q1

0 q2
0 q2

0 q1
0

Fig. 4. Running synthesized function on input shown in Fig. 2

binary representation ofx. (We write the binary digits starting
with the least significant one on the left, so110012 is a binary
representation of 19.) Our first specification states that the first
output bit,y[0] indicates the parity of the number of one-bits
in the input (Figure 2):y[0] = |{k | x[k] = 1}|%2.

Consequently, the synthesized function must examine the
entire input before emitting the first bit of the output.

One way to specify this computation is as follows. Let
nmax have the property∀k > nmax. x[k] = 0. To specify
y, introduce first an auxiliary sequence of bitsz such that

z[n] = |{k ≤ n | x[k] = 1}|%2

for all n ≤ nmax, by definingz[k + 1] as xor of z[k] and
x[k + 1]. Then definey[0] to bez[nmax].

Figure 1 shows the generated automatonA for this specifi-
cation, accepting the words

(

x[0]
y[0]

)(

x[1]
y[1]

)

. . .
(

x[n]
y[n]

)

which satisfy
the given relation betweenx and y. After applying our
construction to compute a function fromx to y, we obtain
the input-determinstic automatonA′ shown on the left of
Figure 3, augmented with two labeling functionsτ and φ.
The automaton is the result of first projecting out the part
of A′ labels corresponding to the output, then applying the
subset construction. Therefore, the labels inA′ correspond to
input bits, and the states are sets of states of the automatonA.
Functionτ tells us how to move backwards within a run ofA′

to construct an accepting run of the underlying automatonA;
it thus recovers information lost in applying the projection
to A. Finally, functionφ tells us for every accepting state in
A′ at which state ofA to start the backward reconstruction.
The table on the right of Figure 3 showsτ for A′: it maps
every transitionS

σi→ S′ of A′ and every stateq′ ∈ S′ into
a predecessor stateq ∈ S, and a matching output valueσo,

Fig. 5. Beam balance with three weights

such that(q, (σi∪σo), q
′) is a transition in the automatonA.

We indicate functionφ in A′ by additional circles around
individual states, e.g.,φ({q1, q2}) = q1. Figure 4 shows
the run ofA′ on the input01101. The synthesized function
first runs the deterministic automatonA′ (the upper part of
Figure 4, ending in state{q1, q2}). The synthesized function
then picks a stateq according toφ (the stateq1 in case of our
example), and runs backwards according toτ while computing
the output bits. The lower part of Figure 4 shows the backward
computation followingτ defined in Figure 3; the backward run
generates the bits10000 of the output.

B. Synthesizing Specialized Constraint Solvers

Our next examples illustrate a range of problems to which
our synthesis technique applies. Consider first the beam bal-
ance (scale) depicted in Figure 5. We are interested in a
function that tells us, for any object on the left-side of the
beam, how to arrange the weights to balance the beam. We are
given three weights, with1, 3, and9kg, respectively. We use
the variablew for the weight of the unknown object. For each
available weighti, we use two variablesli to indicate whether
the weight is placed on the left side andri to indicate it is
placed on the right side of the beam. We obtain the constraint:

w + l1 + 3l3 + 9l9 = r1 + 3r3 + 9r9. (1)

Because each weight can only be use at most once, we require
that the solution also respects the following three constraints

l1 + r1 ≤ 1, l3 + r3 ≤ 1, l9 + r9 ≤ 1. (2)

When we give these four constraints to our tool, it compiles
them into a function. The function accepts arbitrary input
values and returns corresponding output values, performing
computation in time linear in the number of bits in the input.
E.g., if the object weights11kg, then the program tells us that
we should use Weight1 on the left and Weight3 and 9 on
the right side to balance the beam. It is easy to verify that
this response is correct by insertion into Equation 1 leading to
11+1 · 1 = 3 · 1+9 · 1. When asked forw = 15, the program
correctly responds with “There is no output for your input.”

C. Modifying Example to Minimize Output

Next, we consider a modified version of the balance exam-
ple to show that neither inputs nor outputs need to be bounded.
It also shows how to specify a function that minimizes
the output. In the previous example, we could only balance
objects up to13kg because only one copy of each weight
was available. Assume we want to balance arbitrary heavy
objects with the minimal number of balance weights of1, 3,
and9kg. We keep the constraint from Eqn. (1) and replace the

2

constraints in Eqn. (2) by a constraint that asks for a minimal
solution:

∀l′1, l
′
3, l

′
9, r

′
1, r

′
3, r

′
9. balance(w, l′1, l

′
3, l

′
9, r

′
1, r

′
3, r

′
9) →

sum(l1, l3, l9, r1, r3, r9) ≤ sum(l′1, l
′
3, l

′
9, r

′
1, r

′
3, r

′
9)

where balance(w, l′1, l
′
3, l

′
9, r

′
1, r

′
3, r

′
9) is the constraint obtained

from Eqn. 1 by replacingli andri by l′i andr′i, respectively,
and sum refers to the sum of the listed variables. This
constraint requires that every other solution that would also
balance the scale for the given object has to use more weights
than the solution returned.

The newly synthesized program gives correct answers for
arbitrary large natural numbers. E.g., let us assume the object
weighs 12345123451234512345123456789kg, then the pro-
gram tells us to take1371680383470501371680384088 times
Weight9 on the right side and once Weight3 on the left side.

D. Finding Approximate Solutions

Consider the constraint6x+9y = z, wherez is the input and
x, y are inputs. The solution exists only whenz is a multiple of
3, so we may wish to findx, y that minimizes|6x+ 9y − z|,
using a similar encoding with quantifiers as in the previous
example. The support for disjunctions allows us to encode the
absolute value operator that is useful for finding approximate
solutions. The tool synthesizes a function that given a value of
z, computesx, y to be as close toz as possible. For example,
given the input 104, the tool outputsx = 13 andy = 3.

E. Folding and Inverting Computations

Consider the Syracuse algorithm function, whose one step
is given byf(x) = if (2 | x) thenx/2 else3x+1. Consider
a relation on integers corresponding to iteratingf six times:
r(x, y) ↔ f6(x) = y. (We could use such function to speed-
up experimental verification of the famous3n+ 1 conjecture
that states∀x > 0.∃n.fn(x) = 1.) When we user(x, y) as
the specification and indicatex as input andy as output, our
synthesizer generates a function that accepts a sequence ofbits
of x and outputs in linear time a sequence of bits ofy that
is given by6-fold iteration of f . Note that, if the synthesis
from a specification (e.g.y = fn(x)) succeeds, the runtime
of the computation is independent ofn and is linear in the
number of bits ofx. Therefore, our approach can effectively
fold n iterations of f into one linear-time function on the
binary representations of inputs and outputs.

F. Processing Sequences of Bits

We next illustrate the use of specification of unbounded
numbers in simple signal processing task. Suppose we
have an input signalX with discrete values in the range
{0, 1, 2, . . . , 15} and we wish to compute a smoothed output
signalY by averaging signal values with its neighbors, using
the formulaYi = (Xi−1 +2Xi +Xi+1) div 4. We specify this
function in WS1S as a relation between unbounded integersx
andy, where we reserve 4 bits for value of the signal at each
time point (see Figure 6). For constantsa, b, let x[k+a, k+b]

Fig. 6. Averaging signal values

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90 100

Fig. 7. The result of applying the synthesized function thatcomputes a
smoothed version of a signal. The function on an arbitrarilylong signal was
specified in WS1S.

denote the number represented by the subrange of digits ofx
betweenk + a andk + b:

x[k+a, k+ b] = x[k+a]+2x[k+a+1]+ . . .+2b−ax[k+ b]

We define the smoothing relation between numbersx andy by:

∀i. (4|i) → y[i+4..i+7] =
(x[i..i+3] + 2x[i+4..i+7] + x[i+8..i+11]) div 4

Our synthesizer generates a function that, given the sequence
of bits x, produces a sequence of bitsy. Figure 7 shows an
input signal (dotted line) and the resulting smoothed signal
(full line) that results after we applied the linear-time function
synthesized by our tool to the input.

III. PRELIMINARIES

A. Words and Automata

Given a finite set of variablesV , we useΣV to denote the
alphabetΣV = 2V . We omitV in ΣV if it is clear from the
context. When used as a letter, we denote∅ ∈ ΣV by 0. Given
a finite wordw ∈ Σ∗

V , we use|w| to denote the length ofw,
andwi to denote the letter on thei-th position ofw. By ε we
denote the empty word, of length zero. Given a partitioning
of V into the setsI andO and a letterσ ∈ ΣV , we useσ|I to
denote the projection ofσ to I, i.e., σ|I = σ ∩ I. We extend
projection in usual sense to words and languages.

A finite automatonA over a finite set of variablesV is
a tuple (Σ, Q, init, F, T), whereΣ = 2V is the alphabet, Q
is a finite set ofstates, init ∈ Q is the initial state, T ⊆
Q× Σ ×Q is the transition relation, andF ⊆ Q is a set of
final states. AutomatonA is deterministic, if for all transitions
(q1, σ1, q

′
1), (q2, σ2, q

′
2) ∈ T , q1 = q2 and σ1 = σ2 implies

q′1 = q′2 holds.A is complete, if for all statesq ∈ Q and letters
σ ∈ Σ, there exists a stateq′ ∈ Q such that(q, σ, q′) ∈ T .
Note that ifA is deterministic and completeT describes a
total function fromQ andΣ to Q.

3

F ::= F ∧ F | F ∨ F | ¬F | tN < tN | tN = tN

| tN [tP] | tP < tP | tP = tP | (C|tN) | tN ∼
tP

tN

| ∀posk.F | ∃posk.F | ∀x.F | ∃x.F

tN ::= x | C | tN + tN | C · tN | tN divC | tN %C

| (tN ⊻ tN) | (tN ⊼ tN) | tN ≪ C | tN ≫ C

| 2tP | tN [tP ..
+C] | tN [0..tP]

tP ::= k | C | k + C | k -̇C | maxBit(tN)

C ::= non-negative integer constant

Fig. 8. Syntax of WS1S where sets denote natural numbers (TN) and
elements denote positions (TP) in binary representations of numbers

Given an automatonA = (Σ, Q, init, F, T) and a state
q ∈ Q, we useAq to refer to the automaton(Σ, Q, q, F, T)
that has the same structure asA but starts atq.

A run ρ of A on a wordw ∈ Σ∗ is a sequence of states
q1 . . . q|w|+1 such that (i)q1 = init and (ii) for all 1 ≤ i ≤
|w| : (qi, wi, qi+1) ∈ T . A run is acceptingif q|w|+1 ∈ F .
We sayw is accepted byA if there exists a run ofA on w
that is accepting. We denote byL(A) ⊆ Σ∗ the set of words
accepted byA.

Theexhaustive runρ of A on a wordw ∈ Σ∗ is a sequence
of sets of statesS1 . . . S|w|+1 such that (i)S1 = {init} and (ii)
for all 1 ≤ i ≤ |w|, Si+1 = {q′ ∈ Q | ∃ q ∈ Si, (q, wi, q

′) ∈
T }. An exhaustive run isacceptingif S|w|+1 ∩ F 6= ∅. Note
that if A is deterministic, then the run ofA on a wordw is
unique and the elements in the exhaustive run ofA on w are
singletons.

Lemma 1:For an automatonA with a set of statesQ,
computing an exhaustive run ofA for a wordw ∈ Σ∗ can
be done in timeO(|Q| · |w|) for a non-deterministicA, and
can be done in timeO(|w|) for a deterministicA.

Given an automatonA = (ΣV , Q, init, F, T) over vari-
ables V and a setI ⊂ V , the projection of A to I,
denoted byA|I , is the automaton(ΣI , Q, init, F, TI) with
TI = {(q, σI , q

′) ∈ Q × ΣI × Q | ∃σ ∈ ΣV , (q, σ, q
′) ∈

T ∧ σ|I = σI}. In the remainder, we fixI to be the set of
input andO to be the set of output variables.

B. WS1S as extension of Presburger Arithmetic

Figure 8 shows the syntax of weak monadic second-order
logic of one successor, which we use as our specification lan-
guage for unbounded non-negative integers. The logic contains
all integer linear arithmetic operations and quantifiers, thus
subsuming Presburger arithmetic. Furthermore, it contains the
expressionx[k] to extract thek-th least significant bit of the
numberx. It is also possible to find ac-successor of position
k, with notation k + c, as well as thec-predecessor, with
notationk -̇ c, denoting the positionmax(k − c, 0). Together
with quantification over positions, this allows the specification
of arbitrary uniform bitwise relations on integer variables.
To illustrate the expressive power of WS1S, we introduce
shorthands for some of the constraints that can be defined in
this way: bitwise operations (⊼, ⊻), left and right shifting (≪,

≫), a sub-word of lengthc at positionk of a given integerx
(denotedx[k..+c]), congruence modulo2p (denotedx∼p y),
the initial prefix of an integerx[0..k], the integer2p for a
position p, and the smallestp such thatx < 2p, denoted
maxBit(x).

C. Amortized Cost of Synthesis

We describe the cost of synthesis and synthesized program
in a unified framework, by considering the entire amortized
cost of applying a given specificationa on a series of inputs
b1, . . . , bn. Let f be a function with two arguments, so
that f(a, b) = c if the input-output pair(b, c) satisfies the
specificationa. We implement functionf using a function of
the formg(a, b, s) = (f(a, b), s′) that computesf and updates
its local state froms to s′. We assume a fixed initial states0.
The presence of local state can make the computation more
efficient on a series of inputs. This framework accounts for
simple cases such as memoization and caching, as well as the
more general case of on-the-fly specialization.

Given the specificationa and the inputsb1, . . . , bn we
define si = g(a, bi, si−1) for i ∈ {1, . . . , n}. Let g′(a, b, s)
denote the time to computeg(a, b, s). Let |x| denote the length
of value x. We define the amortized cost ofg on inputs
a; b1, . . . , bn by 1

n

∑n

i=1 g
′(a, bi, si−1). Our main complexity

measure is thenc(sa, sb, n), which we define as the maximum
amortized cost over alla; b1, . . . , bn for which |a| ≤ sa and
|bi| ≤ sb for all i.

Observe thatc(sa, sb, 1) is simply the complexity of running
function f once on inputs of sizesa and sb, respectively.
Another useful measure, of particular interest in synthesis,
is c∞(sa, sb) = limn→∞ c(sa, sb, n), which amortizes any
pre-computation that happens in finitely many steps. We
next present several examples to illustrate the cost function
c∞(sa, sb) for implementations of several problems.

Example 1 (Finding an enclosing interval): Consider
the problem of computing the smallest interval enclosing
a given number. More precisely, the goal is to compute
f([x1, . . . , xm], y) = (L,U) whereL = max{xi | xi ≤ y}
and U = min{xj | y ≤ xj} given an unordered list of
numbersx1, . . . , xm (with the result arbitrary if themax or
min expressions above are not defined). In this example, we
assume that each number takes constant space to represent,
so |[x1, . . . , xm]| = m and |y| = 1. An algorithm for one
invocation can simply make a single pass through the list,
computing the currentmax of lower bounds ofy and the
currentmin of the upper bounds up to a given position in the
list. This gives the worst-case complexitym of the algorithm.
If we use this algorithm as the implementationg (without
making use of state), we obtainc∞(m, 1) of O(m).

Consider next an alternative implementation, given by
g′([x1, . . . , xm], y, s), which behaves as follows: on the first
invocation, g([x1, . . . , xm], y, s0), builds a balanced binary
search tree storing the set of numbersx1, . . . , xm in time
O(m logm), and returns this tree in the resulting states′. On
subsequent invocations,g uses this tree to find the enclosing
interval(L,U), which can be done in timeO(logm) by doing

4

a lookup in the tree. Therefore, we obtain thatn invocations
require O(m logm + n logm), which gives c(m, 1, n) ∈
O(1

n
(m logm)+logm) andc∞(m, 1) = O(logm). Thus, we

have seen that precomputation improves the amortized time
c∞(m, 1) from O(m) to O(logm). �

IV. SYNTHESIS ALGORITHM

A. Constructing Specification Automaton

The input to our algorithm is a WS1S formulaG whose free
variablesz1, . . . , zr denote unbounded integers. We assume
a partitioning of the index set{1, . . . , r} into inputs I and
the outputsO. In the first step, our algorithm constructs a
deterministic specification automatonA accepting words in
the alphabetΣI∪O. We use a standard automaton construction
[9] and obtain an automatonA characterizing the satisfying
assignments ofG, i.e. whose languageL(A) contains pre-
cisely the wordsσ0σ1 . . . σn ∈ Σ∗

I∪O for which G holds in
the variable assignment(z1, . . . , zr) in which thek-th least
significant bit ofzi is one iff 0 ≤ k ≤ n and i ∈ σk. We use
L(G) to denote the language overΣI∪O characterizing the
satisfying assignments ofG. From this correctness property it
follows thatw ∈ L(A) impliesw0

p ∈ L(A) for everyp ≥ 0.

B. Overview

All subsequent steps of our algorithm work with the specifi-
cation automatonA and do not depend on how this automaton
was obtained. GivenA, our goal is to construct a function that
computes, for a given sequence of inputs bits a corresponding
sequence of output bits such that the combined word is
accepted by the deterministic automaton.

Note that we seek an implementation that works uniformly
for arbitrarily long sequences of bits, which means that it is
not possible to pre-compute all possible input/output pairs.

We show our construction in several steps. First, we assume
that we are only interested in outputs whose length does not
exceed the length of inputs. For this case we start by de-
scribing a less time-efficient implementation (SubsectionIV-C)
that depends on the size ofA, then describe an efficient
version, showing that we can avoid the dependence on the
size of A (Subsection IV-D). Finally, we show how to lift
the assumption that the outputs are no longer than the inputs
(Subsection IV-E).

C. Input-Bounded Synthesis of Unspecialized Implementations

In the first version of our solution we assume that, given an
input bit sequence, we seek an output sequence of thesame
lengthsuch that the input and output pair are accepted by the
specification automatonA.

Our unspecialized implementationPunspec simulates the
given automatonA = (ΣI∪O, Q, init, F, T) on the input
word w ∈ Σ∗

I and tries to find an accepting run.Punspec

first constructs the exhaustive runρ = S1 . . . S|w|+1 of the
projected automatonA|I on w (see preliminaries for the
definition of automaton projection and exhaustive run). Ifρ
is not accepting, then there is no matching output word and
Punspec terminates. Otherwise,Punspec picks a stateq|w|+1 in

S|w|+1∩F and constructs an accepting runq1 . . . q|w|+1 of A
and the output wordv by proceeding backwards overi, from
i = |w| to i = 1, as follows: it picksvi ∈ ΣO andqi ∈ Si such
that (qi, wi ∪ vi, qi+1) ∈ T . When it reaches one of the initial
states inS1, the result is an accepting run of the automaton
A; the desired output is the sequencev1 . . . v|w| of the output
components of the labels in the reconstructed run.

ThePunspec implementation repeats the above construction
for each input wordw. From Lemma 1 we obtain the amor-
tized cost ofPunspec.

Lemma 2: If sA denotes the size of the input automaton
A and sw denotes the size of the input word, then the
unspecialized implementationPunspec solves the synthesis for
input-bounded specifications in amortized timec(sA, sw, n) of
O(sA · sw) (consequently,c∞(sA, sw) is alsoO(sA · sw)).

D. Input-Bounded Synthesis of Specialized Implementations

We next present our main construction (illustrated in the
Example II-A), which avoids the dependence of the running
time of computation of on the (potentially large) number of
states of the automatonA. To obtain an implementation with
optimal runtime, we transform the given automatonA into an
input-deterministic automatonA′ using the subset construction
on the projectionA|I . The challenge is to extend the subset
construction with the additional labeling functions that allow
us to efficiently reconstruct an accepting run ofA from an
accepting run ofA′. Given such additional information, our
specialized implementationPspec runsA′ on the inputw and
uses the labeling to construct the outputv.

Our construction introduces two labeling functions,φ and
τ . The functionφ maps each accepting stateS of A′ into one
stateq ∈ S that is accepting inA. The τ function indicates
how to move backwards through the accepting run; it maps
each transition(S, σi, S

′) of A′ and a stateq′ ∈ S′ into a pair
(q, σo) ∈ S×Σo of new a state and an output letter, such that
(q, σi ∪ σo, q

′) is a transition of the original automatonA.

Definition of synthesized data structureA′, φ, τ . Given
an automatonA = (ΣI∪O, Q, init, F, T), we construct an au-
tomatonA′ = (ΣI , Q

′, init′, F ′, T ′) and two labeling functions
φ : F ′ → Q and τ : (T ′ ×Q) → (Q × ΣO) such that (i)A′

is deterministic, (ii)L(A)|I = L(A′), and (iii) for every word
u ∈ L(A′) with an accepting runS1 . . . Sn+1 of A′, there
exists a wordw ∈ L(A) with w|I = u and an accepting
run q1 . . . qn+1 of A such thatφ(Sn+1) = qn+1 and for all
1 ≤ i ≤ n, (qi, wi|O) ∈ τ((Si, ui, Si+1), qi+1). We defineA′

as follows:

Q′ = 2Q

init′ = {init}
F ′ = {S ∈ Q′ | S ∩ F 6= ∅}
T ′ = {(S, i, S′) ∈ Q′ × ΣI ×Q′ |

S′ = {q′ | ∃q, σ.(q, σ, q′) ∈ T ∧ q ∈ S ∧ σ|I = i}}

We defineφ : F ′ → Q such that ifS ∈ F ′ thenφ(S) ∈ S∩F ;
such value exists by definition ofF ′.

We defineτ : (T ′×Q) → (Q×ΣO) for (S, i, S′) ∈ T ′ and
q′ ∈ S′ as follows. By definition ofT ′, there exists a transition

5

(q, σ, q′) ∈ T of the original automaton such thatσ|I = i. We
pick an arbitrary such transition and defineτ((S, i, S′), q′) =
(q, σ|O).

Computing A′ and τ through automata transformations.
In our implementation, we represent bothA′ and τ in one
automaton, which we compute using the following sequence
of automata transformations. Becauseτ refers to sets of
transitions, we first turn each transition ofA into a state, i.e,
givenA = (ΣI∪O, Q, init, F, T), we construct an automaton
B = (ΣI∪O, QB, initB, FB, TB) such that

initB = (q, σ, initA) for arbitrarily chosenq, σ
QB = {initB} ∪ T
FB = {(q, σ, q′) ∈ QB | q′ ∈ F}
TB = {(t, σ, t′) ∈ QB × ΣI∪O ×QB |

∃q, q′, q′′ ∈ Q. ∃σ′ ∈ ΣI∪O.
t = (q, σ′, q′) and t′ = (q, σ, q′′)}.

Next, we projectB to I, i.e., we replace every transition
(q, σ, q′) in B by (q, σI , q

′). Finally, we obtain automatonC
by determinizingB|I using the classical subset construction.
Now, every reachable state inC (other than initB) corresponds
to a transition inA′. Assume we are given a stateqc in
C, then qc has the form{(q1, σ1, q

′
1), . . . , (qk, σk, q

′
k)} with

∀i, j, σi|I = σj |I = σI and corresponds to the transition
(t, σI , t

′) in A′, where t = {qi | 1 ≤ i ≤ k} and
t′ = {q′i | 1 ≤ i ≤ k}. So, every stateqc in C defines a
labeling function for the corresponding transition(t, σI , t

′)
that maps every stateq′i ∈ t′ to a set of available pairs
(qi, σi|O). Our final labeling functionτ picks for each state
qi one of the available pairs.

Specialized implementation and its complexity.The special-
ized implementationPspec runsA′ on the input wordw and
constructs a runρ = S1 . . . S|w|+1. If ρ is not accepting, then
there is no matching output word and the function terminates.
Otherwise, it computes an accepting runq1 . . . q|w|+1 of A and
the output wordv as follows:φ(S|w|+1) = q|w|+1 and, for all
1 ≤ i ≤ |w|, (qi, vi) = τ((Si, wi, Si+1), qi+1).

The following theorem states the correctness ofPspec and
follows by construction.

Theorem 1:Consider an automatonA and an input
w1 . . . wn. Then if there exists an outputv1 . . . vn such that
(w1∪v1) . . . (wn∪vn) is accepted byA, thenPspec computes
one such outputv1 . . . vn. If there is no corresponding output
thenPspec indicates that there is no output.

The following theorem states that our construction achieves
the desired linear-time behavior and independence from the
size of the initial automaton. The construction ofA′, φ, τ takes
time singly exponential in the size of the automaton, but is
done only once, so it is amortized for each invocation of the
automaton. Extracting the output for a given input takes time
independent of the number of states inA′ becauseA′ and τ
have deterministic transitions.

Theorem 2:If sA denotes the size of the specification
automatonA andsw denotes the size of the input word, then
Pspec solves the synthesis for input-bounded specifications in

amortized timec(sA, sw, n) of O(1
n
2sA + sw). Consequently,

the amortized timec∞(sA, sw) as the number of queries
approaches infinity isO(sw).

E. Extending Synthesis to Arbitrary Regular Specifications

In this section we extend the result of the previous section
to allow computing an output that satisfies the specification
even if the output has a larger number of bits than the input.
Consider the simple specificationx < y, wherex is the input
and y is the output. Given the input1112 of length three
(representing the number 7), every value of output satisfying
the specification has the length at least four.

To adapt the solution in the previous section to the full
synthesis problem we generalize the notion of acceptance to
take into account any number of zeros that could be appended
to the input without changing the meaning of the input.
Therefore, if the automatonA′ finishes reading the input word
and none of the states reached in the last step are accepting,it
checks whether one of the states can reach an accepting state
while reading only the input letter0. The closure with the
input 0 can be computed in polynomial time by computing
the states that are backward-reachable from an accepting state
using only edges with input label0.

To be able to emit the appropriate segment of the output,
the backward-reachability computation keeps, for every state,
an output word that leads to an accepting state. We use the
function ψ : Q → Σ∗

O ∪ {⊥} to store these words, where
Q are the states of the specification automatonA. We write
ψ(q) = ⊥ to denote that there is no input wordw ∈ 0

∗ that
is accepted starting fromq. Formally, given the automaton
A = (ΣI∪O, Q, init, F, T), we setψ = ψ|Q| and defineψi

inductively: for all q ∈ Q :

(i) ψ0(q) =

{

ε if q ∈ F

⊥ otherwise
(ii) let Ri be the set of statesq for which ψi(q) 6= ⊥,

ψi+1(q) =











ψi(q) if q ∈ Ri

σ|Oψi(q′) elsif ∃(q, σ, q′)∈T :σ|I = 0∧q′∈Ri,

⊥ otherwise.
Observe that ifψ(q) 6= ⊥ then ψ(q) is a word of length
bounded by the number of states of the specification
automatonA. Therefore, the maximal amount by which the
output is longer than the input is bounded by the size of the
specification automaton.

To recognize leading zeros, we adapt the final statesF ′ of
A′ (computed as forPspec in the previous section) and extend
the labeling functionφ as follows. Letfin(S) = {q ∈ S |
ψ(q) 6= ⊥} be the states inS that can reach input on zeros.

F ′ = {S ∈ Q′ | fin(S) 6= ∅}
φ(S)= q ∈ fin(S) s.t. |ψ(q)| = min{|ψ(q′) | q′ ∈ fin(S)|}

Note that the functionφ(S) chooses one of the states that lead
to an accepting state with an output word of minimal length.

The implementation and its time complexity. Given an
input wordw1 . . . wn, the implementationPgspec generates, as
Pspec in the previous Subsection (IV-D), a runS1, . . . , Sn+1.

6

TABLE I
SYNTHESIS TIMES, SIZE OF THE GENERATED AUTOMATA, AND AVERAGE RUNNING TIMES OF SYNTHESIZE FUNCTIONS

No Example MONA (ms) Synthesis (ms) |A| |A′| 512b 1024b 2048b 4096b

1 addition 318 132 4 9 509 995 1967 3978
2 approx 719 670 27 35 470 932 1821 3641
3 company 8’291 1’306 58 177 608 1312 2391 4930
4 parity 346 108 4 5 336 670 1310 2572
5 mod-6-test 341 242 23 27 460 917 1765 3567
6 3-weights-min 26’963 640 22 13 438 875 1688 3391
7 4-weights 2’707 1’537 55 19 458 903 1781 3605
8 smooth-4bits 51’578 1’950 1781 955 637 1271 2505 4942
9 smooth-f-2bits 569 331 73 67 531 989 1990 3905
10 smooth-b-2bits 569 1’241 73 342 169 347 628 1304
11 forward-6-3n+1 834 1’007 233 79 556 953 1882 4022

If Sn+1 /∈ F ′, then there is no corresponding output; the
implementation indicates this and stops. Otherwise, suppose
Sn+1 ∈ F ′ and qn+1 = φ(Sn+1). The implementation
generates the backward run fromqn+1 as in Subsection (IV-D),
producing the output bitsv1 . . . vn. The final output is then the
word v1 . . . vnψ(qn+1).

Theorem 3:Let sA denote the size of the specification
automatonA, sw the size of the input word, andsv the
size of the shortest output word that satisfies the input word.
Then sv ≤ sw + sA. The Pgspec implementation solves the
synthesis for arbitrary regular specifications in amortized time
c(sA, sv, sw, n) of O(1

n
2sA + sw + sv). Consequently, the

amortized timec∞(sA, sw) is O(sw + sv).
Together with the correctness of the construction of specifi-

cation automata from WS1S, we obtain the following sound-
ness and completeness theorem.

Theorem 4:Consider a WS1S formulaF with input vari-
ables(zk)k∈I and output variables(zk)k∈O. Consider a binary
representation of input variables(zk)k∈I . If there exist values
of output variables(zk)k∈O such thatF holds for(zk)k∈I∪O,
thenPgspec outputs a sequence of bits for one such(zk)k∈O.
If there is no corresponding output thenPgspec indicates that
there is no output.

V. EXPERIMENTAL RESULTS

We implemented our algorithm in Scala [10] using
MONA [8] to construct the specification automaton. Our tool
accepts (1) a specification written in WS1S and (ii) the list
of input variables. Our tool first invokes MONA to construct
the specification automaton, then applies the construction
described in Section IV. The construction covers the general
case of WS1S specifications. The synthesized function can
be invoked at a later point in the program any number
of times. The synthesized function computes the output by
running a deterministic automaton (Section IV-D) on the input,
first forward, then backward. It also computes the additional
information necessary to produce outputs that are longer than
the inputs (Section IV-E).

We have tested our tool on several specifications including
simple addition and the examples described in Section II and
the appendix. The specifications were written in WS1S. In
Table I, we summarize the results. In the second column,

we give a short description that relates the results to the
description of the example in Section II. In the column labeled
MONA we show the time (in ms) that MONA needs to create
the specification automatonA. The number of states ofA is
shown in Column labeled|A|. The columnSynthesisshows
the time (in milliseconds) necessary to create the synthesized
function. The column|A′| shows the number of states of
the projected and augmented automatonA′. The last four
columns show the time (in milliseconds) to run the synthesized
functions on1000 random inputs of different bit length (512,
1024, 2048, and 4096 bits). All tests were performed on an
Intel Core 2 Duo P7450 (2,13 GHz) CPU with 4096 MB
DDR2 (667 MHz) RAM.

In most cases (9 out of 11) creating the augmented au-
tomaton (columnSynthesis) is faster than creating the initial
automaton (columnMONA). In some cases (e.g., Line 6 and 8)
the synthesis time is only a fraction of the overall time. The
running time of the synthesized function is (as expected) linear
in the number of bits of the input.

We are not aware of any other tool that can handle the
examples that we present in Table I. The closest tool that we
are aware of is Comfusy [5], which does not support quanti-
fiers and large integers for implementation reasons, and does
not support bitwise operations due to a fundamental restriction
of the underlying quantifier elimination algorithm. Conversely,
there are examples supported by Comfusy (multiplication with
symbolic constants and set constraints) that our approach does
not support, so a future combination of approaches based on
automata and quantifier elimination would be fruitful.

VI. SPACE COMPLEXITY FOR SYNTHESIZED SYSTEMS

So far we have mostly focused on the time that the synthe-
sized systems. This section examines the space complexity.
Let N = |w| denote length of the input.

Logspace upper bound for general WS1S.The algorithm we
described so far (and implemented, as discussed in Section V)
produces systems that run inO(N) time and useO(N) space
to store the results of the forward automaton run. We next
sketch how to obtain an implementation that hasO(N log(N))
time and onlyO(log2(N)) space. We assume the ability to
randomly access any arbitrary letter of the input string. The

7

idea then is to avoid storing all statesq0, . . . , qN of the forward
run, and instead compute them on demand, storing only a
sparse subsequenceqi0 , qi1 , . . . , qim

wherem = ⌈logN⌉. Let
p denote the current position in the backward run of the
synthesized function. The synthesized function maintainsthe
invariant 0 = i0 ≤ i1 ≤ . . . ≤ im ≤ p. Initially it sets
ik ≈ N(1 − 2−k). To move back fromp to p − 1, it re-runs
the forward automaton from the largestik for which ik < p,
and redistributesik+1, . . . , im, similarly as for the initial
run, maintaining the ordering and the decreasing geometric
progression of distancesik+j+1− ik+j . Because each position
pointer ij requiresO(logN) space and there arelogN of
them, this implementation needsO(log2N) space. A run that
updates pointersik+i for i ≥ 0 re-reads2−k fraction of the
input and is called2k times, so the total time isO(N logN).

Unions of asynchronous transducers. An (asynchronous)
transducerM = (A, λ, ϕ) over input variablesI and output
variablesO consists of (1) a deterministic automatonA =
(ΣI , Q, init, F, T) and (2) two labeling functionsλ : T →
Σ∗

O and ϕ : F → Σ∗
O. A (more conventional)synchronous

transducer is a special case of an asynchronous transducer
where|λ(t)| = 1 for all t ∈ T and |ϕ(q)| = ε for all q ∈ F .

The outcomeof M = (A, λ, ϕ) on a valid input word
w ∈ L(A), denoted by outM (w), is the concatenation of
output wordsu1, . . . , un produced byM while readingw
concatenated with the final word produced byϕ, i.e., if
ρ = q1q2 . . . qn+1 is the accepting run ofA onw ∈ L(A), then
outM (w) = u1 . . . unun+1, whereui = λ(qi, wi, qi+1) for all
1 ≤ i < n and un+1 = ϕ(qn+1). Note that the outcome of
M is only defined for valid input words. The language ofM ,
denotedL(M) is the is the union of valid input/output pairs
padded with trailing zeros to have equal length:L(M) = {w ∈
Σ∗

I∪O | ∃j, k. w|I ∈ L(A)0j ∧ w|O = outM (w|I)0
k}.

An asynchronous transducer can express even certain speci-
fications that are not WS1S expressible. For example, consider
a transducer that emitsε when reading0 and emits1 when
reading1. Such transducer outputs a contiguous sequence of
output bits whose length is the number of bits in the input.

Given a finite set of transducersM1, . . . ,Mk with Mi =
(Ai, λi) and a languageL over the variablesI∪O, we say that
M1, . . . ,Mk jointly implementL, written M1, . . . ,Mk |= L
iff (1) each transducersMi produces outputs satisfying the
specification, i.e.,L(Mi) ⊆ L(G) and (2) the union of
Mi’s covers the valid inputs, i.e.,L(G)|I ⊆

⋃

i L(Ai). We
say M1, . . . ,Mk implements a WS1S formulaG, denoted
M1, . . . ,Mk |= G, iff M1, . . . ,Mk |= L(G).

Note that ifM1, . . . ,Mk |= G, then there exists a finite-
memory implementation forG that performs only two passes
over the input (regardless ofk). In the first pass, the imple-
mentation generates no output, but simply determines whichof
the transducers accept. In the second pass, the implementation
generates the output for one of the transducers that accept.

Transducers for Presburger specifications. The follow-
ing lemma can be shown by analyzing the output of the
quantifier-elimination based synthesis algorithm for Presburger

arithmetic specifications [5]. They key observation is that
functions implementing Presburger specifications have the
form

∨

i(Pi(x) ∧ y = ti(x)) for input x and outputy.
Lemma 3:For every WS1S specificationG that encodes a

formula in Presburger arithmetic, there exists a finite set of
transducersM1, . . . ,Mk such thatM1, . . . ,Mk |= G.
The key observation is that witness termst(x) are computable
using asynchronous transducers.

Note that Presburger specifications are not computable
using only one asynchronous transducer due to presence of
disjunctions in specifications. They are also not computable
using a finite union ofsynchronoustransducers because of the
division by constants.

Limitations of asynchronous transducers.
Lemma 4:There exists WS1S specifications cannot be im-

plemented using a finite union of asynchronous transducers.
The proof is based on consider the following WS1S speci-

ficationG over inputI and outputO. We giveG as regular
expression over the binary presentation overI andO:

G =
I :

O :

((

1

0

)+(

0

0

))∗(
1

1

)+(

0

1

)(

0

0

)∗

.

Observation 1: Every transducerM = (A, λ, ϕ) with
L(M) ⊆ L(G) and less thann states that accepts an input
word (1n0)k must output a non-empty word within everyn
steps while reading this input.

Observation 2: Every transducerM = (A, λ, ϕ) with
L(M) ⊆ L(G) and less thann states that accepts the input
word (1n0)k for somek > 0, rejects all input words(1n0)l

for l > k.
Using the above observations and givenk asynchronous

transducersM1, . . . ,Mk with Mi = (Ai, λi, ϕi) such that
L(Mi) ⊆ L(G) it suffices to consider words(1n0)i for
i = 1, . . . , k + 1 to conclude that it cannot be the case that
L(G)|I =

⋃

i=1,...,k L(Ai).
Note thatG can be implemented by a finite set of trans-

ducers if the input is read from right to left. However, we
can concatenate specifications such asG with their reversed
versions to obtain specifications that cannot be realized by
transducers making both forward and backward passes.

VII. L OOKAHEAD-CAUSAL SPECIFICATIONS

An interesting class of specifications that can be imple-
mented using a single asynchronous transducer are lookahead-
causal specifications discussed in this section.

The algorithms presented so far first read the entire input
and then generate a corresponding output. In some cases (e.g.,
in streaming applications), one might prefer an implementation
that starts outputting before reading the entire input. Specifica-
tions such as the signal processing example require readinga
bounded number of bits ahead (three, in this case) to compute
an output bit.

For notational simplicity we consider specifications
spec(x, y) containing a single input-output pairx and y.
Furthermore, we assume that the specifications are total, that
is, ∀x.∃y.spec(x, y). If a specification is not total, we can

8

transform it into a total specificationspec′(x, y, e) given by
(spec(x, y) ∧ e = 0) ∨ ((¬∃y.spec(x, y)) ∧ y = 0 ∧ e = 1).

Definition of k-causality. We next define lookahead-
k-causality, ork-causality for short. We say that an input
output pairx, y is k-causal forspec, written causalk(x, y) iff
∀p. ∀x′ ∼p+k x. ∃y

′ ∼p y. spec(x′, y′). wherez′ ∼p z means
that z′ andz have identical the initialp bits. spec is k-causal
iff it implies causalk(x, y) for all x, y.

Observe that ak-causal specification can be implemented by
an asynchronous transducer, but there are specifications (such
as the sign function) implementable by asynchronous trans-
ducers that are notk-causal. Ifspec is not k-causal but some
inputs have multiple possible outputs, a general strategy to turn
spec it into a causal specification is to simply conjoin it with
causalk(x, y) and check whether the resulting specification is
still total, that is, whether∀x.∃y.spec(x, y) ∧ causalk(x, y).

Synthesized system for ak-causal specifications. Let
spec(x, y) be a k-causal and total specification. We show
how to construct an implementations that emits the input after
readingk steps of the output. Construct first the specifica-
tion automatonA and apply the construction described in
Section IV-E. We obtain the automatonA′ and the labeling
functions τ , φ, and ψ. We extendA′, τ , φ, and ψ so that
they include, for all statesq of A, the determinized version
A′

q of Aq, whereAq is the automaton that differs fromA
only in that its initial state is changed toq. The synthesized
programPcaus for k-causal specification has a fill parameter
µ > 0. It uses a buffer of length at least(1 + µ)k and
alternates operationsRead and Flush. The Read operation
reads one more input bit into the buffer and advances the
stateS of A′ accordingly, as forPgspec. TheFlush operation
is invoked when the input buffer contains at leastj input
bits for j ≥ ⌈(1 + µ)k⌉. It runs backwardsk steps from the
current stateq = φ(S) following τ and reaches stateq′. It
then treatsq′ as a final state of the entire input, emitsj − k
outputs going backwards and reaching stateq′′. It then empties
the corresponding buffer elements and moves forward fromq′

usingAq′ until the current position of the input. This gives
a streaming implementation that traverses the input bits only
1/µ more times compared toPgspec, regardless ofk.

VIII. R ELATED WORK

Like synthesis of combinational circuits from relations
(e.g.,[11]) our work synthesizes a function implementing
the given relation. However, our implementation works for
arbitrarily long input sequences. Techniques [1], [2], [12]
to synthesize reactive systems that implement a given S1S
specification can handle arbitrarily long input sequences.They
assume that the specification can be implemented by a (usually
finite-state) system that produces the output immediately while
reading the input, i.e., the system cannot look ahead. These
techniques usually take specifications in a fragment of tempo-
ral logic [13] and have resulted in tools that can synthesize
useful hardware components [14], [3]. Recent work [15] estab-
lishes theoretical results (without implementation) regarding

the problem of deciding when an S1S specification can be
implemented using a system with lookahead. The (k-bounded)
causality checks in our problem could be performed using
this decision procedure based on infinite game theory. Our
specification language uses finite instead of infinite words,
which allows us to eliminate the non-causal behaviors and
thus simplify the synthesis process. Moreover, our technique
is not restricted tok-bounded specifications.

The work on graph types [16] proposes to synthesize fields
given by definitions in monadic second-order logic and also
uses the MONA tool [8]. However, it focuses on computing
assignments to update fields of linked data structures as
opposed to numerical and bit constraints.

IX. CONCLUSION

We presented an algorithm to synthesize linear-time func-
tions from general WS1S specifications. Our software im-
plementation works on a number of interesting examples.
We have also identified interesting classes of specifications
that can be implemented using finite unions of asynchronous
transducers, and provided examples of specifications for which
such finite-memory implementations do not suffice. Our results
therefore contribute to the understanding and to the algorithm
toolbox of automated synthesis approaches for software and
hardware.

Acknowledgements. We thank Nir Piterman for discussion
of the synthesis algorithm for general specifications, and
Roderick Bloem for inspiring questions about the necessity
of unbounded memory.

REFERENCES

[1] J. R. Büchi and L. H. Landweber, “Solving sequential conditions by
finite-state strategies,”Trans. of the American Math. Society, 1969.

[2] M. O. Rabin,Automata on Infinite Objects and Church’s Problem, ser.
Regional Conference Series in Mathematics, 1972.

[3] B. Jobstmann and R. Bloem, “Optimizations for LTL synthesis,” in
FMCAD, 2006.

[4] A. Solar-Lezama, R. Rabbah, R. Bodı́k, and K. Ebcioğlu,“Programming
by sketching for bit-streaming programs,” inACM PLDI, 2005.

[5] V. Kuncak, M. Mayer, R. Piskac, and P. Suter, “Complete functional
synthesis,” inACM PLDI, 2010.

[6] W. Thomas, “Languages, automata, and logic,” inHandbook of Formal
Languages Vol.3: Beyond Words. Springer-Verlag, 1997.

[7] T. Schüle and K. Schneider, “Verification of data paths using unbounded
integers: Automata strike back,” inHaifa Verification Conference, 2006.

[8] N. Klarlund, A. Møller, and M. I. Schwartzbach, “MONA implementa-
tion secrets,” inCIAA. LNCS, 2000.

[9] J. R. Büchi, “Weak second-order arithmetic and finite automata,” Z.
Math. Logik Grundl. Math., vol. 6, pp. 66–92, 1960.

[10] M. Odersky, L. Spoon, and B. Venners,Programming in Scala: a
comprehensive step-by-step guide. Artima Press, 2008.

[11] J. H. Kukula and T. R. Shiple, “Building circuits from relations,” in
CAV, 2000, pp. 113–123.

[12] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
POPL ’89. New York, NY, USA: ACM, 1989, pp. 179–190.

[13] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,”
in VMCAI, 2006.

[14] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem, “Anzu: A tool
for property synthesis,” inCAV, 2007.

[15] M. Holtmann, L. Kaiser, and W. Thomas, “Degrees of lookahead in
regular infinite games,” inFOSSACS, 2010, pp. 252–266.

[16] N. Klarlund and M. I. Schwartzbach, “Graph types,” inACM POPL,
1993.

9

