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Abstract—A variety of tasks in formal verification require
finding small or minimal unsatisfiable cores (subsets) of an
unsatisfiable set of constraints. This paper proposes two algo-
rithms for finding a minimal unsatisfiable core or, if a time-out
occurs, a small non-minimal unsatisfiable core. Our algorithms
can be applied to either standard clause-level unsatisfiable core
extraction or high-level unsatisfiable core extraction, that is,
an extraction of an unsatisfiable core in terms of “interesting”
propositional constraints supplied by the user application. We
demonstrate that one of our algorithms outperforms existing
algorithms for clause-level minimal unsatisfiable core extraction
on large well-known industrial benchmarks. We also show that
our algorithms are highly scalable for the problem of high-
level minimal unsatisfiable core extraction on huge benchmarks
generated by Intel’s proof-based abstraction refinement flow.In
addition, we provide a comparative analysis of the impact of
various algorithms on unsatisfiable core extraction.

I. I NTRODUCTION

Given an unsatisfiable formula in Conjunctive Normal Form
(CNF), a (clause-level) unsatisfiable core (UC)is an unsatis-
fiable subset of its clauses. A(clause-level) minimal unsatisfi-
able core (MUC)is a clause-level UC that becomes satisfiable
when any one of its clauses is removed. The problem for
finding a small, a minimal, the smallest minimal, or all the
minimal unsatisfiable cores has been addressed frequently in
recent years [1]–[19], mainly due to the increasing importance
of this problem in formal verification.

While clause-level UC extraction is widely used, the for-
mulation of the problem of extracting a clause-level core
implicitly assumes that a “good” core should contain as few
clauses as possible, whereas many real-world applications
require minimizing the number of high-level propositional
interesting constraintsin the core. Ahigh-level small/minimal
unsatisfiable coreis a small/minimal subset of the interesting
constraints, whose conjunction with the other constraintsin
the system is unsatisfiable.

In [13] an algorithm for finding all the high-level MUCs
is proposed and applied during the refinement stage of
the datapath abstraction refinement-based approach to formal
equivalence verification (FEV) described in [20]. Specifically,
an abstract counterexample is written as a set of interesting
constraints. The abstract counterexample is encoded into CNF
in order to find corresponding concrete bit-level counterexam-
ples. If the CNF instance is unsatisfiable, then no such con-
cretization exists, and the abstract counterexample is spurious.
In this case, high-level MUCs are used to locate the source of
infeasibility and refine the abstraction. The algorithm of [13]
is reviewed in Section II.

High-level MUC extraction is used for compositional
FEV [21], [22] in [23]. In compositional FEV, the design
and the implementation are decomposed into pairs of corre-
sponding slices. By proving the equivalence of all the pairs
one can infer the equivalence of the models. It is essential
for fast and correct FEV to allow the user (the designer)
to specify assumptions that mimic the environment for each
pair of slices. These assumptions can be used for the proof
of equivalence, but the correctness of each assumption that
impacts the proof must be proved separately afterwards. High-
level MUC extraction, where the assumptions serve as the
interesting constraints, is used to identify the assumptions
that were relevant for the equivalence proof. The algorithm
of finding a high-level MUC is only briefly sketched in [23]
(in fact, a preliminary version of our Alg. 2 is used).

Another example where high-level UC extraction can be
applicable is proof-based abstraction refinement for SAT-based
hardware model checking, proposed independently in [24]
and [25]. This algorithm uses bounded model checking (BMC)
for increasing depths on the concrete design. When there is
no counterexample up to a given depth, an UC is identified
for this depth and an abstraction based on latches and/or
gates is used to generate an abstract model which is then
proved using complete model checking techniques. While the
existing literature uses clause-level UC extraction for finding
the abstraction, it would be more appropriate to use high-level
UC extraction for this purpose, since the algorithm clearly
needs UCs in terms of latches and/or gates, rather than clauses.

Finding one non-minimal core is the cheapest alternative in
terms of run-time, but the least precise in terms of the size
and accuracy of the core. Extracting all the minimal cores is
the most precise, albeit the most costly, option. Finding one
minimal core is a reasonable compromise between accuracy
and run-time. In this paper we introduce two new algorithms
applicable for both high-level and clause-level single MUC
extraction. They can also return a small non-minimal core if
a time-out occurs after the initial approximation stage, where
the larger the time-out the smaller the core will be. One of
the algorithms generalizes and improves the resolution-based
approach to clause-level MUC extraction [6]–[8], while the
other uses the selector variable-based approach to clause-level
non-minimal UC extraction of [4], [11] as the starting point.
We show that one of our algorithms, given large industrial
benchmarks, yields empirically better results than previous
approaches to clause-level MUC extraction. We demonstrate
the scalability of our algorithms for high-level MUC core
extraction using huge benchmarks generated by Intel’s imple-



mentation of the proof-based abstraction refinement flow [24],
[25]. Also, our work provides an extensive comparison be-
tween our new resolution-based and selector variable-based
approaches to MUC extraction. Furthermore, we analyze the
impact of the following on resolution-based MUC extraction:
(1) different approaches to incremental SAT solving (pervasive
clause reuse [26] versus reusing a single SAT instance [27]);
(2) RRP (Resolution Refutation-based Pruning) [6]–[8]; (3)
in-memory data structures with reference counters [9]–[11]
versus on-disk data structures [1], [2].

The rest of the paper is organized as follows. Section II pro-
vides the necessary background and surveys the related work.
Sections III and IV introduce our approaches (resolution-based
and selector variable-based, respectively) to extractinga MUC.
Section V presents and analyzes the experimental results.
Section VI concludes our work.

II. BACKGROUND AND RELATED WORK

We start this section with an overview of algorithms for
incremental SAT solving, whose relevance to UC extraction
will be explained shortly.

A. Incremental SAT Solving

Incremental SAT solving is intended to boost the solving
of closely related SAT instances, which share clauses. It
was noted in [26] thatpervasive clause reuse(that is the
reuse of learned clauses derived from shared input clauses
in consecutive SAT invocations) provides a significant perfor-
mance boost in SAT-based Automatic Test Pattern Generation.
Another single SAT instance-basedapproach to incremental
SAT solving was proposed in [27] in the context of incre-
mental model checking and implemented in the Minisat SAT
solver [28]. Minisat re-uses a single SAT instance for all the
related invocations. After the solving is completed, one can
add new clauses to Minisat and re-invoke the solver on the
incremented instance. The single SAT instance-based approach
is preferable to the pervasive clause reuse approach, since
it reuses not only the relevant conflict clauses, but also all
the information necessary for the decision and conflict clause
deletion heuristics. However, it suffers from the drawbackthat
it is notdecremental, that is, it does not allow removing clauses
between consecutive SAT invocations.SAT solving under
assumptions[27] (also implemented in Minisat) provides a
solution to this problem by allowing the user to supply a set of
assumptionsY = {y1, y2, . . . , ym} (where each assumptionyi

is a literal) along with the input formulaF . The solver returns
“satisfiable” iff F ∧ Y is satisfiable. The user application
can augment related clauses that are expected to be removed
with the negation of a literall and assert these clauses when
required by addingl to Y . An additional useful feature is that
whenF ∧Y is unsatisfiable, Minisat can return a small subset
of the assumptionsY ′ ⊆ Y , called therelevant assumptions,
such thatF ∧ Y ′ is still unsatisfiable [28]. The algorithm
for returning the set of relevant assumptions is very cheap
and requires only minimal changes to the solver. All theY

literals are picked as decision variables before all the other

variables and are assigned true. Then standard SAT solving is
used. The algorithm terminates when one of the assumptions
y is forced to be false in clauseC by Boolean Constraint
Propagation (BCP). In this case the assumptions cannot hold
together. Minisat resolves theC with all its predecessors in
the implication graph until a clause containing the negations
of Y ’s literals only is generated. The negation of this clause
is returned as the set (conjunction) of relevant assumptions.

B. Unsatisfiable Core Extraction

The most scalable approach to extracting a small clause-
level UC is theresolution-based approach. It is based on the
ability of modern SAT solvers to store a resolution derivation
during the process of solving and to generate a resolution
refutation of a given unsatisfiable formula at the end. The basic
resolution-based approach, discovered independently in [1]
and [2], returns all the initial clauses connected to the empty
clause� as the UC. This approach imposes little overhead
on the SAT solver, hence it can handle huge instances having
millions of clauses. Two methods for trimming the size of the
core were proposed in [1] and [5], based on invoking the basic
resolution-based approach until a fixed point is reached and
manipulating the resolution refutation, respectively. Neither of
these methods guarantees minimality.

A resolution-based algorithm for extracting a minimal UC,
called Complete Resolution Refutation (CRR), was proposed
in [6]–[8]. CRR first finds a resolution refutationπ of the
input formula and removes clauses that are not connected to
the empty clause�. Then, for each remaining input clauseC,
CRR removes the cone ofC from π and invokes a SAT solver
on the rest of the remaining clauses, including the conflict
clauses. If the formula is satisfiable, thenC belongs to a MUC;
otherwise CRR removes all the clauses not connected to�

from π and continues the loop until all the input clauses are
either removed or are proved to belong to the MUC. CRR
uses the pervasive clause reuse approach to incremental SAT
solving: it invokes the SAT solver many times on related
instances, re-using all the relevant conflict clauses. CRR’s
performance can be enhanced by applying a technique known
as Resolution Refutation-based Pruning (RRP) [6]–[8], which
is briefly described in Section III. CRR with RRP scales
well for difficult industrial instances having up to one or two
hundred clauses [6]–[8].

The early implementations of resolution-based algorithms
for UC extraction stored the resolution derivation on disk [1],
[2]. Several independent researches realized that the perfor-
mance of UC extraction could be improved by storing the
resolution derivation in memory. In [6] it was suggested
as a direction for future work that storing the resolution
derivation in memory could boost CRR. BooleForce [29] was
the first solver to store the resolution derivation in memory(for
extracting non-minimal UCs). An efficient implementation of
the in-memory algorithm, based on reference counters, was
proposed independently in [9]–[11]. The key observation is
that if there are no references to the clause from either the



instance or the resolution derivation, it can safely be removed
from the resolution derivation.

Now we describe another prominent approach to UC
extraction–theselector variable-based approach–introduced in
the AMUSE tool for non-minimal clause-level UC extrac-
tion [4]. This approach adds the negation of a freshselector
variable from a subsetY to each input clause. The SAT
solver is then guided to assert the clauses by setting the
selector variable to true whenever possible. In the end, the
algorithm derives aY -conflict clause containing a subset of
the selector variables. The core consists of clauses the negation
of whose corresponding selector variables belongs to theY -
conflict clause. AMUSE implementation requires changing the
internals of the SAT solver. A very similar algorithm for non-
minimal clause-level UC extraction which does not require
changing the SAT solver was proposed in [11]. It provides the
selector variables as assumptions, along with the formula aug-
mented by selector variables, to Minisat. The UC consists of
clauses whose selector variables are returned by Minisat asthe
relevant assumptions. Unlike the resolution-based approach,
the selector variable-based approach does not need to store
a resolution derivation. However, its major drawback is that
adding selector variables causes the SAT solver to generate
very long learned clauses, making it so that the algorithm
does not scale well even to medium-size instances for clause-
level MUC extraction. The selector variable-based approach
to non-minimal clause-level UC extraction was shown to
be inferior to the basic resolution-based approach in [11].
Moreover, AMUSE was shown to be much slower than the
CRR algorithm in [6]–[8], even though AMUSE, unlike CRR,
does not guarantee the minimality of the core. The selector
variable-based approach can be extended for generating a
number of clause-based UCs [4], the smallest clause-based
MUC [12], and all the clause-based MUCs [13].

An algorithm for generating all the clause-level or all the
high-level MUCs, called CAMUS, is proposed in [13]. First
CAMUS computes the set of all the minimal correction subsets
(MCSs) of a given unsatisfiable problem, where a correction
subset is a subset of the constraints whose removal results
in a satisfiable set of constraints. Then it finds the set of all
the irreducible hitting sets of the MCSs, which is exactly the
set of all the MUCs. The first stage of this algorithm is very
costly, since it has to findall the MCSs. Yet, a version of
CAMUS for finding all the high-level MUCs was successfully
applied to formulas from the datapath abstraction domain [20]
having more than one hundred clauses. The efficiency of the
high-level MUCs extraction is achieved using Minisat’s feature
of SAT solving under assumptions with relevant assumption
extraction as an underlying reasoning engine. In our context,
it is important to note that the high-level MUCs extraction
mode of CAMUS marks all the clauses that correspond to
a particular interesting constraint with a particular selector
variable. This operation allows CAMUS to use Minisat’s
features for reasoning about interesting constraints. OurAlg. 3
for finding a single MUC uses this operation as well, but,
unlike CAMUS, we apply it to the problem of UC extraction

C8 = �

C7 = ¬a

C6 = c

C3 = a C4 = c C1 = b ∨ c C2 = ¬b ∨ c C5 = ¬a ∨ ¬c

Fig. 1: An example. Assume Ψ =
{R1 = {C1, C2} , R2 = {C3, C4}}; Ω = {C5}. Note that
the only high-level MUC is {R2}. A resolution refutation of
Clss(Ψ ∧ Ω), addressed in the text, is shown.

.

in a straightforward manner which makes our high-level MUC
extraction algorithm scalable to instances having millions of
clauses. Note that although the second stage of CAMUS can
easily be modified to return only one high-level MUC, this
option does not seem to be practical, since CAMUS’s first
stage is clear overkill when only one MUC is required to be
found.

III. R ESOLUTION-BASED M INIMAL UNSATISFIABLE CORE

EXTRACTION

In this section we introduce a new resolution-based algo-
rithm for high-level and clause-level minimal UC extraction.
It may also return a non-minimal core if a time-out occurs
after the initial approximation stage.

A. Definitions

We need to provide a number of well-known notions related
to resolution. Theresolution rule states that given clauses
D1 = A ∨ v and D2 = B ∨ ¬v, whereA and B are also
clauses, we can derive the clauseC = A ∨ B. The resolution
rule application is denoted byC = D1 ⊗v D2. A resolution
derivation of a target clauseC from a CNF formulaF is a
sequenceπ = (C1, C2, . . . , Cp ≡ C), where each clauseCi is
either a clause ofF (an initial clause) or derived by applying
the resolution rule toCj and Ck, wherej, k < i (a derived
clause). Aresolution refutationis a resolution derivation of the
empty clause�. A resolution derivationπ = (C1, C2, . . . , Cp)
can naturally be considered as a directed acyclic graph (dag)
whose vertices correspond to all the clauses ofπ and in
which there is an edge from a clauseCj to a clauseCi

iff Ci = Cj ⊗ Ck (an example of such a dag appears in
Fig. 1). Let π be a resolution derivation. A clauseD ∈ π

is reachablefrom C ∈ π if there is a path (of 0 or more
edges) fromC to D. The set of all vertices reachable from
C ∈ π (or from ρ ⊆ π), called thecone of C (or ρ), is
denotedRe(π,C) (or Re(π, ρ)). For the example in Fig. 1,
Re(π, ρ = {C1, C2}) = {C1, C2, C6, C7, C8}.

Now we provide definitions related to high-level UC ex-
traction. Given a conjunction (set) of propositional formulas
Ψ = {R1, R2, . . . , Rm} and a propositional formulaΩ, such
that Ψ ∧ Ω is unsatisfiable,UC(Ψ,Ω) ⊆ Ψ is a high-level
unsatisfiable core, if UC(Ψ,Ω) ∧ Ω is unsatisfiable. Each
Ri ∈ Ψ is an interesting constraint (IC)and the setΩ is
the remainder. A high-level UC isminimal if removing any
of its ICs makes its conjunction with the remainder satisfiable.



A clause projection Clss(F ) of a propositional formulaF is
a set of clauses equisatisfiable toF , generated by applying
Tseitin encoding [30]. We sometimes refer to a formulaF ,
meaning the associated clause projectionClss(F ).

Next we introduce our resolution-based algorithm for high-
level MUC extraction. For clarity of presentation we start with
a simple (yet novel) Alg. 1, which serves as the basis for the
eventual Alg. 2.

B. The Basic Algorithm

Alg. 1 receives a set of ICs and the remainder. Its initial
approximation stage(the first two lines) approximates a high-
level MUC mucby placing inmucICs whose intersection with
a clause-level non-minimal UC is non-empty1. The clause-
level non-minimal core is found using the basic resolution-
based approach [1], [2]. The approximation stage of Alg. 1
corresponds to the “folk” algorithm for finding a high-level
non-minimal UC. Note that even if the clause-level core is
minimal, the high-level core is not necessarily minimal (this
observation also holds for Alg. 2). Consider the example in
Fig. 1. The set of clauses{C1, C2, C3, C5} is a clause-level
MUC of Clss(Ψ ∧ Ω). However, the corresponding set of
interesting high-level constraints{R1, R2} is not a high-level
MUC.

Assume now that the algorithm enters theminimization loop
(the “for all” loop). It simply goes over all the ICs remaining
in mucand checks if a particularremoval candidateRi can be
removed by invoking a SAT solver over the clause projection
of the remainder andmuc\ {Ri}. In the end,muc is a high-
level MUC.

Note that if a time-out occurs during the minimization stage,
the algorithm can still return a reduced, but not necessarily
minimal, core. This property also holds for Alg. 2. We describe
another property holding for both algorithms. This property is
essential for guaranteeing that the algorithms indeed return a
minimal core. Consider an ICRj , such thatj ∈ muc, but Rj

is not the removal candidate for a certain minimization loop
iteration. Note that all the clausesClss(Rj) are sent to the
SAT solver, even if some of the clauses ofClss(Rj) did not
participate in the clause-level core returned by the SAT solver
during the approximation stage. For example, suppose that the
resolution refutation in Fig. 1 corresponds to the situation just
after completion of the approximation stage. Assume that the
removal candidate for the first iteration of the minimization
loop is R1. The clauseC4 ∈ Clss(R2) is not connected to
�. However, it must be sent to the SAT solver, otherwise
the algorithm will erroneously conclude thatR1 must belong
to the minimal core. Likewise, all the clauses in the clause
projection of the remainder are sent to the SAT solver.

The main drawback of Alg. 1 is the lack of incrementality.
The SAT solver is invoked each time on a new formula, while
the learned conflict clauses and heuristical information are lost.

1We assume here and elsewhere in the paper that the clause projection of
each constraint (either an interesting constraint or the remainder) is created
by appying Tseitin encoding which generatesnewauxiliary variables for each
translated entity.

Algorithm 1 Basic high-level MUC extraction

Require: Ψ = {R1, R2, . . . , Rm} ∧ Ω is unsatisfiable
1: Extract a clause-level non-minimal unsatisfiable coreF using the

basic resolution-based approach
2: muc:=

{

i | Clss(Ri) ∩ F 6= ∅
}

3: for all i ∈ mucdo
4: Invoke a SAT solver onClss(Ω ∧ {Rj | j ∈ muc\ {i}})
5: if the result is “unsatisfiable”then
6: muc:= muc\ {i}
7: return {Ri | i ∈ muc}

We would like to extend Alg. 1 so that it would reuse the
same SAT instance. To be able to check whether a removal
candidate belongs to the core, we need to have the ability to
conditionally removethe cone of the removal candidate (that
is, to remove the cone while maintaining the possibility of
returning it efficiently), since this cone corresponds exactly
to the removal candidate and all its logical consequences.
In addition, we need to support both the efficientreturn of
conditionally removed clauses to the SAT instance for cases
where the removal candidate belongs to the minimal core, and
the efficientunconditional removalof clauses to support the
operation of removing ICs from the core. We will describe how
we implemented these operations after presenting the flow of
Alg. 2.

C. The Final Algorithm

Alg. 2 uses an incremental SAT solver (which also maintains
a resolution derivation) and assumes that it returns a triplet
that contains the result (which can either be “satisfiable” or
“unsatisfiable”), an updated SAT instance, and an updated
resolution derivation. The approximation stage of Alg. 2 (from
the beginning until line 7) invokes the SAT solver over
the set of ICs and the remainder. The cones (of ICs) that
do not include� are removed from the instance forever.
The algorithm maintains a set ofminimal core candidates,
muc cands, initialized with the indexes of ICs whose cone
includes�. It is not known whether the ICs inmuc cands
belong to the minimal core. The algorithm also maintains a
set of minimal core habitants, muc, which contains ICs that
belong to the minimal UC. Consider the minimization loop
(the “while” loop). Each iteration picks a removal candidate
from the minimal core candidates. It conditionally removes
the cone of the removal candidate from the SAT instance
and invokes the SAT solver. If the instance is satisfiable, the
removal candidate is guaranteed to belong to the minimal core,
and hence it is moved frommuc candsto muc and its cone
is returned to the instance. If the instance is unsatisfiable, the
algorithm refines the minimal core candidates by keeping there
only those ICs whose cone includes�. Cones of other ICs are
removed forever. Hence one iteration of the loop may remove
more than one IC from the set of minimal core candidates. In
the end, the algorithm returns the set of minimal core habitants
as the high-level MUC.

Now we will discuss implementation details which are
critical for performance. Conditionally removed clauses are



not deleted from the clause database, since this would make
returning them cumbersome and costly. Rather, we make sure
that these clauses are ignored by the solver’s major algorithms,
including Boolean Constraint Propagation (BCP) and clause-
based heuristics (if such a heuristic, e.g., CBH [31], is used).
This is done as follows. We remove the clauses from the WL
data structure [32], which is used for BCP, then we mark the
clauses and guide the heuristic to ignore the marked clauses.
To return the conditionally removed clauses, it is sufficient to
reinsert them into the WL data structure and unmark them for
the clause-based heuristics. In addition, our implementation
groups the following two operations into one pass over the
clauses carried out just after executing line 10: (1) finding
and conditionally removing the cone of the current removal
candidate; (2) finding and either returning or unconditionally
removing the cone of the previous removal candidate (or, for
the first iteration only, unconditionally removing the cones of
ICs found to be irrelevant during the approximation stage).

Algorithm 2 Resolution-based high-level MUC extraction

Require: Ψ = {R1, R2, . . . , Rm} ∧ Ω is unsatisfiable
1: Initialize the SAT instanceSI with Clss(Ψ ∧ Ω) and associate a

resolution derivationπ with SI
2: 〈res, SI, π〉 := SAT(SI)
3: for i ∈ 1 . . . m do
4: if � /∈ Re(π, Clss(Ri)) then
5: RemoveRe(π, Clss(Ri)) from SI forever
6: muc cands:= {i | � ∈ Re(π, Clss(Ri))}
7: muc:= {}
8: while muc candsis non-emptydo
9: k := a member ofmuc cands\ muc

10: Conditionally removeRe(π, Clss(Rk)) from SI
11: muc cands:= muc cands\ {k}
12: 〈res, SI, π〉 := SAT(SI)
13: if res= satisfiablethen
14: ReturnRe(π, Clss(Rk)) to SI
15: muc:= muc∪ {k}
16: else
17: RemoveRe(π, Clss(Rk)) from SI forever
18: for i ∈ muc candsdo
19: if � /∈ Re(π, Clss(Ri)) then
20: RemoveRe(π, Clss(Ri)) from SI forever
21: muc cands:= muc cands\ {Ri}
22: return {Ri | i ∈ muc}

Standard clause-level MUC extraction is a particular case
of high-level MUC extraction where each IC consists of a
single clause and the remainder is empty. Consider Alg. 2 as
an algorithm for clause-level MUC extraction and compare
it to the CRR algorithm [6]–[8] described in Section II. The
algorithms have a similar structure. Both try to reuse all the
relevant conflict clauses between different iterations of the
minimization loop. The main difference between them is that
while CRR creates a new SAT instance for each minimization
loop iteration, Alg. 2 reuses a single SAT instance. There isan
additional difference between the implementation of CRR and
the currently fastest implementation of Alg. 2. Alg. 2’s fastest
implementation uses the latest in-memory data structures with
reference counters for storing the resolution derivation [9]–

[11], while the CRR implementation of [6]–[8] uses the on-
disk approach. Section V demonstrates that Alg. 2 empirically
outperforms CRR for clause-level MUC extraction.

Our current implementation of resolution-based algorithms
uses reference counters for efficiently removing unreferenced
nodes in the in-memory resolution derivation. However, we
noticed that using reference counters for this purpose is
redundant, since the same effect can be achieved by remov-
ing unreferenced nodes during the standard interprocessing
required for the clause deletion heuristic as follows. The solver
stores the listL of all the clauses deleted by the clause deletion
heuristic. Note that only clauses that appear inL should be
considered for removal from the resolution derivation. When
L becomes larger than some threshold, the algorithm removes
from the resolution derivation all the clauses inL whose
predecessors in the resolution derivation also appear inL. The
exact implementation details are solver-specific. We have been
working on implementing this idea and experimenting with
it in the hope that it will result in further memory footprint
reduction.

RRP [6]–[8], used to enhance CRR, is directly applicable
to Alg. 2. The underlying idea is that a model forSI during
any minimization loop iteration can only be found under such
a partial assignment that falsifies every clause in some pathin
Re(π, Clss(Rk)) from a clause inClss(Rk) to �. The claim is
correct, since finding a model forSI that satisfies every path in
Re(π, Clss(Rk)) would mean that there is a satisfiable vertex
cut in π, contradicting the assumption thatπ is a resolution
refutation. For example, consider again Fig. 1 and suppose that
R1 is picked as the first removal candidate by the minimization
loop. A model forSI can be found either whenb, c = 0; a = 1
for the pathC1, C6, C7, C8 or c = 0; b, a = 1 for the path
C2, C6, C7, C8. RRP takes advantage of the described property
during the minimization loop by guiding the decision heuristic
and the backtracking engine of the SAT solver to falsify paths
in Re(π, Clss(Rk)) in a systematic manner. We analyze the
impact of RRP on Alg. 2’s performance in Section V.

IV. SELECTORVARIABLE -BASED M INIMAL

UNSATISFIABLE CORE EXTRACTION

This section proposes a new selector variable-based algo-
rithm for extracting a single high-level or clause-level MUC or,
if a time-out occurs after the initial approximation stage,a non-
minimal core. Our algorithm takes advantage of the ability of
modern SAT solvers to solve the problem under assumptions
and to return a set of relevant assumptions for proving the
unsatisfiability [27], [28], explained in Section II.

Consider Alg. 3. It is composed of the approximation stage
and the minimization loop, exactly like Algs. 1 and 2. First,
the algorithm allocates a fresh selector variablesi for each IC
Ri and augments each clause in the clause projection ofRi

with ¬si. At every stage of the algorithm every conflict clause
in the cone ofRi will contain the literal¬si. Hence, assigning
somesi to true means asserting the ICRj , while assigning
sj to false means removing the associated IC by satisfying
all the relevant clauses. Our algorithm takes advantage of



these properties to support the conditional and unconditional
removal of the ICs from the instance, as well as their return
to it, without explicitly maintaining a resolution derivation.

The approximation stage of the algorithm launches a SAT
solver, providing it the input formula (updated with the selector
variables) and the set of selector variables as the assumptions.
Suppose that the solver returns: (1) the satisfiability status;
(2) the updated incremental CNF instanceSI; and (3) the set
of relevant assumptionsrel asm. After invoking the solver,
the set of ICs which corresponds to the selector variables in
rel asm is a (not necessarily minimal) high-level UC. The
cones of the other ICs are removed from the instance. This
is done by adding unit clauses to the instance, each of which
contains the negation of a selector variable correspondingto
one particular IC. One could physically remove the clauses,
but this would require the expensive operation of going over
the clauses explicitly and rebuilding the clause database.In
our implementation, the SAT solver identifies and removes the
satisfied clauses, at no additional cost, as part of the standard
interprocessing required for the clause deletion heuristic.

The minimization loop of our algorithm maintains the sets
of minimal core candidates and minimal core habitants like
Alg. 2. Each iteration of the minimization loop removes a
particular removal candidate from the set of minimal core
candidates and launches the SAT solver on the formula,
supplying it a set of assumptions that does not include the
removal candidate. If the result is satisfiable, the removal
candidate belongs to the MUC, otherwise it does not belong to
it. In the latter case, based on the set of relevant assumptions
returned by the SAT solver, the algorithm refines the set of
minimal core candidates and removes the cones of unnecessary
ICs. At the end, the set of minimal core habitants is returned
as the high-level MUC.

Compare selector variable-based Alg. 3 to resolution-based
Alg. 2. The selector variable-based approach saves the over-
head of maintaining a resolution derivation and making ad-
ditional passes over the clause database. Alg. 3 is also much
simpler to implement. However, the selector variable-based
approach has the drawback that adding new variables to the
formula makes the conflict clauses larger and the solver slower.
An empirical comparison of Alg. 3 and Alg. 2 is provided in
Section V.

V. EXPERIMENTAL RESULTS

In this section we empirically compare algorithms for
clause-level MUC extraction and high-level MUC extraction.

A. Clause-Level Minimal Unsatisfiable Core Extraction

We used the same benchmarks that were used in [6]–
[8]. The instances were taken from well-known unsatisfi-
able families from bounded model checking (barrel, long-
mult) [33] and microprocessor verification (fvp-unsat.2.0,
pipe unsat 1.0) [34]. The size of the instances ranged from
6,069 to 189,109 clauses, the average size being 49,986
clauses. Detailed information regarding these instances ap-
pears in [6]–[8]. All the algorithms were implemented in the

Algorithm 3 Selector variable-based high-level MUC extrac-
tion
Require: Ψ = {R1, R2, . . . , Rm} ∧ Ω is unsatisfiable

1: For eachRi ∈ Ψ: Sel(Ri) := {¬si ∨ C|C ∈ Clss(Ri)}, where
si is a new variable

2: SI := (∧i:=1...mSel(Ri)) ∧ Clss(Ω)
3: 〈res, rel asm, SI〉 := SATAsm(SI; {s1, s2, . . . sm})
4: For eachj /∈ rel asm: Add a unit clause¬sj to SI
5: muc cands:= {i | si ∈ rel asm}
6: muc:= {}
7: while muc candsis non-emptydo
8: k := a member ofmuc cands\ muc
9: muc cands:= muc cands\ {k}

10: 〈res, rel asm, SI〉 := SATAsm(SI; {si | i ∈ muc cands∪ muc})
11: if res= satisfiablethen
12: muc:= muc∪ {k}
13: else
14: muc cands:= {i | si ∈ rel asm}
15: For eachj /∈ rel asm: Add a unit clause¬sj to SI
16: return {Ri | i ∈ muc}

Eureka SAT solver [35]. All experiments were carried out on
a machine with 4Gb memory and two Intel Xeon CPU 3.06
processors.

Note that CRR with RRP is the best existing algorithm for
extracting a clause-level MUC, given large difficult formalver-
ification benchmarks. It was shown in [6]–[8] that CRR with
RRP convincingly outperforms AMUSE [4] and MUP [36].
There exist a number of other approaches to UC extraction,
such as those based on adaptive core search [3], Brouwer’s
fixed-point approximation algorithm [14], local search [15], a
combination of local search and complete search [16], [19],a
branch and bound algorithm [17], and genetic algorithms [18].
However, none of these approaches has been shown to scale
well to large-size or even medium-size benchmarks. The
instances considered in the experimental results sectionsof the
papers mentioned above rarely exceed 10,000 clauses; in most
cases the instances considered have at most a few thousand
or even a few hundred clauses. This is not surprising, since
these algorithms do not utilize the power of DPLL-based SAT
solvers, currently the only approach that can solve large and
difficult CNFs. Note that the problem of finding a MUC is
DP-complete [37], hence in general extracting a MUC is at
least as difficult as SAT solving; moreover, unless NP=co-NP,
it is more difficult.

Consider Table I. Columns 1MR, 1MN, and 1DN (the
names are explained in the caption of Table I) correspond to
various implementations of Alg. 2. Columns PDR and PDN
correspond to the CRR+RRP and CRR algorithms. Column
PMN can be thought of as an in-memory implementation of
CRR or as a modification of Alg. 2 that creates multiple SAT
instances with pervasive clause reuse between them. Column
SV corresponds to the selector variable-based approach of
Alg. 3. Compare the best implementation of our Alg. 2 (1MN)
to the best previous approach CRR with RRP (PDR). 1MN is
clearly preferable, as it is faster overall and faster for thirteen
out of sixteen instances. In addition, it manages to find the



TABLE I: Comparing algorithms for clause-level MUC extraction. The first column contains instance names (where, p/b/l stand for
pipe/barrel/longmult). Each cell in the next seven columns contains the execution time in seconds on the top, the core size on the bottom-left,
and the number of clauses whose status was not determined within the time-out of 2 hours on the bottom-right (the core is minimal iff 0
appears on the bottom-right of the corresponding cell). The first letter of the abbreviated algorithm names corresponds to the approach to
incremental SAT solving: “P”/“1” stand for pervasive clause reuse/single SAT instance-based, respectively. The second letter corresponds
to the data structures: “D”/“M” stand for on-disk/in-memory with reference counters, respectively. The third letter corresponds to RRP
invocation: “R”/“N” stand for turning RRP on/turning RRP off, respectively. Bold times are the best times.

Resolution-based SV
Inst 1MR 1MN PMN 1DN PDR PDN

4p 7200 1417 2326 7200 3791 4055 2021
25399 25341 18164 0 17928 0 18622 4050 18897 0 18609 0 17472 0

4p 1 ooo 7200 1528 2593 7200 2928 4579 4323
20445 20443 12213 0 12211 0 12444 8417 12246 0 12226 0 12887 0

4p 2 ooo 4718 2383 3428 7200 4566 7062 4999
14456 0 14438 0 14572 0 16360 11047 14553 0 14569 0 14560 0

4p 3 ooo 5053 2560 3694 7200 4465 6285 5357
15844 0 15850 0 15811 0 16141 7168 15892 0 15899 0 16177 0

4p 4 ooo 4768 2432 4706 7200 5865 7200 6354
17625 0 17558 0 17633 0 19215 13680 17872 0 17916 370 17793 0

3p k 343 167 310 810 469 540 239
6784 0 6784 0 6787 0 6786 0 6783 0 6783 0 7074 0

4p k 7200 1426 2243 7200 2938 3261 3097
21459 21459 17045 0 17039 0 17218 3403 17055 0 17075 0 18786 0

5p k 7200 7200 7200 7200 7200 7200 7200
45406 45404 36423 8946 37479 22827 37523 36363 39336 19888 38800 28221 49134 47179

b5 286 68 71 869 115 128 48
2653 0 2653 0 2653 0 2653 0 2653 0 2653 0 2653 0

b6 1514 348 433 7200 436 552 402
4437 0 4437 0 4437 0 4498 659 4437 0 4437 0 4437 0

b7 1802 849 800 7200 1081 1108 700
6877 0 6877 0 6877 0 7324 2927 6877 0 6877 0 6877 0

b8 7200 4115 4479 7200 4110 4923 5758
10260 1390 10077 0 10076 0 12452 11382 10075 0 10075 0 10076 0

l4 23 14 14 25 12 12 78
972 0 972 0 972 0 972 0 972 0 972 0 972 0

l5 191 143 130 321 100 97 642
1518 0 1518 0 1518 0 1518 0 1518 0 1518 0 1520 0

l6 1121 968 1072 3129 1760 1615 5705
2189 0 2189 0 2190 0 2189 0 2189 0 2189 0 2194 0

l7 7200 5099 7200 7200 7200 7200 7200
2982 36 2982 0 2994 649 3203 1814 3454 1993 3071 973 3494 2895

Total 63019 30717 40699 84354 47036 55817 54123
199306 114073 170180 8946 171177 23476 179118 100910 174809 21881 173669 29564 186106 50074

minimal UC within the time-out for one more instance.
Comparing 1MN and SV clearly shows that our resolution-

based approach is preferable to our selector variable-based
approach for clause-level MUC extraction. The overhead of
adding a variable per clause is too high.

The single SAT instance-based approach to incrementality
results in better performance for the in-memory version of the
resolution-based approach to UC extraction (compare 1MN
to PMN). This is not surprising, as it takes advantage of
the information gathered by the decision variable and clause
deletion heuristics. However, it deteriorates the performance
of the on-disk algorithm (compare 1DN to PDN). The prob-
lematic aspect of such a combination is that the single SAT
instance-based approach stores the entire resolution derivation
in a single file whose growing size does not allow it to be
processed efficiently.

While RRP is helpful for CRR (compare PDR and PDN),
it deteriorates the performance of Alg. 2 (compare 1MR
and 1MN). We can also report that PMN outperforms PMR
(PMR’s results are not reported in the table due to space
limitations). Hence RRP does not work well when the res-
olution derivation is stored in-memory. The reasons for this
could be related to higher memory consumption, since RRP

requires more memory due to additional bookkeeping. We plan
to investigate and optimize the performance of RRP for Alg. 2
in the future.

B. High-Level Minimal Unsatisfiable Core Extraction

Compare the algorithms for high-level MUC extraction. As
far as we know, this paper is the first to address the problem
of extracting a single minimal (or small, if a time-out occurs)
high-level UC. A much more expensive algorithm, called
CAMUS, for the much more difficult problem of extracting
all the high-level MUCs, is proposed in [13]. We provided a
description of CAMUS in Section II-B. We used 49 instances
generated from the abstraction stage of Intel’s implementation
of the proof-based abstraction refinement flow for model
checking [24], [25]. All the instances are available from the
author. The abstraction is in terms of latches. Each instance
consists of two files: the standard CNF file in DIMACS format,
and a file that maps latches to their clause projection. The goal
was to minimize the number of latches in the core in order to
create a more accurate abstraction. Consider Table II. Notethat
our instances have on average more than 1,850,000 clauses,
while the largest benchmark has more than 5,000,000 clauses.
Such instances are beyond the reach of modern algorithms



TABLE II: Statistics for instances used for testing high-level MUC
extraction algorithms. The remainder fraction is the fraction of the
remainder out of all the clauses.

Clauses Remainder Fraction ICs Num. Mean IC size
Min. 136878 0.955 584 3.89
Average 1853500 0.968 3367 17.27
Max. 5136873 0.977 4030 48.6

TABLE III: Comparing algorithms for high-level UC extraction.

1MR 1MN PMN 1DN PDR PDN SV
UC time 416 416 416 766 766 766 588
UC size 28.9 28.9 28.9 28.9 28.9 28.9 27.7

MUC time 3843 3797 4731 9238 44699 44345 3278
MUC size 9.6 9.6 9.6 9.6 9.6 9.6 9.5

for clause-level MUC extraction. Note also that the fraction
of the remainder among the clauses is very high, while the
number of ICs (latches) is 3367 on average. We compared the
same 7 algorithms that were compared for clause-level UC
extraction. Consider Table III. The table summarizes the per-
formance of our algorithms for both high-level non-minimal
UC extraction (which corresponds to the approximation stage
only) and high-level MUC extraction. The overall run-time
and the average core sizes are displayed. Column PMN can
be considered either as a modification of Alg. 2 that creates a
new SAT instance for each minimization loop iteration or as a
generalization of CRR for high-level minimal UC extraction.

While the best resolution-based approach 1MN is preferable
to the selector variable-based approach for non-minimal UC
extraction, the selector variable-based approach is preferable
for minimal UC extraction. Hence, while adding selector
variables does not pay off for non-minimal UC extraction,
even when the number of ICs is relatively low, it turns out
to be useful for the minimization loop. This result hints that
the overhead of additional passes over the clauses is greater
than the overhead of maintaining additional variables for high-
level UC extraction (at least for our benchmarks). Also note
that: (1) RRP is not helpful for the high-level UC extraction.
The reason is, apparently, thatRe(π, Clss(Rk)) is too large to
be efficiently explored, since it has too many source clauses.
(2) Not surprisingly, the in-memory data structure is clearly
preferable to the on-disk one. (3) The single SAT instance-
based approach to incrementality pays off even if the on-disk
data structure is used (as opposed to the situation in clause-
level UC extraction). The apparent reason is that considerably
fewer operations of extracting the core using the file are
required for high-level UC extraction.

VI. CONCLUSION AND FUTURE WORK

We introduced two new algorithms (resolution-based and
selector variable-based) for finding a minimal unsatisfiable
core (or a small non-minimal core, if a time-out occurs).
Our algorithms can be applied to either standard clause-
level minimal unsatisfiable core extraction or high-level un-
satisfiable core extraction, that is, extraction of a minimal
unsatisfiable subset in terms of “interesting” propositional
constraints provided by the user application.

We demonstrated that our resolution-based algorithm out-
performs existing algorithms for standard clause-level mini-
mal unsatisfiable core extraction on large, difficult industrial
benchmarks. We also demonstrated the empirical usefulness
and scalability of both our algorithms for high-level minimal
unsatisfiable core extraction on huge benchmarks generatedby
Intel’s proof-based abstraction refinement flow.

In addition, we provided a detailed comparison of various
algorithms and heuristics for minimal unsatisfiable core ex-
traction. An important conclusion is that while our resolution-
based approach is clearly preferable to our selector variable-
based approach for standard clause-level minimal unsatisfi-
able core extraction, the latter approach is faster for high-
level minimal unsatisfiable core extraction. We found that
the single SAT instance-based approach to incremental SAT
solving results in better performance than the pervasive clause
reuse approach. Furthermore, the in-memory data structure
with reference counters for storing the resolution derivation
is preferable to the on-disk data structure. Finally, RRP was
not found to be helpful for the newly proposed algorithms.

We plan to investigate how to efficiently integrate RRP
into our algorithms in the future. Furthermore, we have been
working on improving the in-memory data structures for
storing the resolution derivation by removing the redundant
usage of reference counters (as described in Section III-C).
In addition, we plan to study the impact of our algorithms
within various applications, such as proof-based abstraction
refinement and compositional FEV. Finally, we plan to study
how to enhance our algorithms to extract more than one MUC.
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Eds., vol. 4996. Springer, 2008, pp. 291–304.
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