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Abstract—A variety of tasks in formal verification require High-level MUC extraction is used for compositional
finding small or minimal unsatisfiable cores (subsets) of an FEV [21], [22] in [23]. In compositional FEV, the design
unsatisfiable set of constraints. This paper proposes two algo- and the implementation are decomposed into pairs of corre-
rithms for finding a minimal unsatisfiable core or, if a time-out . . . . .
occurs, a small non-minimal unsatisfiable core. Our algorithms spondlng_sllces. By pr_ovmg the equivalence of a!l the palrs
can be applied to either standard clause-level unsatisfiable core ONe can infer the equivalence of the models. It is essential
extraction or high-level unsatisfiable core extraction, that is, for fast and correct FEV to allow the user (the designer)
an extraction of an unsatisfiable core in terms of “interesting” to specify assumptions that mimic the environment for each
propositional constraints supplied by the user application. We pair of slices. These assumptions can be used for the proof

demonstrate that one of our algorithms outperforms existing f ival but th ¢ f h tion that
algorithms for clause-level minimal unsatisfiable core extraction ©' €dquivaience, but he correctness of each assumption tha

on large well-known industrial benchmarks. We also show that impacts the proof must be proved separately afterward$i-Hig
our algorithms are highly scalable for the problem of high- level MUC extraction, where the assumptions serve as the
level minimal unsatisfiable core extraction on huge benchmarks interesting constraints, is used to identify the assumptio
generated by Intel's proof-based abstraction refinement flowln — that \ere relevant for the equivalence proof. The algorithm
addition, we provide a comparative analysis of the impact of - - . - .
various algorithms on unsatisfiable core extraction. O_f finding a hl_gh_-level MU_C is only briefly s_ketched in [23]
(in fact, a preliminary version of our Alg. 2 is used).
|, INTRODUCTION Ar_wother _example where high—lgvel QC extraction can be
applicable is proof-based abstraction refinement for Sagell
Given an unsatisfiable formula in Conjunctive Normal Formardware model checking, proposed independently in [24]
(CNF), a(clause-level) unsatisfiable core (U@) an unsatis- and [25]. This algorithm uses bounded model checking (BMC)
fiable subset of its clauses. @&lause-level) minimal unsatisfi- for increasing depths on the concrete design. When there is
able core (MUC)is a clause-level UC that becomes satisfiableo counterexample up to a given depth, an UC is identified
when any one of its clauses is removed. The problem ffgr this depth and an abstraction based on latches and/or
finding a small, a minimal, the smallest minimal, or all thgjates is used to generate an abstract model which is then
minimal unsatisfiable cores has been addressed frequentiypioved using complete model checking techniques. While the
recent years [1]-[19], mainly due to the increasing impuréa existing literature uses clause-level UC extraction fodifig
of this problem in formal verification. the abstraction, it would be more appropriate to use higatle
While clause-level UC extraction is widely used, the fordC extraction for this purpose, since the algorithm clearly
mulation of the problem of extracting a clause-level comeeds UCs in terms of latches and/or gates, rather thareslaus
implicitly assumes that a “good” core should contain as few Finding one non-minimal core is the cheapest alternative in
clauses as possible, whereas many real-world applicatiaeams of run-time, but the least precise in terms of the size
require minimizing the number of high-level propositionadnd accuracy of the core. Extracting all the minimal cores is
interesting constraintén the core. Ahigh-level small/minimal the most precise, albeit the most costly, option. Finding on
unsatisfiable corés a small/minimal subset of the interestingminimal core is a reasonable compromise between accuracy
constraints, whose conjunction with the other constraints and run-time. In this paper we introduce two new algorithms
the system is unsatisfiable. applicable for both high-level and clause-level single MUC
In [13] an algorithm for finding all the high-level MUCs extraction. They can also return a small non-minimal core if
is proposed and applied during the refinement stage atime-out occurs after the initial approximation stagegereh
the datapath abstraction refinement-based approach tafforthe larger the time-out the smaller the core will be. One of
equivalence verification (FEV) described in [20]. Speclfica the algorithms generalizes and improves the resolutieeda
an abstract counterexample is written as a set of integestizpproach to clause-level MUC extraction [6]-[8], while the
constraints. The abstract counterexample is encoded iNt® Cother uses the selector variable-based approach to dienele-
in order to find corresponding concrete bit-level countanex non-minimal UC extraction of [4], [11] as the starting point
ples. If the CNF instance is unsatisfiable, then no such cdive show that one of our algorithms, given large industrial
cretization exists, and the abstract counterexample is@m1 benchmarks, yields empirically better results than previo
In this case, high-level MUCs are used to locate the sourceagproaches to clause-level MUC extraction. We demonstrate
infeasibility and refine the abstraction. The algorithm ©8]] the scalability of our algorithms for high-level MUC core
is reviewed in Section Il extraction using huge benchmarks generated by Intel'seémpl



mentation of the proof-based abstraction refinement flo\j, [24ariables and are assigned true. Then standard SAT solsing i
[25]. Also, our work provides an extensive comparison beised. The algorithm terminates when one of the assumptions
tween our new resolution-based and selector variabledbageis forced to be false in claus€ by Boolean Constraint
approaches to MUC extraction. Furthermore, we analyze tReopagation (BCP). In this case the assumptions cannot hold
impact of the following on resolution-based MUC extractiortogether. Minisat resolves th€ with all its predecessors in
(2) different approaches to incremental SAT solving (psix@ the implication graph until a clause containing the neggtio
clause reuse [26] versus reusing a single SAT instance;[24j Y'’s literals only is generated. The negation of this clause
(2) RRP (Resolution Refutation-based Pruning) [6]-[8]) (3s returned as the set (conjunction) of relevant assumgtion
in-memory data structures with reference counters [9]H11
versus on-disk data structures [1], [2]. B. Unsatisfiable Core Extraction

The rest of the paper is organized as follows. Section Il pro-
vides the necessary background and surveys the related workl he most scalable approach to extracting a small clause-
Sections IIl and IV introduce our approaches (resolutiasdnl level UC is theresolution-based approactit is based on the
and selector variable-based, respective|y) to extraaimjc_ abl'lty of modern SAT solvers to store a resolution derivati
Section V presents and analyzes the experimental resuftdling the process of solving and to generate a resolution

Section VI concludes our work. refutation of a given unsatisfiable formula at the end. Theda
resolution-based approach, discovered independentlyljn [
[I. BACKGROUND AND RELATED WORK and [2], returns all the initial clauses connected to the tgmp

We start this section with an overview of algorithms foflausel] as the UC. This approach imposes little overhead
incremental SAT solving, whose relevance to UC extractid) the SAT solver, hence it can handle huge instances having

will be explained shortly. millions of clauses. Two methods for trimming the size of the
_ core were proposed in [1] and [5], based on invoking the basic
A. Incremental SAT Solving resolution-based approach until a fixed point is reached and

Incremental SAT solving is intended to boost the solvingianipulating the resolution refutation, respectivelyithier of
of closely related SAT instances, which share clauses.tese methods guarantees minimality.
was noted in [26] thapervasive clause reus@hat is the A resolution-based algorithm for extracting a minimal UC,
reuse of learned clauses derived from shared input clauseded Complete Resolution Refutation (CRR), was proposed
in consecutive SAT invocations) provides a significant gerf in [6]-[8]. CRR first finds a resolution refutation of the
mance boost in SAT-based Automatic Test Pattern Generatigrput formula and removes clauses that are not connected to
Another single SAT instance-baseapproach to incremental the empty clausél. Then, for each remaining input clausg
SAT solving was proposed in [27] in the context of increCRR removes the cone @t from 7 and invokes a SAT solver
mental model checking and implemented in the Minisat SAM the rest of the remaining clauses, including the conflict
solver [28]. Minisat re-uses a single SAT instance for adl thclauses. If the formula is satisfiable, thérbelongs to a MUC;
related invocations. After the solving is completed, ona c@therwise CRR removes all the clauses not connected to
add new clauses to Minisat and re-invoke the solver on tfiem = and continues the loop until all the input clauses are
incremented instance. The single SAT instance-based agiproeither removed or are proved to belong to the MUC. CRR
is preferable to the pervasive clause reuse approach, sitises the pervasive clause reuse approach to incremental SAT
it reuses not only the relevant conflict clauses, but also a&blving: it invokes the SAT solver many times on related
the information necessary for the decision and conflictsgauinstances, re-using all the relevant conflict clauses. GRR’
deletion heuristics. However, it suffers from the drawbtickt  performance can be enhanced by applying a technique known
it is notdecrementalthat is, it does not allow removing clausesis Resolution Refutation-based Pruning (RRP) [6]-[8],clvhi
between consecutive SAT invocationSAT solving under is briefly described in Section Ill. CRR with RRP scales
assumptiong27] (also implemented in Minisat) provides awell for difficult industrial instances having up to one oraw
solution to this problem by allowing the user to supply a set dundred clauses [6]-[8].
assumptiond” = {y1,y2,...,ym (Where each assumptian The early implementations of resolution-based algorithms
is a literal) along with the input formul&'. The solver returns for UC extraction stored the resolution derivation on digk [
“satisfiable” iff ¥ A'Y is satisfiable. The user application[2]. Several independent researches realized that th@rperf
can augment related clauses that are expected to be remavetice of UC extraction could be improved by storing the
with the negation of a literal and assert these clauses wheresolution derivation in memory. In [6] it was suggested
required by adding to Y. An additional useful feature is thatas a direction for future work that storing the resolution
when F'AY is unsatisfiable, Minisat can return a small subselerivation in memory could boost CRR. BooleForce [29] was
of the assumption¥” C Y, called therelevant assumptions the first solver to store the resolution derivation in mem@oy
such thatF A Y’ is still unsatisfiable [28]. The algorithm extracting non-minimal UCs). An efficient implementatioh o
for returning the set of relevant assumptions is very che#ige in-memory algorithm, based on reference counters, was
and requires only minimal changes to the solver. All tie proposed independently in [9]-[11]. The key observation is
literals are picked as decision variables before all thesrotithat if there are no references to the clause from either the



instance or the resolution derivation, it can safely be nesdo

from the resolution derivation. <\7 =-a
Now we describe another prominent approach to UC /

extraction—theselector variable-based approaghtroduced in /CG = C

the AMUSE tool for non-minimal clause-level UC extrac- o, -7~ ¢, =¢ €, =bTe Co=-bVe Cs=-aV —c

tion [4]. This approach adds the negation of a fresltector ,

. . . 1: An example. Assume U =
variable from a subsetY” to each input clause. The SAT p —{C1,Ca) ,Ra = {C5,Cu}}: Q@ = {Cs}. Note that
solver is then guided to assert the clauses by setting e only high-level MUC is{R.}. A resolution refutation of
selector variable to true whenever possible. In the end, thsg¥ A (2), addressed in the text, is shown.
algorithm derives & -conflict clause containing a subset of .

the selector variables. The core consists of clauses tratinag

of whose corresponding selector variables belongs totthe in a straightforward manner which makes our high-level MUC

conflict clause. AMUSE implementation requires changirey tr]sxtraction algorithm scalable to instances having mibiari

internals of the SAT solver. A very similar algorithm for RON 1 auses. Note that although the second stage of CAMUS can

minimal clause-level UC extraction which does not require sily be modified to return only one high-level MUC, this

changing thg SAT solver was proposed in [.11]' It provides tQ)eption does not seem to be practical, since CAMUS"S first

;eel;?;%r E)/anables as as_sumptlons, ?"9”9 with the forrrmga asttage is clear overkill when only one MUC is required to be
y selector variables, to Minisat. The UC consists d

clauses whose selector variables are returned by Minigheas ’

relevant assumptions. Unlike the resolution-based approalll. RESOLUTION-BASED MINIMAL UNSATISFIABLE CORE

the selector variable-based approach does not need to store EXTRACTION

a resolution derivation. However, its major drawback isttha |n this section we introduce a new resolution-based algo-

adding selector variables causes the SAT solver to genergfgm for high-level and clause-level minimal UC extractio

very long learned clauses, making it so that the algorithfimay also return a non-minimal core if a time-out occurs
does not scale well even to medium-size instances for claug@er the initial approximation stage.

level MUC extraction. The selector variable-based apgroac o
to non-minimal clause-level UC extraction was shown tf- Definitions
be inferior to the basic resolution-based approach in [11]. We need to provide a number of well-known notions related
Moreover, AMUSE was shown to be much slower than the resolution. Theresolution rule states that given clauses
CRR algorithm in [6]—[8], even though AMUSE, unlike CRR,D; = AV v and D, = BV —wv, where A and B are also
does not guarantee the minimality of the core. The seleciauses, we can derive the clauSe= A vV B. The resolution
variable-based approach can be extended for generatingule application is denoted b§ = D, ®” D,. A resolution
number of clause-based UCs [4], the smallest clause-baskedivation of a target clauseC' from a CNF formulaF’ is a
MUC [12], and all the clause-based MUCs [13]. sequencer = (C1,Cs,...,C, = C), where each clausg; is
An algorithm for generating all the clause-level or all theither a clause of’' (an initial clause) or derived by applying
high-level MUCs, called CAMUS, is proposed in [13]. Firsthe resolution rule ta”; and Cy, wherej,k < i (a derived
CAMUS computes the set of all the minimal correction subsettause). Aresolution refutationis a resolution derivation of the
(MCSs) of a given unsatisfiable problem, where a correcti@mpty clausé&l. A resolution derivationr = (C1, Cs, ..., Cp)
subset is a subset of the constraints whose removal resglis naturally be considered as a directed acyclic graph) (dag
in a satisfiable set of constraints. Then it finds the set of alhose vertices correspond to all the clausesrofind in
the irreducible hitting sets of the MCSs, which is exactlg thwhich there is an edge from a claugg to a clauseC;
set of all the MUCs. The first stage of this algorithm is veriff C; = C; ® C; (an example of such a dag appears in
costly, since it has to finall the MCSs. Yet, a version of Fig. 1). Let = be a resolution derivation. A clause € =«
CAMUS for finding all the high-level MUCs was successfullyis reachablefrom C € = if there is a path (of 0 or more
applied to formulas from the datapath abstraction domabh [2edges) fromC to D. The set of all vertices reachable from
having more than one hundred clauses. The efficiency of thec = (or from p C =), called thecone of C (or p), is
high-level MUCs extraction is achieved using Minisat'sttee denotedRe(w,C) (or Re(m, p)). For the example in Fig. 1,
of SAT solving under assumptions with relevant assumptidRe(r, p = {C1, Co}) = {C1,C2, Cs, C7, Cs }.
extraction as an underlying reasoning engine. In our contex Now we provide definitions related to high-level UC ex-
it is important to note that the high-level MUCs extractiotraction. Given a conjunction (set) of propositional fotasu
mode of CAMUS marks all the clauses that correspond t = {Ry, Rs,..., R} and a propositional formul&, such
a particular interesting constraint with a particular sele that U A Q is unsatisfiableUC(¥, Q) C ¥ is a high-level
variable. This operation allows CAMUS to use Minisat'sinsatisfiable coreif UC(T,Q) A Q is unsatisfiable. Each
features for reasoning about interesting constraints.Alyr3  R; € V¥ is an interesting constraint (IC)and the sef is
for finding a single MUC uses this operation as well, buthe remainder A high-level UC isminimal if removing any
unlike CAMUS, we apply it to the problem of UC extractionof its ICs makes its conjunction with the remainder satiséiab



A clause projection CIg§) of a propositional formulaF” is Algorithm 1 Basic high-level MUC extraction
a set of clauses equisatisfiable kg generated by applying Require: ¥ = {R1, Rs,..., Rm} A Q is unsatisfiable
Tseitin encoding [30]. We sometimes refer to a formiila  1: Extract a clause-level non-minimal unsatisfiable cBrasing the
meaning the associated clause projectiisg F"). basic resolution-based approach
Next we introduce our resolution-based algorithm for high-gf ][2:“;:”:1.{; I‘ﬂi':gf”) NE#0}
level MUC extraction. For clarity of presentation we stafw 4. nyoke a SAT solver orClsSQ A {R; | j € muc\ {i}})
a simple (yet novel) Alg. 1, which serves as the basis for the: if the result is “unsatisfiablethen

eventual Alg. 2. 6: muc:= muc\ {:}
7: return {R; | ¢ € muc

B. The Basic Algorithm

Alg. 1 receives a set of ICs and the remainder. Its initial
approximation stagéthe first two lines) approximates a high-We would like to extend Alg. 1 so that it would reuse the
level MUC muchby placing inmucICs whose intersection with same SAT instance. To be able to check whether a removal
a clause-level non-minimal UC is non-emhtyThe clause- candidate belongs to the core, we need to have the ability to
level non-minimal core is found using the basic resolutiorsonditionally removehe cone of the removal candidate (that
based approach [1], [2]. The approximation stage of Alg. i, to remove the cone while maintaining the possibility of
corresponds to the “folk” algorithm for finding a high-levelreturning it efficiently), since this cone corresponds éyac
non-minimal UC. Note that even if the clause-level core &® the removal candidate and all its logical consequences.
minimal, the high-level core is not necessarily minimaligth In addition, we need to support both the efficieaturn of
observation also holds for Alg. 2). Consider the example tronditionally removed clauses to the SAT instance for cases
Fig. 1. The set of clauseSC;, Cy,C3,Cs} is a clause-level where the removal candidate belongs to the minimal core, and
MUC of Cls§¥ A Q). However, the corresponding set ofhe efficientunconditional removabf clauses to support the
interesting high-level constrain{sk;, R} is not a high-level operation of removing ICs from the core. We will describe how
MUC. we implemented these operations after presenting the flow of
Assume now that the algorithm enters thiaimization loop Alg. 2.
(the “for all” loop). It simply goes over all the ICs remaigin . .
in mucand checks if a particulaemoval candidate?; can bge C. The Final Algorithm
removed by invoking a SAT solver over the clause projection Alg. 2 uses an incremental SAT solver (which also maintains
of the remainder andhuc\ {R;}. In the end,mucis a high- a resolution derivation) and assumes that it returns aetripl
level MUC. that contains the result (which can either be “satisfiable” o
Note that if a time-out occurs during the minimization stagéunsatisfiable”), an updated SAT instance, and an updated
the algorithm can still return a reduced, but not necessarfesolution derivation. The approximation stage of Alg. @i
minimal, core. This property also holds for Alg. 2. We desseri the beginning until line 7) invokes the SAT solver over
another property holding for both algorithms. This propést the set of ICs and the remainder. The cones (of ICs) that
essential for guaranteeing that the algorithms indeedrretu do not include(J are removed from the instance forever.
minimal core. Consider an I®;, such thatj € mug but R; The algorithm maintains a set ehinimal core candidates
is not the removal candidate for a certain minimization loofuc cands initialized with the indexes of ICs whose cone
iteration. Note that all the clauseSlsg R;) are sent to the includes. It is not known whether the ICs imuc cands
SAT solver, even if some of the clauses ©kgR;) did not belong to the minimal core. The algorithm also maintains a
participate in the clause-level core returned by the SAVesol set of minimal core habitantsmug which contains ICs that
during the approximation stage. For example, supposeltat belong to the minimal UC. Consider the minimization loop
resolution refutation in Fig. 1 corresponds to the situajicst (the “while” loop). Each iteration picks a removal cand&lat
after completion of the approximation stage. Assume that tirom the minimal core candidates. It conditionally removes
removal candidate for the first iteration of the minimizatiothe cone of the removal candidate from the SAT instance
loop is R;. The clauseC, € ClsgR,) is not connected to and invokes the SAT solver. If the instance is satisfiable, th
. However, it must be sent to the SAT solver, otherwis&@moval candidate is guaranteed to belong to the minima, cor
the algorithm will erroneously conclude th&; must belong and hence it is moved frormuc candsto mucand its cone
to the minimal core. Likewise, all the clauses in the claud® returned to the instance. If the instance is unsatisfiahte
projection of the remainder are sent to the SAT solver.  algorithm refines the minimal core candidates by keepingethe
The main drawback of Alg. 1 is the lack of incrementalityonly those ICs whose cone includeis Cones of other ICs are
The SAT solver is invoked each time on a new formula, whileémoved forever. Hence one iteration of the loop may remove

the learned conflict clauses and heuristical informatier@st. more than one IC from the set of minimal core candidates. In

the end, the algorithm returns the set of minimal core hatsta
IWe assume here and elsewhere in the paper that the clausetiprojef as the high-level MUC.

each constraint (either an interesting constraint or timeameder) is created N il di . | . d i hich
by appying Tseitin encoding which generatesvauxiliary variables for each ow we wi Iscuss Implementation details which are

translated entity. critical for performance. Conditionally removed clauses a



not deleted from the clause database, since this would mgk#], while the CRR implementation of [6]-[8] uses the on-
returning them cumbersome and costly. Rather, we make sdigk approach. Section V demonstrates that Alg. 2 emplyical
that these clauses are ignored by the solver's major afgosit outperforms CRR for clause-level MUC extraction.
including Boolean Constraint Propagation (BCP) and clause Our current implementation of resolution-based algorghm
based heuristics (if such a heuristic, e.g., CBH [31], isdlise uses reference counters for efficiently removing unrefazdn
This is done as follows. We remove the clauses from the WHiodes in the in-memory resolution derivation. However, we
data structure [32], which is used for BCP, then we mark thmticed that using reference counters for this purpose is
clauses and guide the heuristic to ignore the marked clauseslundant, since the same effect can be achieved by remov-
To return the conditionally removed clauses, it is suffitien ing unreferenced nodes during the standard interproagssin
reinsert them into the WL data structure and unmark them fogquired for the clause deletion heuristic as follows. Téleey
the clause-based heuristics. In addition, our implemamtat stores the lis. of all the clauses deleted by the clause deletion
groups the following two operations into one pass over theeuristic. Note that only clauses that appearLirshould be
clauses carried out just after executing line 10: (1) findingpnsidered for removal from the resolution derivation. When
and conditionally removing the cone of the current removdl becomes larger than some threshold, the algorithm removes
candidate; (2) finding and either returning or unconditiiyna from the resolution derivation all the clauses In whose
removing the cone of the previous removal candidate (or, fpredecessors in the resolution derivation also appear Fhe
the first iteration only, unconditionally removing the cer@f exact implementation details are solver-specific. We haenb
ICs found to be irrelevant during the approximation stage).working on implementing this idea and experimenting with
it in the hope that it will result in further memory footprint
Algorithm 2 Resolution-based high-level MUC extraction reduction.
Require: W — {Ry, Ra, ..., Rm} A Q is unsatisfiable RRP [6]-[8], used to enhance CRR, is directly applicable

1: Initialize the SAT instanc&| with Clsg ¥ A ©) and associate a t0 Alg. 2. The underlying idea is that a model 8t during

resolution derivationr with S any minimization loop iteration can only be found under such
2: ]Sres Sl, m) == SdAT(Sl) a partial assignment that falsifies every clause in someipath
3 foricl...mdo ; P
4 if O ¢ Re(m, Clsg Ri)) then Re(m, (t:Iss_(Rk)f). f;qm a claudseI :‘glfﬁ(lfk) :ofD The clalmﬂl]s.
5. RemoveRe(, CIs< R,)) from Sl forever correct, since finding a mode at satisfies every path in
6: muc cands:= {i | O € Re(m, ClsgR;))} Re(m, Clsg Ry )) would mean that there is a satisfiable vertex
7: muc:= {} _ cut in 7, contradicting the assumption thatis a resolution
8: while muc candsis non-emptydo refutation. For example, consider again Fig. 1 and suppage t
9:  k:=a member omuc cands\ muc R, is picked as the first removal candidate by the minimization
10:  Conditionally removeRe(w, ClsgRy)) from SI | A del forSl be found eith h —0a=1
11:  muc candsi— muc cands\ {k} oop. A model forSl can be found either whelnc = 0;a =
12:  (res Sl,«) := SAT(SI) for the pathCy,Cgs,C7,Cs or ¢ = 0;b,a = 1 for the path
13:  if res= satisfiablethen Cs, Cs, C7, Cs. RRP takes advantage of the described property
14: ReturnRe(r, Clsg Ry )) to SI during the minimization loop by guiding the decision heticis
i‘gf els’:“C: mucy {k} and the backtracking engine of the SAT solver to falsify path
17 RemoveRe(r, Cls Ry)) from Sl forever in Re(w, Clsy Ry)) in a systematic manner. We_ analyze the
18: for i € muc candsdo impact of RRP on Alg. 2's performance in Section V.
19: if O ¢ Re(m, CIs{R;)) then
20: RemoveReg T, ClsgR;)) from Sl forever IV. SELECTORVARIABLE-BASED MINIMAL
21: muc cands:= muc cands\ {R;} UNSATISFIABLE CORE EXTRACTION

22: return i |2 m . . .
etun {Ai |7 € mug This section proposes a new selector variable-based algo-

rithm for extracting a single high-level or clause-level Kdr,

Standard clause-level MUC extraction is a particular ca#fea time-out occurs after the initial approximation stageon-
of high-level MUC extraction where each IC consists of einimal core. Our algorithm takes advantage of the ability o
single clause and the remainder is empty. Consider Alg. 2 m®dern SAT solvers to solve the problem under assumptions
an algorithm for clause-level MUC extraction and comparand to return a set of relevant assumptions for proving the
it to the CRR algorithm [6]-[8] described in Section Il. Theunsatisfiability [27], [28], explained in Section II.
algorithms have a similar structure. Both try to reuse all th Consider Alg. 3. It is composed of the approximation stage
relevant conflict clauses between different iterations h## t and the minimization loop, exactly like Algs. 1 and 2. First,
minimization loop. The main difference between them is th#the algorithm allocates a fresh selector variahléor each IC
while CRR creates a new SAT instance for each minimizatid®; and augments each clause in the clause projectioR;of
loop iteration, Alg. 2 reuses a single SAT instance. Theanis with —s;. At every stage of the algorithm every conflict clause
additional difference between the implementation of CRR arn the cone ofR; will contain the literal-s;. Hence, assigning
the currently fastest implementation of Alg. 2. Alg. 2'stlet somes,; to true means asserting the I&;, while assigning
implementation uses the latest in-memory data structuiss ws; to false means removing the associated IC by satisfying
reference counters for storing the resolution derivati®h-[ all the relevant clauses. Our algorithm takes advantage of




these properties to support the conditional and uncomditio Algorithm 3 Selector variable-based high-level MUC extrac-
removal of the ICs from the instance, as well as their retufen
to it, without explicitly maintaining a resolution derivai. Require: ¥ = {Ry, Ra,..., Ry} A Q is unsatisfiable
The approximation stage of the algorithm launches a SAt: For eachR; € U: SelR;) := {-s; vV C|C ¢ Cls{R:)}, where
solver, providing it the input formula (updated with theeszbr : Ssil Is:a(/r\]zeivl Virgg;%i)) ACIsg@)
variables) and the set of selector variables as the assumspti 3. (res rel_asm SI) := SATASI{SI; {s1, 52, . . . 5m 1)
Suppose that the solver returns: (1) the satisfiabilityustat 4: For eachj ¢ rel_asm Add a unit clause-s; to Sl
(2) the updated incremental CNF instarfske and (3) the set 5: muccands:= {i | s; € rel_asm}
of relevant assumptioneel_asm After invoking the solver, & Muc:= { ,
the set (_)f ICs which corres_pond_s _to the _selector variables i | Whll(l?:m:%cearggzlrs onf?lﬁ'égﬁggs muc
rel_asmis a (not necessarily minimal) high-level UC. Theo.  myc cands:= muc cands\ {k}
cones of the other ICs are removed from the instance. Thig (res rel_asm SI) := SATAs(SI; {s; | i € mu¢ candsu mugc})
is done by adding unit clauses to the instance, each of whith if res= satisfiablethen

contains the negation of a selector variable correspondjnglif elsrgUCZZ mucu {k}
one particular IC. One could physically remove the clause]'Is4_ muc candsi= {i | s, € rel_asm}

but this would require the expensive operation of going ovegE. For eachj ¢ rel_asm Add a unit clause-s; to SI
the clauses explicitly and rebuilding the clause databbse. 16: return {R; | i € mud

our implementation, the SAT solver identifies and removes th
satisfied clauses, at no additional cost, as part of the atend

interprocessing required for the clause deletion hearisti ) ]
The minimization loop of our algorithm maintains the set§Ureka SAT solver [35]. All experiments were carried out on

of minimal core candidates and minimal core habitants i Machine with 4Gb memory and two Intel Xeon CPU 3.06

Alg. 2. Each iteration of the minimization loop removes &'0C€SSOrS.
particular removal candidate from the set of minimal core Note that CRR with RRP is the best existing algorithm for
candidates and launches the SAT solver on the formuf¥tracting a clause-level MUC, given large difficult fornvak-
supplying it a set of assumptions that does not include tHi€ation benchmarks. It was shown in [6]-[8] that CRR with
removal candidate. If the result is satisfiable, the remov&RP convincingly outperforms AMUSE [4] and MUP [36].
candidate belongs to the MUC, otherwise it does not belong t§ere exist a number of other approaches to UC extraction,
it. In the latter case, based on the set of relevant assunspti§Uch as those based on adaptive core search [3], Brouwer's
returned by the SAT solver, the algorithm refines the set tked-point approximation algorithm [14], local search [1&
minimal core candidates and removes the cones of unneges§@mbination of local search and complete search [16], [49],
ICs. At the end, the set of minimal core habitants is returnéganch and bound algorithm [17], and genetic algorithm$.[18
as the high-level MUC. However, none of these approaches has been shown to scale
Compare selector variable-based Alg. 3 to resolutiondaswell to large-size or even medium-size benchmarks. The
Alg. 2. The selector variable-based approach saves the oJBptances considered in the experimental results seatiothe
head of maintaining a resolution derivation and making a@apers mentioned above rarely exceed 10,000 clauses; in mos
ditional passes over the clause database. Alg. 3 is also mga&ges the instances considered have at most a few thousand
simpler to implement. However, the selector variable-tas€r even a few hundred clauses. This is not surprising, since
approach has the drawback that adding new variables to tRese algorithms do not utilize the power of DPLL-based SAT
formula makes the conflict clauses larger and the solvereslowsolvers, currently the only approach that can solve large an

An empirical comparison of Alg. 3 and Alg. 2 is provided irdifficult CNFs. Note that the problem of finding a MUC is
Section V. DP-complete [37], hence in general extracting a MUC is at

least as difficult as SAT solving; moreover, unless NP=co-NP
V. EXPERIMENTAL RESULTS it is more difficult.

In this section we empirically compare algorithms for Consider Table I. Columns 1MR, 1MN, and 1DN (the

clause-level MUC extraction and high-level MUC extractionnames are explained in the caption of Table I) correspond to
o o ] various implementations of Alg. 2. Columns PDR and PDN

A. Clause-Level Minimal Unsatisfiable Core Extraction correspond to the CRR+RRP and CRR algorithms. Column

We used the same benchmarks that were used in [6}MN can be thought of as an in-memory implementation of
[8]. The instances were taken from well-known unsatisfERR or as a modification of Alg. 2 that creates multiple SAT
able families from bounded model checkinfafre| long- instances with pervasive clause reuse between them. Column
mult) [33] and microprocessor verificationfvp-unsat.2.0, SV corresponds to the selector variable-based approach of
pipe_unsat 1.0) [34]. The size of the instances ranged fromhlg. 3. Compare the best implementation of our Alg. 2 (1IMN)
6,069 to 189,109 clauses, the average size being 49,986he best previous approach CRR with RRP (PDR). 1MN is
clauses. Detailed information regarding these instanges alearly preferable, as it is faster overall and faster fartdln
pears in [6]-[8]. All the algorithms were implemented in th@ut of sixteen instances. In addition, it manages to find the



TABLE |: Comparing algorithms for clause-level MUC extraction. Thestficolumn contains instance names (where, p/b/l stand for
pipe/barrel/longmult). Each cell in the next seven columns contains tloeitixe time in seconds on the top, the core size on the bottom-left,
and the number of clauses whose status was not determined within theuiroé-® hours on the bottom-right (the core is minimal iff O
appears on the bottom-right of the corresponding cell). The first leftéieoabbreviated algorithm names corresponds to the approach to
incremental SAT solving: “P"/“1” stand for pervasive clause reuegle SAT instance-based, respectively. The second letter cordspon
to the data structures: “D"/“M” stand for on-disk/in-memory with referencounters, respectively. The third letter corresponds to RRP
invocation: “R"/“N” stand for turning RRP on/turning RRP off, respeetiv Bold times are the best times.

Resolution-based SV
Inst 1IMR 1MN PMN 1DN PDR PDN

ap 7200 1417 2326 7200 3791 4055 2021

25399 | 25341 18164 | 0 17928 | 0 18622 | 4050 18897 | 0 18609 | 0 17472 | 0
4p_1_ooo 7200 1528 2593 7200 2928 4579 4323

20445 | 20443 12213 | 0 12211 | 0 12444 | 8417 12246 | 0 12226 | 0 12887 | 0
4p_2_ooo 4718 2383 3428 7200 4566 7062 4999

14456 | 0 14438 | 0 14572 | 0 16360 | 11047 14553 | 0 14569 | 0 14560 | 0
4p_3_ooo 5053 2560 3694 7200 4465 6285 5357

15844 | 0 15850 | 0 15811 | 0 16141 | 7168 15892 | 0 15899 | 0 16177 | 0
4p_4_ooo 4768 2432 4706 7200 5865 7200 6354

17625 | 0 17558 | 0 17633 | 0 19215 | 13680 17872 | 0 17916 | 370 17793 | 0
3p_k 343 167 310 810 469 540 239

6784 | 0 6784 | 0 6787 | 0 6786 | 0 6783 | 0 6783 | 0 7074 | 0
4p k 7200 1426 2243 7200 2938 3261 3097

21459 | 21459 17045 | 0 17039 | 0 17218 | 3403 17055 | 0 17075 | 0 18786 | 0
5p_k 7200 7200 7200 7200 7200 7200 7200

45406 | 45404 36423 | 8946 37479 | 22827 37523 | 36363 39336 | 19888 38800 | 28221 49134 | 47179
b5 286 68 71 869 115 128 48

2653 | 0 2653 | 0 2653 | 0 2653 | 0 2653 | 0 2653 | 0 2653 | 0
b6 1514 348 433 7200 436 552 402

4437 | 0 4437 | 0 4437 | 0 4498 | 659 4437 | 0 4437 | 0 4437 | 0
b7 1802 849 800 7200 1081 1108 700

6877 | 0 6877 | 0 6877 | 0 7324 | 2927 6877 | 0 6877 | 0 6877 | 0
b8 7200 4115 4479 7200 4110 4923 5758

10260 | 1390 10077 | 0 10076 | 0 12452 | 11382 10075 | 0 10075 | 0 10076 | 0
14 23 14 14 25 12 12 78

972 | 0 972 | 0 972 | 0 972 | 0 972 | 0 972 | 0 972 | 0

15 191 143 130 321 100 97 642

1518 | 0 1518 | 0 1518 | 0 1518 | 0 1518 | 0 1518 | 0 1520 | 0
16 1121 968 1072 3129 1760 1615 5705

2189 | 0 2189 | 0 2190 | 0 2189 | 0 2189 | 0 2189 | 0 2194 | 0
17 7200 5099 7200 7200 7200 7200 7200

2982 | 36 2982 | 0 2994 | 649 3203 | 1814 3454 | 1993 3071 | 973 3494 | 2895
Total

63019
199306 | 114073

“ 30717

170180 | 8946

“ 40699

171177 | 23476

“ 84354

179118 | 100910

“ 47036

174809 | 21881

55817
173669 | 29564

54123
186106 | 50074

H

minimal UC within the time-out for one more instance.

requires more memory due to additional bookkeeping. We plan

Comparing 1IMN and SV clearly shows that our resolutiorie investigate and optimize the performance of RRP for Alg. 2
based approach is preferable to our selector variabledba#ethe future.
approach for clause-level MUC extraction. The overhead of
adding a variable per clause is too high.

The single SAT instance-based approach to incrementalityCompare the algorithms for high-level MUC extraction. As
results in better performance for the in-memory versiorhef t far as we know, this paper is the first to address the problem
resolution-based approach to UC extraction (compare 1M extracting a single minimal (or small, if a time-out ocgur
to PMN). This is not surprising, as it takes advantage ofigh-level UC. A much more expensive algorithm, called
the information gathered by the decision variable and eélausAMUS, for the much more difficult problem of extracting
deletion heuristics. However, it deteriorates the pertotoe all the high-level MUCs, is proposed in [13]. We provided a
of the on-disk algorithm (compare 1DN to PDN). The probdescription of CAMUS in Section II-B. We used 49 instances
lematic aspect of such a combination is that the single SAEnerated from the abstraction stage of Intel's implent&ma
instance-based approach stores the entire resolutiovatleri of the proof-based abstraction refinement flow for model
in a single file whose growing size does not allow it to behecking [24], [25]. All the instances are available frone th

processed efficiently.

B. High-Level Minimal Unsatisfiable Core Extraction

author. The abstraction is in terms of latches. Each instanc
While RRP is helpful for CRR (compare PDR and PDN)¢onsists of two files: the standard CNF file in DIMACS format,
it deteriorates the performance of Alg. 2 (compare 1MRBnNd a file that maps latches to their clause projection. Tlaé go

and 1MN). We can also report that PMN outperforms PMR/as to minimize the number of latches in the core in order to
(PMR’s results are not reported in the table due to spaceeate a more accurate abstraction. Consider Table Il. tRate
limitations). Hence RRP does not work well when the resur instances have on average more than 1,850,000 clauses,
olution derivation is stored in-memory. The reasons fos thivhile the largest benchmark has more than 5,000,000 clauses
could be related to higher memory consumption, since RRich instances are beyond the reach of modern algorithms



TABLE II: Statistics for instances used for testing high-level MUC P ; .
extraction algorithms. The remainder fraction is the fraction of the We demonstrated that our resolution-based algorithm out

remainder out of all the clauses. performs existing algorithms for standard clause-levehimi
mal unsatisfiable core extraction on large, difficult indiast

Clauses | Remainder Fraction| ICs Num. | Mean IC size ..
Vi, 136878 0.955 584 389 benchmarks. We also demonstrated the empirical usefulness
Average || 1853500 0.968 3367 17.27 and scalability of both our algorithms for high-level miramn
Max. 5136873 0.977 4030 48.6

unsatisfiable core extraction on huge benchmarks gendvgted
Intel's proof-based abstraction refinement flow.

TABLE Ill: Comparing algorithms for high-level UC extraction. . . . . .
paring &g g In addition, we provided a detailed comparison of various

1IMR 1MN PMN 1DN PDR PDN SV H it o iofi
Ue T T e e e algo.nthms qnd heuristics for'mln'lmal unsgtlsflable core ex
uUC size 289 | 289 | 289 | 289 | 289 | 289 | 277 traction. An important conclusion is that while our resaut
MUC time [[ 3843 | 3797 | 4731 | 9238 | 44699 | 44345 | 3278 based approach is clearly preferable to our selector Jariab
MUC size 96| 96| 96| 96 9.6 96 | 95

based approach for standard clause-level minimal unsatisfi
able core extraction, the latter approach is faster for -high
level minimal unsatisfiable core extraction. We found that

for clause-level MUC extraction. Note also that the fractioy single SAT instance-based approach to incremental SAT

of thg rerp;’:léndeir a;“"”g tggélauses IS ver;\/Nhlgh, Wh'ledt %Iving results in better performance than the pervasizesd
number of ICs (latches) is on average. We compared Hagqe approach. Furthermore, the in-memory data structure

same 7 algorlthms that were compared for clal_Jse-IeveI %h reference counters for storing the resolution deidvat
extraction. Consider Table Ill. The table summarizes the pe

: ) . PYs preferable to the on-disk data structure. Finally, RRB wa
formance of our algorithms for both high-level non-minim b 4

. ) S ot found to be helpful for the newly proposed algorithms.
UC extraction (which corresponds to the approximationetag . plan to investigate how to efficiently integrate RRP

only) and high-level ML_JC extracu.on. The overall run-img 6 oy algorithms in the future. Furthermore, we have been
and the average core sizes are displayed. Column PMN ¢gfing on improving the in-memory data structures for
be conS|d_ered either as a mo_d|_f|c§t|o_n of Alg._2 thqt Create%ﬁ)ring the resolution derivation by removing the redundan
new SAT instance for each minimization loop iteration or asl%age of reference counters (as described in Section JII-C)
generalization of CRR for high-level minimal UC extrac'donIn addition, we plan to study the impact of our algorithms
While the best resolution-based approach 1MN is preferall@:n various applications, such as proof-based abstmact

to the selector variable-based approach for non-minimal Utfinement and compositional FEV. Finally, we plan to study

extraction, the selector variable-based approach is @@ |, 15 enhance our algorithms to extract more than one MUC.
for minimal UC extraction. Hence, while adding selector

variables does not pay off for non-minimal UC extraction, ACKNOWLEDGMENTS

even when the number of ICs is relatively low, it turns out The author would like to thank Amit Palti for supporting
to be useful for the minimization loop. This result hintstthahis work, Paul Inbar for editing the paper, and Vadim Rywchi

the overhead of additional passes over the clauses is greaigd Iddo Tzameret for providing useful comments.
than the overhead of maintaining additional variables fghh

level UC extraction (at least for our benchmarks). Also note
that: (1) RRP is not helpful for the high-level UC extraction [1] L. Zhang and S. Malik, “Extracting small unsatisfiable esrfrom
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